1
|
Sesia R, Bello FD, Medana C, Binetti R, Papagiannaki D, Calza P. Study of the Photoinduced Fate of Selected Contaminants in Surface Waters by HPLC-HRMS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2025; 39:e10075. [PMID: 40394974 DOI: 10.1002/rcm.10075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
RATIONALE Photoinduced transformation of contaminants of emerging concern (CECs) can occur in aquatic environment and could lead to the formation of transformation products (TPs) of greater concern than the parent compounds. For such, the fate of epoxiconazole, hymecromone, and coumarin in water was investigated by simulating photoinduced abiotic transformations to assess the toxicity of their TPs and which CEC may be of greatest concern. METHODS Heterogeneous photocatalysis with TiO2 and direct photolysis of selected CECs were exploited to simulate their TPs. The TPs were assessed by means of HPLC coupled with an Orbitrap MS analyser in ESI positive mode, while their toxicity was evaluated through a Vibrio fischeri bioluminescence assay, and ECOSAR tool. RESULTS The formation of numerous TPs via different photoinduced pathways was noticed (27 for epoxiconazole, 6 for coumarin, and 8 for hymecromone, some of which are in the form of structural isomers). Toxicity assessment via V. fischeri assay showed that, unlike coumarin species, epoxiconazole transformation proceeds through the formation of toxic compounds. By means of ECOSAR software, the formation of predominant more noxious TPs of epoxiconazole was proved than the parent compound for both acute and chronic toxicities. Instead, most TPs of coumarin and hymecromone generally exhibited "harmful" and "toxic" levels of acute and chronic toxicities. CONCLUSIONS A probable structural identification was assigned to the monitored TPs via HPLC-HRMS to recognize the several transformation pathways, of which the hydroxylation reaction was predominant, and which compound may be more hazardous in the aquatic system due to its TPs. Epoxiconazole transformation brought to potentially toxic TPs, whereas photoinduced degradation of coumarin and hymecromone resulted in less hazardous TPs. The most significant aspect of this work is the ability of this overall approach to identify the formation of photoinduced TPs that are potentially more toxic than the original CEC.
Collapse
Affiliation(s)
- Rossella Sesia
- Department of Management and Production Engineering, Politecnico di Torino, Torino, Italy
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | | | | | - Paola Calza
- Department of Chemistry, University of Torino, Torino, Italy
| |
Collapse
|
2
|
Kravos A, Cristaudo F, Bello FD, Medana C, Prosen H, Calza P. Insight into photocatalyzed transformations of multiclass organic contaminants in water. J Chromatogr A 2025; 1752:465971. [PMID: 40273567 DOI: 10.1016/j.chroma.2025.465971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
This study investigates three understudied emerging contaminants: pharmaceutical ramipril (RAM), artificial sweetener neotame (NEO), and herbicide cycloxydim (CYC). Laboratory simulations of natural photoinduced transformations were conducted exploring direct photolysis and TiO2 photocatalysed process, followed by analysis with tandem high-resolution mass spectrometry (HRMS). The contaminants exhibited low-to-medium degree of photolysis, but rapid dissipation under photocatalysis. The assessment of transformation products (TPs) revealed several analytical challenges, particularly in peak detection and data management. The structural elucidation of the abundant TPs was achieved through multi-stage MS fragmentation studies and the transformation pathways were proposed based on the identified structures, evolution profiles, and polarities. The hydroxylation was the most common transformation for all contaminants, although each showed unique additional pathways. For instance, RAM underwent intermolecular cyclization, forming a diketopiperazine-like TP, as well as ketone formation and cleavage into low molecular mass TPs. NEO experienced ester hydrolysis, reduction, resulting in C=C bond formation, and oxidative aromatic ring-opening reactions. Lastly, CYC displayed (poly)hydroxylation or transformations of its oxime ether moiety, which underwent hydrolysis, detachment, or rearrangement, leading to oxazole TPs. The ECOSAR software was used for the prediction of toxicities of the identified TPs. In-silico toxicity prediction showed that the hydroxylated phenolic TPs of NEO and RAM, as well as certain oxazole TP isomers of CYC, have the potential to increase overall toxicity during the degradation. Overall, this paper addresses the analytical challenges and innovative methodologies for studying TPs, highlighting their growing relevance in environmental analytical chemistry.
Collapse
Affiliation(s)
- Aleksander Kravos
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000, Ljubljana, Slovenia; University of Turin, Department of Chemistry, Via Pietro Giuria 5, 10126, Turin, Italy
| | - Federico Cristaudo
- University of Turin, Department of Chemistry, Via Pietro Giuria 5, 10126, Turin, Italy
| | - Federica Dal Bello
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Via Nizza 52, 10126, Turin, Italy
| | - Claudio Medana
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Via Nizza 52, 10126, Turin, Italy
| | - Helena Prosen
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Paola Calza
- University of Turin, Department of Chemistry, Via Pietro Giuria 5, 10126, Turin, Italy.
| |
Collapse
|
3
|
Anagnostopoulou K, Evgenidou E, Lambropoulou DA. Suspect screening of the potential persistent and mobile organic compound (PMOC), dioctyl sulfosuccinate sodium (DOSS): Degradability, transformation and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137439. [PMID: 39919637 DOI: 10.1016/j.jhazmat.2025.137439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Dioctyl sulfosuccinate sodium (DOSS), a potential Persistent, Mobile, Organic Compound (PMOC), poses a significant hazard to drinking water quality due to its ability to disperse throughout the water cycle. This study focuses on DOSS and its transformation products (TPs), which remain underexplored regarding their PM properties and potential risks to water safety. The phototransformation of DOSS was investigated using advanced oxidation processes (AOPs) and solar-simulated experiments. A novel suspect-screening method was applied, combining literature data with identified photo-TPs to enhance a high-resolution mass spectrometry (HRMS) database for DOSS and its TPs. A total of 34 TPs were identified, 33 of which were newly reported. Hydroxylation, oxidation, and dealkylation were identified as key transformation processes. DOSS and its TPs were monitored across various environmental compartments, including wastewater, leachates, surface water, and groundwater. The average DOSS concentration in groundwater was 183 ng/L. Toxicity assessments, using in vitro and in silico methods, revealed concerning toxicity levels. Concluding, DOSS should be considered a potential PMOC with a higher likelihood of occurrence in environmental matrices than previously recognized.
Collapse
Affiliation(s)
- Kyriaki Anagnostopoulou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR 54124, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 10th km Thessaloniki-Thermi Rd, Thessaloniki, GR 57001, Greece
| | - Eleni Evgenidou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR 54124, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 10th km Thessaloniki-Thermi Rd, Thessaloniki, GR 57001, Greece
| | - Dimitra A Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR 54124, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, 10th km Thessaloniki-Thermi Rd, Thessaloniki, GR 57001, Greece.
| |
Collapse
|
4
|
Wang C, Guo R, Guo C, Yin H, Xu J. Photodegradation of typical psychotropic drugs in the aquatic environment: a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:320-354. [PMID: 39886903 DOI: 10.1039/d4em00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Continuous consumption combined with incomplete removal during wastewater treatment means residues of psychotropic drugs (PDs), including antidepressants, antipsychotics, antiepileptics and illicit drugs, are continuously entering the aquatic environment, where they have the potential to affect non-target organisms. Photochemical transformation is an important aspect to consider when evaluating the environmental persistence of PDs, particularly for those present in sunlit surface waters. This review summarizes the latest research on the photodegradation of typical PDs under environmentally relevant conditions. According to the analysis results, four classes of PDs discussed in this paper are influenced by direct and indirect photolysis. Indirect photodegradation has been more extensively studied for antidepressants and antiepileptics compared to antipsychotics and illicit drugs. Particularly, the photosensitization process of dissolved organic materials (DOM) in natural waters has received significant research attention due to its ubiquity and specificity. The direct photolysis pathway plays a less significant role, but it is still relevant for most PDs discussed in this paper. The photodegradation rates and pathways of PDs are influenced by various water constituents and parameters such as DOM, nitrate and pH value. The contradictory results reported in some studies can be attributed to differences in experimental conditions. Based on this analysis of the existing literature, the review also identifies several key aspects that warrant further research on PD photodegradation. These results and recommendations contribute to a better understanding of the environmental role of water matrixes and provide important new insights into the photochemical fate of PDs in aquatic environments.
Collapse
Affiliation(s)
- Chuanguang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruonan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Hailong Yin
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Li Y, Lam JCH, He Y, Ruan Y, Huang X, Nah T. Roles of direct and indirect photodegradation in the photochemical fates of three 3rd generation fluoroquinolones. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136314. [PMID: 39500193 DOI: 10.1016/j.jhazmat.2024.136314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/23/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Fluoroquinolones (FQs) are widely prescribed antibiotics that are commonly detected in aquatic environments, but the persistence, fates, and ecotoxicities of new generation FQs have yet to be fully investigated. We investigated the direct and indirect (hydroxyl radical (·OH), singlet oxygen (O21), and excited stated of organic matter (3CDOM*)) photodegradation of three 3rd generation FQs, moxifloxacin (MOX), gatifloxacin (GAT), and sparfloxacin (SPAR). The photodegradation rates and photolytic quantum yields (ΦFQ) of the FQs depended on their dissociation species at different pH in a range of 1×10-4 to 1×10-3 M mol-photon-1. Unlike MOX and GAT whose zwitterions had the highest ΦFQ, the anionic form of SPAR had the highest ΦFQ. The k·OH,FQ values were in the order of: k·OH,SPAR > k·OH,GAT ≈ k·OH,MOX with the 1010M-1s-1 order of magnitude. The kO21,FQ values were in the order of: kO21,SPAR (∼108M-1s-1) > kO21,MOX (∼107M-1s-1) > >> kO21,GAT (insignificant). Higher kLC*3,FQ values were observed for MOX (109 to 1010M-1s-1) compared to GAT and SPAR (108 to 109M-1s-1). The zwitterions had the highest reactivities with ·OH and the lowest reactivities with O21 and 3CDOM*. Reactions with ·OH enhanced the formation of transformation products (TPs) from decarboxylation and sidechain oxidation pathways, whereas reactions with O21 and 3CDOM* enhanced the formation of TPs from sidechain oxidation pathways. Some of the TPs were predicted to exhibit aquatic ecotoxicity and environmental persistence. The half-lives of the FQs were estimated to be 0.42 to 0.67 h for MOX and SPAR, and 4.6 to 4.9 h for GAT. Their half-lives and main photochemical fates depended on the surface water pH and water column depth. These results highlight the key roles that photodegradation plays in removing new generation FQs from aquatic environments, though this might lead to the formation of TPs that are harmful to aquatic ecosystems.
Collapse
Affiliation(s)
- Yitao Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Jason Chun Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Yuefei Ruan
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Xinming Huang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
6
|
Hernández-Tenorio R, Gaspar-Ramírez O, Aba-Guevara CG, González-Juaréz E, Guzmán Mar JL, Hinojosa-Reyes L. Toxicological and environmental risks of enalapril and their possible transformation products generated under phototransformation reactions. Toxicol Rep 2024; 13:101796. [PMID: 39559567 PMCID: PMC11570933 DOI: 10.1016/j.toxrep.2024.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
Pharmaceutical active compounds (PACs) in the concentration range of hundreds of ng/L to μg/L have been identified in urban surface water, groundwater, and agricultural land where they cause various health risks. These pollutants are classified as emerging and cannot be efficiently removed by conventional wastewater treatment processes. The use of nano-enabled photocatalysts in the removal of pharmaceuticals in aquatic systems has recently received research attention owing to their enhanced properties and effectiveness. In the current study, toxicological and environmental risks of enalapril (ENL) and their possible transformation products (TPs) generated under phototransformation processes (e.g., photolysis and photocatalysis reactions) were assessed. In photolysis reaction, removal of ENL was incomplete (< 16 %), while mineralization degree was negligible. In contrast, total removal of ENL was achieved through the photocatalytic process and its maximum mineralization ratio was 66 % by using natural radiation. Proposed transformation pathways during the phototransformation of ENL include hydroxylation and fragmentation reactions generating transformation products (TPs) such as hydroxylated TPs (m/z 393) and enalaprilat (m/z 349). Potential environmental risks for aquatic organisms were not observed in the concentrations of both ENL and enalaprilat contained in surface water. However, the acute and chronic toxicities prediction of TPs such as m/z 409, 363, and 345 showed toxic effects on aquatic organisms. Thus, more studies regarding TPs monitoring for both ENL and PhACs with the highest occurrence worldwide are necessary for the creation of a database of the concentrations contained in surface water and groundwater for the assessment of the potential environmental risk for aquatic organisms.
Collapse
Affiliation(s)
- Rafael Hernández-Tenorio
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Sede Noreste, Vía de la Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, Nuevo León C.P. 66628, México
| | - Octavio Gaspar-Ramírez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Sede Noreste, Vía de la Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, Nuevo León C.P. 66628, México
| | - Cinthia G. Aba-Guevara
- Investigador de Cátedras CONACYT-ITNL. Centro de Investigación e Innovación Tecnológica-tecNM/ITNL, Apodaca, Nuevo León, México
| | - Edgar González-Juaréz
- Universidad Autónoma de Nuevo Léon, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolas de los Garza, Nuevo Léon 66455, México
| | - Jorge Luis Guzmán Mar
- Universidad Autónoma de Nuevo Léon, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolas de los Garza, Nuevo Léon 66455, México
| | - Laura Hinojosa-Reyes
- Universidad Autónoma de Nuevo Léon, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Av. Universidad s/n, San Nicolas de los Garza, Nuevo Léon 66455, México
| |
Collapse
|
7
|
Jamrógiewicz M, Bray A, Gołuński G, Bełdzińska P, Zakrzewski M. Photodegradation of indomethacin and naproxen contained within commercial products for skin - RAP. J Pharm Biomed Anal 2024; 246:116201. [PMID: 38788621 DOI: 10.1016/j.jpba.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Patient can be exposed to the photodegradation products of a drug after skin application of topical formulations. NSAIDs, with analgesic and anti-inflammatory properties, are known for the potential photoinstability, and are applied often in the form of creams, gels or liquids, commonly used among athletes, elderly people, geriatric patients and patients treated with multidrug therapies. Susceptibility to photodegradation hazard of those group arises the need for development of a new approach, with the ability to evaluate the patient safety. We planned to use a rapid assessment procedure (RAP) of safety by testing the photostability of popular skin medicinal products. This method, proposed many years ago by WHO, is now reintroduced to analytical applications in industry, when emergency drugs (e.g. for Covid) are implemented to the market in accelerated procedures. In the health care system, qualitative evaluation of drugs is extremely valuable, therefore we have planned to identify photodegradation using the FTIR method - infrared spectroscopy and DSC - differential scanning calorimetry, whilst the risk of formation of genotoxic products using the Ames test. We have successfully demonstrated that changes in the chemical structure and physical form of both pure APIs and drug products containing the API be assessed in a short time. Another advantage of our work is the combination of the developed results from FTIR/NIR spectra with statistical analysis. As a result, full and quick qualitative assessment of the effects of photoexposure of selected NSAIDs is performed, fortunately showing no mutagenicity. Due to the popularity of NSAIDs applied to the skin, a gel containing naproxen and spray with indomethacin were selected for testing. The analysis carried out for various formulations of both preparations allows us to demonstrate the universality of the applied RAP methods in assessing the risk of hazard to the patient, thus we present research results that expand or widen the knowledge and assessment of risks related to the use of drugs on the skin.
Collapse
Affiliation(s)
- Marzena Jamrógiewicz
- Medical University of Gdansk, Faculty of Pharmacy, Department of Physical Chemistry, 80-416 Gdansk, Al. Gen, Hallera 107, Poland.
| | - Adam Bray
- Medical University of Gdansk, Faculty of Pharmacy, Department of Physical Chemistry, 80-416 Gdansk, Al. Gen, Hallera 107, Poland
| | - Grzegorz Gołuński
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, Gdansk 80-822, Poland
| | - Patrycja Bełdzińska
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, Gdansk 80-822, Poland
| | - Marcin Zakrzewski
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, Gdansk 80-822, Poland
| |
Collapse
|
8
|
Petromelidou S, Evgenidou E, Tziouvalekas M, Lambropoulou DA. Unravelling psychoactive substances and their metabolites and transformation products: High-Resolution Mass Spectrometry approaches for comprehensive target and suspect screening in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172867. [PMID: 38688363 DOI: 10.1016/j.scitotenv.2024.172867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/10/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Untangling the consumption rates of psychiatric drugs and their metabolites/ transformation products-(TPs) through wastewater gains attention lately. However, the potential environmental impact caused by their release remains ambiguous. As it follows, the monitoring of this class of pharmaceuticals as well as the evaluation of their potential toxicity is a matter of high concern. In the light of the above, here, wastewater samples, were collected in a 1-year and a half sampling campaign (2020-2021) and were further subjected to solid phase extraction. A Q Exactive Focus Orbitrap mass analyzer was employed for the analysis of the samples. For the data curation, except of the monitoring of targets, a comprehensive suspect screening workflow was developed and slightly optimized based on a lab made HRMS database for the investigation of legally or illegally prescribed psychiatric drugs and their relevant metabolites/TPs in influents and effluents. Carbamazepine and amisulpride were quantified at the highest mean concentrations 243 and 225 ng/L respectively, in influents. In effluents, the highest mean concentrations were calculated for carbamazepine (180 ng/L) and venlafaxine (117 ng/L). The implementation of suspect screening approach enhanced the comprehensiveness of analysis by detecting 29 compounds not included in the target list. O-Desmethylvenlafaxine was the predominant metabolite in influents presenting a mean concentration equal to 87 ng/L while the same pattern was also noticed in effluents where the mean concentration was up to 91 ng/L. From the group of suspect compounds for which no analytical standards were available, the predominant compounds with detection frequency 100 % were norephedrine and codeine in influents while in effluents, oxazepam was detected in 81 % of the analyzed samples. Finally, in silico and mathematical tools were employed for the assessment of the risk posed to environmental systems. Most of the detected compounds present high risk in all trophic levels.
Collapse
Affiliation(s)
- Styliani Petromelidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Miltiadis Tziouvalekas
- Hellenic Agricultural Organization "Demeter", Institute of Industrial and Forage Crops (IIFC), 1 Theophrastos str., 41335 Larissa, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
| |
Collapse
|
9
|
Hernández-Tenorio R. Hydroxylated transformation products of pharmaceutical active compounds: Generation from processes used in wastewater treatment plants and its environmental monitoring. CHEMOSPHERE 2024; 349:140753. [PMID: 38006923 DOI: 10.1016/j.chemosphere.2023.140753] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Pharmaceutical active compounds (PhACs) are organic pollutants detected in wastewater and aquatic environments worldwide in concentrations ranging from ng L-1 to μg L-1. Wastewater effluents containing PhACs residues is discharged in municipal sewage and, subsequently collected in municipal wastewater treatment plants (WWTPs) where are not entirely removed. Thus, PhACs and its transformation products (TPs) are discharged into water bodies. In the current work, the transformation of PhACs under treatments used in municipal WWTPs such as biological, photolysis, chlorination, and ozonation processes was reviewed. Data set of the major transformation pathways were obtained of studies that performed the PhACs removal and TPs monitoring during batch-scale experiments using gas and liquid chromatography coupled with tandem mass spectrometry (GC/LC-MS/MS). Several transformation pathways as dealkylation, hydroxylation, oxidation, acetylation, aromatic ring opening, chlorination, dehalogenation, photo-substitution, and ozone attack reactions were identified during the transformation of PhACs. Especially, hydroxylation reaction was identified as transformation pathway in all the processes. During the elucidation of hydroxylated TPs several isobaric compounds as monohydroxylated and dihydroxylated were identified. However, hydroxylated TPs monitoring in wastewater and aquatic environments is a topic scarcely studied due to that has no environmental significance, lack of available analytic standars of hydroxylated TPs and lack of analytic methods for their identification. Thus, screening strategy for environmental monitoring of hydroxylated TPs was proposed through target and suspect screening using GC/LC-MS/MS systems. In the next years, more studies on the hydroxylated TPs monitoring are necessary for its detection in WWTPs effluents as well as studies on their environmental effects in aquatic environments.
Collapse
Affiliation(s)
- Rafael Hernández-Tenorio
- Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco A.C., Sede Noreste, Vía de La Innovación 404, Autopista Monterrey-Aeropuerto Km 10, Parque PIIT, Apodaca, Nuevo León, C.P. 66628, Mexico.
| |
Collapse
|
10
|
Koronaiou LA, Nannou C, Evgenidou E, Panagopoulos Abrahamsson D, Lambropoulou DA. Photo-assisted transformation of furosemide: Exploring transformation pathways, structure database and suspect and non-target workflows for comprehensive screening of unknown transformation products in wastewaters and landfill leachates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166599. [PMID: 37640083 DOI: 10.1016/j.scitotenv.2023.166599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
In recent years, transformation products-(TPs) of pharmaceuticals in the environment have received considerable attention. In this context, here, a customized overview of transformation of Furosemide-(FRS) in aqueous matrices treated by photo-oxidation is provided as a proof of concept. Hence, the primary goal of the study was to display an integrated strategy by combining the target (parent-molecule) and suspect screening-(SS) approaches (TPs) in order to build an in-house High-Resolution mass spectrometry (HRMS) database able to provide reference information (chromatographic/spectral) for environmental investigations in complex matrices (wastewaters/landfill leachates). Data analysis was performed by optimizing a SS workflow. Additional confirmation for the proposed structural elucidation was provided by correlating retention time to the proposed structure employing three prediction models. This approach was applied for the tentative identification of 35 TPs of FRS, 28 of which are reported herein for the first time. Finally, SS and non-target analysis (NTA) have been successfully applied for retrospective screening of FRS and its TPs in real samples. The findings demonstrated that SS allows the proper identification of TPs of FRS in complex matrices proving its outstanding importance compared to NTA. In total, six TPs were identified by SS with potential ecotoxicological implications for two of them according to in silico risk assessment.
Collapse
Affiliation(s)
- Lelouda-Athanasia Koronaiou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | - Christina Nannou
- Department of Chemistry, International Hellenic University, Kavala GR-65404, Greece
| | - Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece
| | | | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki GR-57001, Greece.
| |
Collapse
|
11
|
Gao J, Zhao J, Chen X, Wang J. A review on in silico prediction of the environmental risks posed by pharmaceutical emerging contaminants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1535. [PMID: 38008816 DOI: 10.1007/s10661-023-12159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Computer-aided (in silico) prediction has shown good potential to support the environmental risk assessment (ERA) of pharmaceutical emerging contaminants (PECs), allowing low-cost, animal-free, high-throughput screening of multiple potential risks posed by a wide variety of pharmaceuticals in the environment based on insufficient toxicity data. This review provided recent insights regarding the application of in silico approaches in prediction for environmental risks of PECs. Based on the review of 20 included articles from 8 countries published since 2018, we found that the researchers' interest and concern in this research topic were sharply aroused since 2021. Recently, in silico approaches have been widely used for the prediction of bioaccumulation and biodegradability, lethal endpoints, developmental toxicity, mutagenicity, other eco-toxicological effects such as ototoxicity and hematological toxicity, and human health hazards of exposure to PECs. Particular attention has been given to the simultaneous discernment of multiple environmental risks and health effects of PECs based on mechanistic data of pharmaceuticals using advanced bioinformatic methods such as transcriptomic analysis and network pharmacology prediction. In silico software platforms and databases used in the included studies were diversified, and there is currently no standardized and accepted in silico model for ERA of PECs. Date suggested that in silico prediction of the environmental risks posed by PECs is still in its infancy. Considerable critical challenges need to be addressed, including consideration of environmental exposure concentration for PECs, interactions among mixtures of PECs and other contaminants coexisting in environments, and development of in silico models specific to ERA of PECs.
Collapse
Affiliation(s)
- Jian Gao
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jinru Zhao
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xintong Chen
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jun Wang
- Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
12
|
Anagnostopoulou K, Nannou C, Evgenidou E, Lambropoulou DA. Does climbazole instigate a threat in the environment as persistent, mobile and toxic compound? Unveiling the occurrence and potential ecological risks of its phototransformation products in the water cycle. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131854. [PMID: 37354716 DOI: 10.1016/j.jhazmat.2023.131854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Persistent, mobile, and toxic chemicals (PMT), such as the antimycotic climbazole-(CBZ), proliferate in water cycle and imperil drinking water quality, sparking off research about their environmental fate. Unlike the parent compound, its transformation products-(TPs) are scarcely investigated, much less as PMTs. To this end, phototransformation of CBZ was investigated. A novel suspect-screening workflow was developed and optimized by cross-comparing the results of the identified photo-TPs against literature data to create an enhanced HRMS-database for environmental investigations of CBZ/TPs in the water cycle. In total, 24 TPs were identified, 14 of which are reported for the first time. Isomerism, dechlorination, hydroxylation, and cleavage of the ether or C-N bond are suggested as the main transformation routes. A screening of CBZ/TPs was conducted in wastewater, leachates, surface, and groundwater, revealing a maximum concentration of 464.8 ng/L in groundwater. In silico and in vitro methods were used for toxicity assessment, indicating toxicity for CBZ and some TPs. Seemingly, CBZ is rightly considered as PMT, and a higher potential to occur in surface or groundwater than non-PM chemicals appears. Likewise, the occurrence of TPs due to PMT properties or emission patterns was evaluated.
Collapse
Affiliation(s)
- Kyriaki Anagnostopoulou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Christina Nannou
- Department of Chemistry, International Hellenic University, Kavala, GR 65404, Greece
| | - Eleni Evgenidou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Dimitra A Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
| |
Collapse
|
13
|
Słoczyńska K, Orzeł J, Murzyn A, Popiół J, Gunia-Krzyżak A, Koczurkiewicz-Adamczyk P, Pękala E. Antidepressant pharmaceuticals in aquatic systems, individual-level ecotoxicological effects: growth, survival and behavior. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106554. [PMID: 37167880 DOI: 10.1016/j.aquatox.2023.106554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
The growing consumption of antidepressant pharmaceuticals has resulted in their widespread occurrence in the environment, particularly in waterways with a typical concentration range from ng L-1 to μg L-1. An increasing number of studies have confirmed the ecotoxic potency of antidepressants, not only at high concentrations but also at environmentally relevant levels. The present review covers literature from the last decade on the individual-level ecotoxicological effects of the most commonly used antidepressants, including their impact on behavior, growth, and survival. We focus on the relationship between antidepressants physico-chemical properties and dynamics in the environment. Furthermore, we discuss the advantages of considering behavioral changes as sensitive endpoints in ecotoxicology, as well as some current methodological shortcomings in the field, including low standardization, reproducibility and context-dependency.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Justyna Orzeł
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aleksandra Murzyn
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
14
|
Evgenidou Ε, Vasilopoulou K, Ioannidou E, Koronaiou L, Nannou C, Trikkaliotis D, Bikiaris D, Kyzas G, Lambropoulou D. Photocatalytic Degradation of the Antiviral Drug Abacavir Using Titania-Graphene Oxide Nanocomposites in Landfill Leachate. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
15
|
Wang C, Lu Y, Wang C, Xiu C, Cao X, Zhang M, Song S. Distribution and ecological risks of pharmaceuticals and personal care products with different anthropogenic stresses in a coastal watershed of China. CHEMOSPHERE 2022; 303:135176. [PMID: 35654238 DOI: 10.1016/j.chemosphere.2022.135176] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The occurrences of pharmaceutical and personal care products (PPCPs) in both freshwater and sea have been widely reported. However, pollution control requires further information on riverine discharges with influence of land-based activities and associated risks to estuarine ecosystems. This study investigated the spatial occurrences and the relationship to sociodemographic parameters of 30 PPCPs in 67 rivers along the Bohai coastal region. The results showed that PPCPs were mainly deposited in aquatic phase, and the partitioning coefficient between water and sediment was highly determined by chemical properties. The levels of 30 PPCPs in rivers ranged from 8.33 to 894.48 ng/L, showing a large variance among regions. Caffeine, sulfamethoxazole, sulfamethazine, ofloxacin, anhydro-erythromycin, and trimethoprim were found to be the major pollutants. Multivariable analysis method was used to assess the correlation of PPCPs markers to socio-economic parameters. The results indicated that domestic emissions contributed most to the occurrences of PPCPs in the riverine water. Risk assessment result indicated that sulfamethoxazole, caffeine, tetracycline, and carbamazepine ranked top four with the highest risks to the most sensitive aquatic organisms. The results identified caffeine and carbamazepine with high detection frequency and concentration as the priority chemicals, while sulfamethoxazole and erythromycin should also be concerned due to their potential threats in specific rivers. This study provides valuable information for pollution control over PPCPs riverine discharges in estuarine regions.
Collapse
Affiliation(s)
- Chenchen Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment of the Ministry of Education, Chongqing University, Chongqing, 400045, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yonglong Lu
- State Key Laboratory of Marine Environmental Sciences and Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuo Xiu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xianghui Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
16
|
Segalin J, Arsand JB, Jank L, Schwalm CS, Streit L, Pizzolato TM. In silico toxicity evaluation for transformation products of antimicrobials, from aqueous photolysis degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154109. [PMID: 35247405 DOI: 10.1016/j.scitotenv.2022.154109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
This study investigates degradation processes of three antimicrobials in water (norfloxacin, ciprofloxacin, and sulfamethoxazole) by photolysis, focusing on the prediction of toxicity endpoints via in silico quantitative structure-activity relationship (QSAR) of their transformation products (TPs). Photolysis experiments were conducted in distilled water with individual solutions at 10 mg L-1 for each compound. Identification of TPs was performed by means of LC-TOF-MS, employing a method based on retention time, exact mass fragmentation pattern, and peak intensity. Ten main compounds were identified for sulfamethoxazole, fifteen for ciprofloxacin, and fifteen for norfloxacin. Out of 40 identified TPs, 6 have not been reported in the literature. Based on new data found in this work, and TPs already reported in the literature, we have proposed degradation pathways for all three antimicrobials, providing reasoning for the identified TPs. QSAR risk assessment was carried out for 74 structures of possible isomers. QSAR predictions showed that all 19 possible structures of sulfamethoxazole TPs are non-mutagenic, whereas 16 are toxicant, 18 carcinogenic, and 14 non-readily biodegradable. For ciprofloxacin, 28 out of the 30 possible structures for the TPs are mutagenic and non-readily biodegradable, and all structures are toxicant and carcinogenic. All 25 possible norfloxacin TPs were predicted mutagenic, toxicant, carcinogenic, and non-readily biodegradable. Results obtained from in silico QSAR models evince the need of performing risk assessment for TPs as well as for the parent antimicrobial. An expert analysis of QSAR predictions using different models and degradation pathways is imperative, for a large variety of structures was found for the TPs.
Collapse
Affiliation(s)
- Jeferson Segalin
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Juliana Bazzan Arsand
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Louise Jank
- Laboratório Federal de Defesa Agropecuária, Estr. Retiro da Ponta Grossa 3036, 91780-580 Porto Alegre, RS, Brazil
| | - Cristiane Storck Schwalm
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Rod. Dourados/Itahum, km 12, PC 364, Dourados, MS, Brazil
| | - Livia Streit
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Tânia Mara Pizzolato
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Bendová H, Kamenická B, Weidlich T, Beneš L, Vlček M, Lacina P, Švec P. Application of Raney Al-Ni Alloy for Simple Hydrodehalogenation of Diclofenac and Other Halogenated Biocidal Contaminants in Alkaline Aqueous Solution under Ambient Conditions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3939. [PMID: 35683235 PMCID: PMC9182476 DOI: 10.3390/ma15113939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Raney Al-Ni contains 62% of Ni2Al3 and 38% NiAl3 crystalline phases. Its applicability has been studied within an effective hydrodehalogenation of hardly biodegradable anti-inflammatory drug diclofenac in model aqueous concentrates and, subsequently, even in real hospital wastewater with the aim of transforming them into easily biodegradable products. In model aqueous solution, complete hydrodechlorination of 2 mM aqueous diclofenac solution (0.59 g L-1) yielding the 2-anilinophenylacetate was achieved in less than 50 min at room temperature and ambient pressure using only 9.7 g L-1 of KOH and 1.65 g L-1 of Raney Al-Ni alloy. The dissolving of Al during the hydrodehalogenation process is accompanied by complete consumption of NiAl3 crystalline phase and partial depletion of Ni2Al3. A comparison of the hydrodehalogenation ability of a mixture of diclofenac and other widely used halogenated aromatic or heterocyclic biocides in model aqueous solution using Al-Ni was performed to verify the high hydrodehalogenation activity for each of the used halogenated contaminants. Remarkably, the robustness of Al-Ni-based hydrodehalogenation was demonstrated even for the removal of non-biodegradable diclofenac in real hospital wastewater with high chloride and nitrate content. After removal of the insoluble part of the Al-Ni for subsequent hydrometallurgical recycling, the low quantity of residual Ni was removed together with insoluble Al(OH)3 obtained after neutralization of aqueous filtrate by filtration.
Collapse
Affiliation(s)
- Helena Bendová
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Barbora Kamenická
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Tomáš Weidlich
- Chemical Technology Group, Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (H.B.); (B.K.)
| | - Ludvík Beneš
- Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (L.B.); (M.V.)
| | - Milan Vlček
- Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (L.B.); (M.V.)
| | - Petr Lacina
- GEOtest, a.s., Šmahova 1244/112, 627 00 Brno, Czech Republic;
| | - Petr Švec
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| |
Collapse
|
18
|
Anagnostopoulou K, Nannou C, Evgenidou E, Lambropoulou D. Overarching issues on relevant pesticide transformation products in the aquatic environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152863. [PMID: 34995614 DOI: 10.1016/j.scitotenv.2021.152863] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The intensification of agricultural production during the last decades has forced the rapid increase in the use of pesticides that finally end up in the aquatic environment. Albeit well-documented, pesticides continue to raise researchers' attention, because of their potential adverse impacts on the environment and, inevitably, humans. Once entering the aquatic bodies, pesticides undergo biotic and abiotic processes, resulting in transformation products (TPs) that sometimes are even more toxic than the parent compounds. A substantial shift of the scientific interest in the TPs of pesticides has been observed since their environmental fate, occurrence and toxicity is still in its formative stage. In an ongoing effort to expand the existing knowledge on the topic, several interesting works have been performed mostly in European countries, such as France, Germany, Italy, Switzerland, Greece, and Spain that counts the highest number of relevant publications. Pesticide TPs have been also studied to a lesser extent in Asia, North and South America. To this end, the main objective of this review is to delineate the global occurrence, fate, toxicity as well as the analytical challenges related to pesticide TPs in surface, ground, and wastewaters, with the view to contribute to a better understanding of the environmental problems related with TPs formation. The concentration levels of the TPs, ranging from the low ng/L to high μg/L scale and distributed worldwide. Ultimately, an attempt to predict the acute and chronic toxicity of TPs has been carried out with the aid of an in-silico approach based on ECOSAR, revealing increased chronic toxicity for the majority of the identified TPs, despite the change they underwent, while a small portion of them presented serious acute toxicity values.
Collapse
Affiliation(s)
- Kyriaki Anagnostopoulou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - Christina Nannou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Eleni Evgenidou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Dimitra Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
| |
Collapse
|
19
|
Dabić D, Hanževački M, Škorić I, Žegura B, Ivanković K, Biošić M, Tolić K, Babić S. Photodegradation, toxicity and density functional theory study of pharmaceutical metoclopramide and its photoproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150694. [PMID: 34600991 DOI: 10.1016/j.scitotenv.2021.150694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals as ubiquitous organic pollutants in the aquatic environment represent substances whose knowledge of environmental fate is still limited. One such compound is metoclopramide, whose direct and indirect photolysis and toxicological assessment have been studied for the first time in this study. Experiments were performed under solar radiation, showing metoclopramide as a compound that can easily degrade in different water matrices. The effect of pH-values showed the faster degradation at pH = 7, while the highly alkaline conditions at pH = 11 slowed photolysis. The highest value of quantum yield of metoclopramide photodegradation (ϕ = 43.55·10-4) was obtained at pH = 7. Various organic and inorganic substances (NO3-, Fe(III), HA, Cl-, Br-, HCO3-, SO42-), commonly present in natural water, inhibited the degradation by absorbing light. In all experiments, kinetics followed pseudo-first-order reaction with r2 greater than 0.98. The structures of the photolytic degradation products were tentatively identified, and degradation photoproducts were proposed. The hydroxylation of the aromatic ring and the amino group's dealkylation were two major photoproduct formation mechanisms. Calculated thermochemical quantities are in agreement with the experimentally observed stability of different photoproducts. Reactive sites in metoclopramide were studied with conceptual density functional theory and regions most susceptible to •OH attack were characterized. Metoclopramide and its degradation products were neither genotoxic for bacteria Salmonella typhimurium in the SOS/umuC assay nor acutely toxic for bacteria Vibrio fischeri.
Collapse
Affiliation(s)
- Dario Dabić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia.
| | - Marko Hanževački
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, Ljubljana, Slovenia
| | - Klaudija Ivanković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Martina Biošić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia
| | - Kristina Tolić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia
| | - Sandra Babić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, Croatia
| |
Collapse
|
20
|
Liu Y, Wang X, Yu J, Guo X. Chiral separation and molecular simulation study of six antihistamine agents on a coated cellulose tri-(3,5-dimethylphenycarbamate) column (Chiralcel OD-RH) and its recognition mechanisms. Electrophoresis 2021; 42:1461-1472. [PMID: 33905565 DOI: 10.1002/elps.202100033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 11/07/2022]
Abstract
Enantiomeric separation of six antihistamine agents was first systematically investigated on a cellulose-based chiral stationary phase (CSP), that is, cellulose tris-(3,5-dimethyl phenyl carbamate) (Chiralcel OD-RH), under the reversed-phase mode. Orphenadrine, meclizine, terfenadine, dioxopromethazine, and carbinoxamine enantiomers were completely separated under the optimized mobile phase conditions with resolutions of 5.02, 1.93, 1.68, 1.67, and 1.54, respectively. Mequitazine was partially separated with a resolution of 0.77. The influences of type and concentration of buffer salt, the pH of buffer solution, and the type and ratio of organic modifier on the chiral separation were evaluated and optimized. For a better insight into the enantiorecognition mechanisms, molecular docking was carried out via the Autodock software. The lowest binding energy and the optimal conformations of the analytes/CSP complexes were supplied, and the mechanisms of chiral recognition were determined. According to the results, the key interactions for the chiral recognition of these six analytes on CDMPC were π-π interactions, hydrophobic interactions, hydrogen bond interactions, and some special interactions.
Collapse
Affiliation(s)
- Yanru Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Xia Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| | - Xingjie Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, P. R. China
| |
Collapse
|