1
|
Guo X, Sun Z, Gao Y, Zhang H, Wang Q, Guo X, Li M, Liu L, Lu J, Guo S, Li S, Guo W. Haplotype-specific interactions of Phragmites australis with Spartina alterniflora under salt stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125506. [PMID: 40294447 DOI: 10.1016/j.jenvman.2025.125506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/09/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Biological invasions present a global environmental challenge, the competitive interactions between native and invasive species constitute a crucial factor in determining the success of invasions. Past research has often treated native species as a monolithic entity when conducting competition experiments with invasive species. In truth, different genotypes may possess substantial differences in functional traits and competitive abilities. Few studies have subdivided widespread native species into distinct subgroups to conduct competitive experiments with invasive species. The invasive Spartina alterniflora and the widespread native Phragmites australis coexist extensively along the coastal regions of China. Through field sample collection and greenhouse common garden experiments, we investigated the salinity tolerance of two common haplotypes of P. australis (haplotype O and haplotype P) in the Yellow River Delta, as well as their relative competitive ability against the invasive S. alterniflora across varying salinity levels. The results showed that under high salinity without competition, the biomass of haplotype O decreased by 46.89 % (haplotype P: 40.0 %), while under low salinity with competition, it decreased by 17.7 % (haplotype P: 25.8 %). The competitive dominance of both haplotypes against S. alterniflora gradually diminished as salinity increased, disappearing under high salinity conditions. Haplotype O exhibited a competitive dominance over S. alterniflora under control and low-salinity stress, whereas haplotype P only showed competitive dominance under control conditions. Our study demonstrates that different genotypes of native species possess varying resistance to invasive species, a consideration that is critical in the practice of using native species for biotic substitution to control invasions.
Collapse
Affiliation(s)
- Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhihang Sun
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yufei Gao
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Haijie Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qiang Wang
- Shandong Provincial Forestry Protection and Development Service Center, No. 5948, East Second Ring Road, Jinan City, Shandong Province, China
| | - Xianhu Guo
- Water Resources Research Institute of Shandong Province, No. 125 Lishan Road, Jinan, 250013, China
| | - Mingyan Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lele Liu
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Jiaao Lu
- College of Agriculture, Shandong Agricultural University, No. 7 Panhe Street, Taishan District, Tai'an, 271018, China
| | - Shaoxia Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shimei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weihua Guo
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| |
Collapse
|
2
|
Yin M, Zhang X, Zhu H, Sheng W, Wu Y, Jiang D, Wen Q, Shao H, Guo Y, Wang C, Ma L, Yu X, Brix H, Liu L, Guo W. Trade-offs between Cd bioconcentration and translocation and underlying physiological and rhizobacterial mechanisms in Phragmites australis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123291. [PMID: 39541808 DOI: 10.1016/j.jenvman.2024.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Cadmium (Cd) pollution poses a significant threat to wetland ecosystems. Phragmites australis, a species with intraspecific ploidy diversity, is commonly used in constructed wetlands for pollution remediation. However, little is known about how the ploidy variation of P. australis influences the phytoremediation processes via physiological and rhizosphere regulations. Here, we used P. australis from two major lineages in China (i.e., tetraploid lineage O and octoploid lineage P) and applied three Cd treatments (control, low Cd concentration, and high Cd concentration). We found that the lineage O had a bioconcentration factor of Cd approximately 40% higher than that of the lineage P. The translocation factor of the lineage P was about 300% higher than that of the lineage O. These suggest that the lower ploidy lineage exhibited a greater capacity to absorb Cd from the environment into the underground part compared to the higher ploidy lineage, and the higher ploidy lineage demonstrated a superior ability in transferring Cd from the underground to the aboveground part. The advanced transpiration system in the higher ploidy lineage can contribute to its enhanced ability to translocate Cd, as the translocation factor of Cd was significantly correlated with the base shoot diameter and the transpiration rate, both notably higher in the lineage P. The rhizobacterial community associated with the lineage P displayed a more intense response to Cd, characterized by an increase in both the diversity of the community and the number of varied bacterial functions following the addition of Cd. Our study offers profound insights into the ecological consequences of intraspecific polyploidization and the application of intraspecific ploidy variation in environmental management and wetland restoration.
Collapse
Affiliation(s)
- Meiqi Yin
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China; Department of Biology, Aarhus University, Aarhus, 8000, Denmark
| | - Xiya Zhang
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Hong Zhu
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Wenyi Sheng
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Yiming Wu
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Dongzi Jiang
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Qishen Wen
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Hongjin Shao
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Yaolin Guo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Cui Wang
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Luyao Ma
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Xiaona Yu
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China
| | - Hans Brix
- Department of Biology, Aarhus University, Aarhus, 8000, Denmark
| | - Lele Liu
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| | - Weihua Guo
- Qingdao Key Laboratory of Ecological Protection and Restoration, Ministry of Natural Resources Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao, 266237, China.
| |
Collapse
|
3
|
Wang S, Xian Q, Yang L, Zhang W. Floristic analyses of Shandong peninsula and adjacent areas indicate the barrier effect of the Yellow river on floristic diversity. FRONTIERS IN PLANT SCIENCE 2024; 15:1419876. [PMID: 39211841 PMCID: PMC11358103 DOI: 10.3389/fpls.2024.1419876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
The Shandong Peninsula, the largest peninsula in China, is situated at the estuary of the Yellow River and is bordered by both the Bohai Sea and the Yellow Sea. This region is renowned for its rich plant diversity. However, the historical origins of these plant species remain poorly understood. This study analyzed 2410 shared species from 865 genera and 161 families distributed across Shandong and its nine adjacent regions to investigate the floristic diversity of the Shandong Peninsula. These regions were considered as operational taxonomic units (OTUs), with the shared species serving as the basis for each OTU. Hierarchical cluster analyses were performed to assess their floristic similarity, employing the Bray-Curtis distance algorithm and the UPGMA clustering method. The results revealed that the ten regions were grouped into three clusters, delineated by the Yellow River. Notably, the floristic similarity of the Shandong Peninsula was found to be more closely aligned with regions south of the Yellow River, despite Shandong historical connection to Liaoning in the north. These findings underscore the barrier effect of the Yellow River and provide insights into the formation of biotic diversity patterns between northern and eastern China.
Collapse
Affiliation(s)
| | | | | | - Wei Zhang
- Marine College, Shandong University, Weihai, Shandong, China
| |
Collapse
|
4
|
Jia J, Zhao X, Jia P, Zhang X, Li D, Liu Y, Huang L. Ecophysiological responses of Phragmites australis populations to a tidal flat gradient in the Yangtze River Estuary, China. FRONTIERS IN PLANT SCIENCE 2024; 15:1326345. [PMID: 38756962 PMCID: PMC11097105 DOI: 10.3389/fpls.2024.1326345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Abstract
Phragmites australis is a prevalent species in the Chongming Dongtan wetland and is capable of thriving in various tidal flat environments, including high salinity habitats. P. australis population displays inconsistent ecological performances, highlighting the need to uncover their survival strategies and mechanisms in tidal flats with diverse soil salinities. Upon comparing functional traits of P. australis at multiple tidal flats (low, middle, and high) and their responses to soil physicochemical properties, this study aimed to clarify the salt-tolerant strategy of P. australis and the corresponding mechanisms. These results showed that leaf characteristics, such as specific leaf area and leaf dry matter content, demonstrated more robust stability to soil salinity than shoot height and dry weight. Furthermore, as salt stress intensified, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxisome (POD) in P. australis leaves at low tidal flat exhibited an increased upward trend compared to those at other tidal flats. The molecular mechanism of salt tolerance in Phragmites australis across various habitats was investigated using transcriptome sequencing. Weighted correlation network analysis (WGCNA) combined with differentially expressed genes (DEGs) screened out 3 modules closely related to high salt tolerance and identified 105 core genes crucial for high salt tolerance. Further research was carried out on the few degraded populations at low tidal flat, and 25 core genes were identified by combining WGCNA and DEGs. A decrease in the activity of ferroptosis marker gonyautoxin-4 and an increase in the content of Fe3+ in the degenerated group were observed, indicating that ferroptosis might participate in degradation. Furthermore, correlation analysis indicated a possible regulatory network between salt tolerance and ferroptosis. In short, this study provided new insights into the salt tolerance mechanism of P. australis population along tidal flats.
Collapse
Affiliation(s)
- Jing Jia
- East China Normal University, Shanghai, China
| | | | - Peng Jia
- East China Normal University, Shanghai, China
| | - Xin Zhang
- GeneMind Biosciences, Shenzhen, China
| | - Dezhi Li
- East China Normal University, Shanghai, China
| | | | | |
Collapse
|
5
|
Sheng W, Liu L, Wu Y, Yin M, Yu Q, Guo X, Song H, Guo W. Exploring salt tolerance and indicator traits across four temperate lineages of the common wetland plant, Phragmites australis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169100. [PMID: 38086483 DOI: 10.1016/j.scitotenv.2023.169100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
Common reed (Phragmites australis) is a widely utilized plant for wetland restoration and construction, facing challenges posed by high salinity as a stressor. Among the diverse P. australis lineages, functional traits variation provides a valuable genetic resource for identifying salt-tolerant individuals. However, previous investigations on P. australis salt tolerance have been restricted to regional scales, hindering the identification of key functional traits associated with salt tolerance in natural habitats. To address this gap, we conducted a greenhouse experiment to assess and compare the salt tolerance of four major temperate P. australis lineages worldwide. We utilized the maximum quantum yield of photosystem II (Fv/Fm) as a health indicator, while final biomass and wilt status served as indicators of salt tolerance across lineages. Our findings revealed significant differentiation in plant functional traits among different lineages, but no significant effect of interaction between salinity and lineage on most traits. Correlation analyses between salt-tolerance indicators and functional traits in the control group indicated that biomass, leaf width, and relative leaf water content are potential predictors of salt tolerance. However, ecological strategies, physiological traits, and latitudinal origin did not exhibit significant correlations with salt tolerance. Our study provides valuable indicator traits for effectively screening salinity-tolerant genotypes of P. australis in field settings, and holds significant potential for enhancing wetland construction and biomass production in marginal lands.
Collapse
Affiliation(s)
- Wenyi Sheng
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Lele Liu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| | - Yiming Wu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Meiqi Yin
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Qing Yu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China; Shandong Land Development Group Co., Ltd, 2688 Aotixi Road, Jinan 250014, China
| | - Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Huijia Song
- National Natural History Museum of China, 126 Tianqiao South Street, Beijing 100050, China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| |
Collapse
|
6
|
Guan B, Yu J, Wu M, Liu X, Wang X, Yang J, Zhou D, Zhang X. Clonal integration promotes the growth of Phragmites australis populations in saline wetlands of the Yellow River Delta. FRONTIERS IN PLANT SCIENCE 2023; 14:1162923. [PMID: 37332707 PMCID: PMC10272724 DOI: 10.3389/fpls.2023.1162923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/08/2023] [Indexed: 06/20/2023]
Abstract
Estuarine wetlands are highly heterogeneous due to strong interactions between freshwater input and seawater intrusion. However, little is known about how clonal plant populations adapt to heterogeneous salinity in soil environments. In the present study, the effects of clonal integration on Phragmites australis populations under salinity heterogeneity were studied using field experiments with 10 treatments in the Yellow River Delta. Clonal integration significantly increased plant height, aboveground biomass, underground biomass, root-shoot ratio, intercellular CO2 concentration, net photosynthetic rate, stomatal conductance, transpiration rate, and stem Na+ content under homogeneous treatment. Under the heterogeneous salt treatment, clonal integration significantly affected total aboveground and underground biomass, photosynthetic traits, and stem Na+ content under different salt gradients. The increase in salt concentration inhibited the physiological activity and growth of P. australis to varying degrees. Compared with the heterogeneous saline environment, clonal integration was more beneficial to P. australis populations in the homogeneous saline habitat. The results of the present study suggest that P. australis prefers homogeneous saline habitats; however, plants can adapt to heterogeneous salinity conditions via clonal integration.
Collapse
Affiliation(s)
- Bo Guan
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Junbao Yu
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Mengdi Wu
- School of Environmental and Material Engineering, Yantai University, Yantai, China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, China
| | - Xiaoling Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, China
| | - Xuehong Wang
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Jisong Yang
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Di Zhou
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai, China
| | - Xiaolong Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| |
Collapse
|
7
|
Liu L, Wu Y, Yin M, Ma X, Yu X, Guo X, Du N, Eller F, Guo W. Soil salinity, not plant genotype or geographical distance, shapes soil microbial community of a reed wetland at a fine scale in the Yellow River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159136. [PMID: 36191708 DOI: 10.1016/j.scitotenv.2022.159136] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Soil salinization is one of the most severe environmental problems restricting biodiversity maintenance and ecosystem functioning in a coastal wetland. Recent studies have well documented how salinization affects soil microbial communities along vegetation succession of coastal wetlands. However, the salinity effect is rarely assessed in the context of plant intraspecific variation. Here, we analyzed the soil bacterial and fungal communities of Phragmites australis wetland using amplicon high-throughput sequencing at a fine scale (within 1000 m) in the Yellow River Delta. Our results revealed that microbial diversity is significantly correlated to soil salinity (assessed as electrical conductivity, EC) but not to soil nutrients (N and P content) or plant intraspecific traits (leaf length, shoot height, and neutral genetic variation). Specifically, the microbial diversity tended to decrease with increased EC, and the bacterial community was more sensitive to EC change than the fungal community. The dominant bacterial phyla were Proteobacteria, Actinobacteria, and Chloroflexi, and the dominant fungal phyla were Ascomycota, Basidiomycota, and Mortierellomycota. The relative abundance of Actinobacteria was significantly negatively correlated to EC, while Proteobacteria were positively correlated to EC. In high salinity (> 1 mS/cm), the role of the stochastic processes became more important in community assembly according to habitat niche breadth estimation, neutral community model, C-score metric, and normalized stochasticity ratio. Additional common garden and microcosm experiments provided evidence that the genotype effect of P. australis on soil microbiome might only occur between lineages from different regions but not from the same region like the Yellow River Delta. Our findings provide new insights into soil microbial community assembly processes with the intraspecific variation of host plants in the wetland ecosystem and offer a scientific reference for salinity mitigation and vegetation management of coastal wetlands under future global changes.
Collapse
Affiliation(s)
- Lele Liu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China; Department of Biology, Aarhus University, Ole Worms Alle 1, 8000 Aarhus C, Denmark
| | - Yiming Wu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Meiqi Yin
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Xiangyan Ma
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Xiaona Yu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Xiao Guo
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Ning Du
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Franziska Eller
- Department of Biology, Aarhus University, Ole Worms Alle 1, 8000 Aarhus C, Denmark
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| |
Collapse
|
8
|
Zhu P, Yang S, Wu Y, Ru Y, Yu X, Wang L, Guo W. Shifts in Soil Microbial Community Composition, Function, and Co-occurrence Network of Phragmites australis in the Yellow River Delta. Front Microbiol 2022; 13:858125. [PMID: 35928147 PMCID: PMC9344067 DOI: 10.3389/fmicb.2022.858125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
Soil microorganisms play vital roles in regulating biogeochemical processes. The composition and function of soil microbial community have been well studied, but little is known about the responses of bacterial and fungal communities to different habitats of the same plant, especially the inter-kingdom co-occurrence pattern including bacteria and fungi. Herein, we used high-throughput sequencing to investigate the bacterial and fungal communities of five Phragmites australis habitats in the Yellow River Delta and constructed their inter-kingdom interaction network by network analysis. The results showed that richness did not differ significantly among habitats for either the bacterial or fungal communities. The distribution of soil bacterial community was significantly affected by soil physicochemical properties, whereas that of the fungal community was not. The main functions of the bacterial and fungal communities were to participate in the degradation of organic matter and element cycling, both of which were significantly affected by soil physicochemical properties. Network analysis revealed that bacteria and fungi participated in the formation of networks through positive interactions; the role of intra-kingdom interactions were more important than inter-kingdom interactions. In addition, rare species acted as keystones played a critical role in maintaining the network structure, while NO3−−N likely played an important role in maintaining the network topological properties. Our findings provided insights into the inter-kingdom microbial co-occurrence network and response of the soil microbial community composition and function to different P. australis habitats in coastal wetlands, which will deepen our insights into microbial community assembly in coastal wetlands.
Collapse
Affiliation(s)
- Pengcheng Zhu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Ministry of Natural Resources, Shandong University, Qingdao, China
| | - Shuren Yang
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Ministry of Natural Resources, Shandong University, Qingdao, China
| | - Yuxin Wu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Ministry of Natural Resources, Shandong University, Qingdao, China
| | - Yuning Ru
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Ministry of Natural Resources, Shandong University, Qingdao, China
| | - Xiaona Yu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Ministry of Natural Resources, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Lushan Wang,
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, School of Life Sciences, Ministry of Natural Resources, Shandong University, Qingdao, China
- *Correspondence: Weihua Guo, whguo@
| |
Collapse
|