1
|
Cheng HM, Ning XL, Zhang SF, Zhang H, Lin L, Liu SQ, Wang DZ. Metaproteomics reveals metabolic activities potentially involved in bloom formation and succession during a mixed dinoflagellate bloom of Prorocentrum obtusidens and Karenia mikimotoi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178479. [PMID: 39848157 DOI: 10.1016/j.scitotenv.2025.178479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
Understanding metabolic activities involved in bloom formation during a single-species algal bloom has improved greatly. However, little is known about metabolic activities during a multi-species algal bloom. Here, we investigated protein expression profiles at different bloom stages of a mixed dinoflagellate bloom caused by Karenia mikimotoi and Prorocentrum obtusidens (syn. Prorocentrum donghaiense) using a metaproteomic approach. Our results indicated that both P. obtusidens and K. mikimotoi cells highly expressed proteins associated with essential cellular metabolisms such as cell growth and nutrient acquisition before their respective bloom occurrence. P. obtusidens preferentially enhanced uptake and utilization of ammonium, amino acid and organophosphorus-like phospholipid at the early bloom stage, and expressed highly abundant chloroplast peridinin-chlorophyll a-binding protein at the early and the P. obtusidens-dominated bloom stages, indicating their important roles in preferential occurrence and maintenance of P. obtusidens bloom. While absorption and utilization of nutrients, especially ammonium, urea, cyanate, phospholipid, and nucleotide, as well as endocytosis, in K. mikimotoi cells, were enhanced. Notably, both species increased photosynthesis, energy generation, cell proliferation, cell motility and cell defense before their respective blooms, which were beneficial to dealing with adverse external stresses, enabling them to be more competitive and advantageous in complex environments. Interestingly, diatom groups (Skeletonema, Pseudo-nitzschia, and Thalassiosira) decreased uptake and utilization of ambient nutrients and cell proliferation during the bloom period. This study demonstrates that niche differentiation and functional complementarity among phytoplankton species regulate bloom formation and succession during the mixed bloom.
Collapse
Affiliation(s)
- Hua-Min Cheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiao-Lian Ning
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Si-Qi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
2
|
Zhang WP, Zhang SY, Zhou Y, Sun WJ, Zhang SF, Lee JS, Wang M, Wang DZ. Divergent responses of an armored and an unarmored dinoflagellate to ocean acidification. HARMFUL ALGAE 2025; 141:102772. [PMID: 39645393 DOI: 10.1016/j.hal.2024.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/05/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Dinoflagellates, both armored and unarmored, with distinct cell wall difference, are being affected by elevated CO2-induced ocean acidification (OA). However, their specific responses to OA are not well understood. In this study, we investigated the physiological and molecular response of the armored species Prorocentrum obtusidens and the unarmored species Karenia mikimotoi to OA over a 28-day period. The results show that the two species responded differently to OA. Cell growth rate, particulate organic carbon (POC) content, and the activities of C4 pathway enzymes decreased in P. obtusidens under future acidified ocean condition (pH 7.8, 1000 μatm pCO2), but the activities of carbonic anhydrase (CA), ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), and superoxide dismutase (SOD) increased. Whereas cell growth rate, contents of Chl a and PON, and SOD activity altered insignificantly in K. mikimotoi, but contents of POC and total carbohydrate, and the activity of RubisCO increased while the activities of CA and C4 pathway enzymes decreased. Transcriptomic analysis indicates that genes associated with antioxidative response, heat shock protein, proteasome, signal transduction, ribosome, and pH regulation were up-regulated in P. obtusidens but down-regulated in K. mikimotoi. Notably, the synthesis of soluble organic matter (i.e., spermidine and trehalose) was enhanced in K. mikimotoi, thereby regulating intracellular pH and improving stress resistance. This study highlights the divergent response of the armored and unarmored dinoflagellates to OA, with the unarmored dinoflagellate exhibiting a higher ability to withstand this stressor. Therefore, caution should be exercised when predicting the behavior and the eventual fate of dinoflagellates in the future acidified ocean.
Collapse
Affiliation(s)
- Wei-Ping Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shuo-Yu Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yang Zhou
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wen-Jing Sun
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Li L, Wang Y, Liu L, Gao C, Ru S, Yang L. Occurrence, ecological risk, and advanced removal methods of herbicides in waters: a timely review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3297-3319. [PMID: 38095790 DOI: 10.1007/s11356-023-31067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024]
Abstract
Coastal pollution caused by the importation of agricultural herbicides is one of the main environmental problems that directly affect the coastal primary productivity and even the safety of human seafood. It is urgent to evaluate the ecological risk objectively and explore feasible removal strategies. However, existing studies focus on the runoff distribution and risk assessment of specific herbicides in specific areas, and compared with soil environment, there are few studies on remediation methods for water environment. Therefore, we systematically reviewed the current situation of herbicide pollution in global coastal waters and the dose-response relationships of various herbicides on phytoplankton and higher trophic organisms from the perspective of ecological risks. In addition, we believe that compared with the traditional single physical and chemical remediation methods, biological remediation and its combined technology are the most promising methods for herbicide pollution remediation currently. Therefore, we focus on the application prospects, challenges, and management strategies of new bioremediation systems related to biology, such as constructed wetlands, membrane bioreactor processes, and microbial co-metabolism, in order to provide more advanced methods for reducing herbicide pollution in the water environment.
Collapse
Affiliation(s)
- Lingxiao Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lijuan Liu
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Chen Gao
- Shandong Marine Resource and Environment Research Institute, Shandong Key Laboratory of Marine Ecological Restoration, Yantai, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liqiang Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Zhang J, Li X, Wang X, Guan W. Transcriptome analysis of two bloom-forming Prorocentrum species reveals physiological changes related to light and temperature. HARMFUL ALGAE 2023; 125:102421. [PMID: 37220974 DOI: 10.1016/j.hal.2023.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 05/25/2023]
Abstract
Temperature and light substantially influence red tide succession. However, it remains unclear whether the molecular mechanisms differ among species. In this study, we measured the variation in the physiological parameters of growth and pigments and transcriptional levels of two bloom-forming dinoflagellates, namely Prorocentrum micans and P. cordatum. This was undertaken in four treatments that represented two factorial temperature combinations (LT: 20 °C, HT: 28 °C) and light conditions (LL: 50 µmol photons m-2 s-1, HL: 400 µmol photons m-2 s-1) for 7-day batch culture. Growth under high temperature and high light (HTHL) was the fastest, while growth under high temperature and low light (HTLL) was the slowest. The pigments (chlorophyll a and carotenoids) decreased significantly in all high light (HL) treatments, but not in high temperature (HT) treatments. HL alleviated the low light-caused photolimitation and enhanced the growth of both species at low temperatures. However, HT inhibited the growth of both species by inducing oxidative stress under low light conditions. HL mitigated the HT-induced stress on growth in both species by upregulating photosynthesis, antioxidase activity, protein folding, and degradation. The cells of P. micans were more sensitive to HT and HL than those of P. cordatum. This study deepens our understanding of the species-specific mechanism of dinoflagellates at the transcriptomic level, adapting to the future ocean changes including higher solar radiation and higher temperatures in the upper mixed layer.
Collapse
Affiliation(s)
- Jiazhu Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xuanwen Li
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xinjie Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
5
|
Cheng HM, Zhang SF, Ning XL, Peng JX, Li DX, Zhang H, Zhang K, Lin L, Liu SQ, Smith WO, Wang DZ. Elucidating colony bloom formation mechanism of a harmful alga Phaeocystis globosa (Prymnesiophyceae) using metaproteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161846. [PMID: 36709898 DOI: 10.1016/j.scitotenv.2023.161846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Phaeocystis is a globally distributed Prymnesiophyte genus and usually forms massive harmful colony blooms, which impact marine ecosystem, mariculture, human health, and even threaten coastal nuclear power plant safety. However, the mechanisms behind the colony formation from the solitary cells remain poorly understood. Here, we investigated metabolic processes of both solitary and non-flagellated colonial cells of Phaeocystis globosa at different colony bloom stages in the subtropical Beibu Gulf using a metaproteomic approach. Temperature was significantly correlated with Phaeocystis colony bloom formation, and the flagellated motile solitary cells with abundant flagellum-associated proteins, such as tubulin and dynein, were the exclusive cellular morphotype at the solitary cell stage featured with temperatures ≥21 °C. When the temperature decreased to <21 °C, tiny colonies appeared and the flagellum-associated proteins were down-regulated in both solitary and non-flagellated colonial cells, while proteins involved in biosynthesis, chain polymerization and aggregation of glycosaminoglycan (GAG), a key constituent of gelatinous matrix, were up-regulated, indicating the central role of active GAG biosynthesis during the colony formation. Furthermore, light utilization, carbon fixation, nitrogen assimilation, and amino acid and protein synthesis were also enhanced to provide sufficient energy and substrates for GAG biosynthesis. This study highlighted that temperature induced re-allocation of energy and substances toward GAG biosynthesis is essential for colony bloom formation of P. globosa.
Collapse
Affiliation(s)
- Hua-Min Cheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiao-Lian Ning
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Jian-Xiang Peng
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Dong-Xu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Kun Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Si-Qi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Walker O Smith
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200300, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Zhang H, Gu B, Zhou Y, Ma X, Liu T, Xu H, Xie Z, Liu K, Wang D, Xia X. Multi-Omics Profiling Reveals Resource Allocation and Acclimation Strategies to Temperature Changes in a Marine Dinoflagellate. Appl Environ Microbiol 2022; 88:e0121322. [PMID: 35976001 PMCID: PMC9469709 DOI: 10.1128/aem.01213-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Temperature is a critical environmental factor that affects the cell growth of dinoflagellates and bloom formation. To date, the molecular mechanisms underlying the physiological responses to temperature variations are poorly understood. Here, we applied quantitative proteomic and untargeted metabolomic approaches to investigate protein and metabolite expression profiles of a bloom-forming dinoflagellate Prorocentrum shikokuense at different temperatures. Of the four temperatures (19, 22, 25, and 28°C) investigated, P. shikokuense at 25°C exhibited the maximal cell growth rate and maximum quantum efficiency of photosystem II (Fv/Fm) value. The levels of particulate organic carbon (POC) and nitrogen (PON) decreased with increasing temperature, while the POC/PON ratio increased and peaked at 25°C. Proteomic analysis showed proteins related to photoreaction, light harvesting, and protein homeostasis were highly expressed at 28°C when cells were under moderate heat stress. Metabolomic analysis further confirmed reallocated amino acids and soluble sugars at this temperature. Both omic analyses showed glutathione metabolism that scavenges the excess reactive oxygen species, and transcription and lipid biosynthesis that compensate for the low translation efficiency and plasma membrane fluidity were largely upregulated at suboptimal temperature. Higher accumulations of glutathione, glutarate semialdehyde, and 5-KETE at 19°C implied their important roles in low-temperature acclimation. The strikingly active nitrate reduction and nitrogen flux into asparagine, glutamine, and aspartic acid at 19°C indicated these three amino acids may serve as nitrogen storage pools and help cells cope with low temperature. Our study provides insights into the effects of temperature on dinoflagellate resource allocation and advances our knowledge of dinoflagellate bloom formation in marine environments. IMPORTANCE Marine phytoplankton is one of the most important nodes in global biogeochemical cycle. Deciphering temperature-associated marine phytoplankton cell stoichiometric changes and the underlying molecular mechanisms are therefore of great ecological concerns. However, knowledge of how phytoplankton adjust the cell stoichiometry to sustain growth under temperature changes is still lacking. This study investigates the variations of protein and metabolite profiles in a marine dinoflagellate across temperatures at which the field blooms usually occur and highlights the temperature-dependent molecular traits and key metabolites that may be associated with rapid cell growth and temperature stress acclimation.
Collapse
Affiliation(s)
- Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bowei Gu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Youping Zhou
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
- Isotopoimics in Chemical Biology (ICB), School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiao Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Tianqi Liu
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | - Zhangxian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Kailin Liu
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, United Kingdom
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xiaomin Xia
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
7
|
Zhang J, Kong L, Zhao Y, Lin Q, Huang S, Jin Y, Ma Z, Guan W. Antagonistic and synergistic effects of warming and microplastics on microalgae: Case study of the red tide species Prorocentrum donghaiense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119515. [PMID: 35609842 DOI: 10.1016/j.envpol.2022.119515] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Bibliometric network analysis has revealed that the widespread distribution of microplastics (MPs) has detrimental effects on marine organisms; however, the combined effects of MPs and climate change (e.g., warming) is not well understood. In this study, Prorocentrum donghaiense, a typical red tide species in the East China Sea, was exposed to different MP concentrations (0, 1, 5, and 10 mg L-1) and temperatures (16, 22, and 28 °C) for 7 days to investigate the combined effects of MPs and simulated ocean warming by measuring different physiological parameters, such as cell growth, pigment contents (chlorophyll a and carotenoid), relative electron transfer rate (rETR), reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), and adenosine triphosphate (ATP). The results demonstrated that MPs significantly decreased cell growth, pigment contents, and rETRmax, but increased the MDA, ROS, and SOD levels for all MP treatments at low temperature (16 °C). However, high temperatures (22 and 28 °C) increased the pigment contents and rETRmax, but decreased the SOD and MDA levels. Positive and negative effects of high temperatures (22 or 28 °C) were observed at low (1 and 5 mg L-1) and high MP (10 mg L-1) concentrations, respectively, indicating the antagonistic and synergistic effects of combined warming and MP pollution. These results imply that the effects of MPs on microalgae will likely not be substantial in future warming scenarios if MP concentrations are controlled at a certain level. These findings expand the current knowledge of microalgae in response to increasing MP pollution in future warming scenarios.
Collapse
Affiliation(s)
- Jiazhu Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Yan Zhao
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qingming Lin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaojie Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yafang Jin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
8
|
Lu S, Ou L, Dai X, Cui L, Dong Y, Wang P, Li D, Lu D. An overview of Prorocentrum donghaiense blooms in China: Species identification, occurrences, ecological consequences, and factors regulating prevalence. HARMFUL ALGAE 2022; 114:102207. [PMID: 35550289 DOI: 10.1016/j.hal.2022.102207] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
Prorocentrum donghaiense Lu (also identified as Prorocentrum shikokuense Hada and Prorocentrum obtusidens Schiller) is a bloom-forming dinoflagellate species distributed worldwide. Blooms of P. donghaiense occur annually in adjacent waters of the East China Sea (ECS), especially in the waters near the Changjiang River Estuary. Blooms of this species have also been reported in nearby Japanese and Korean waters. There has been an apparent bloom-forming species succession pattern in the ECS since 2000, with diatom blooms in the early spring, shifting to long-lasting and large-scale dinoflagellate blooms dominated by P. donghaiense during the spring, and finally ended by diatom and/or Noctiluca scintillans blooms in summer. These bloom succession patterns were closely correlated with changes in environmental factors, such as temperature increase and anthropogenic eutrophication. Decreasing silicate by the construction of the Three Gorges Dam and increasing dissolved inorganic nitrogen flux were mainly influenced by high intensity human activities in the Changjiang River watershed, resulting in low Si/N ratio and high N/P ratios, possibly accelerating outbreak of P. donghaiense blooms. Phosphorous deficiency might be the most critical factor controlling the succession of microalgal blooms from diatoms to dinoflagellates. Prorocentrum donghaiense is a nontoxic species, but it can disrupt marine ecosystem by decreasing phytoplankton biodiversity and changing the structure of the food chain. Prorocentrum donghaiense blooms in the ECS have been intensively studied during the last two decades. Several possible mechanisms that contribute or trigger the annual blooms of this species have been proposed, but further research is required particularly on the aspect of nutrient budget, ecosystem impacts, as well as social-economic impact assessment.
Collapse
Affiliation(s)
- Songhui Lu
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Linjian Ou
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Xinfeng Dai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Lei Cui
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Yuelei Dong
- Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Dongmei Li
- Dalian Phycotoxin Key laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China.
| |
Collapse
|
9
|
Zhang J, Yang Q, Liu Q, Liu S, Zhu Y, Yao J, Wang H, Guan W. The responses of harmful dinoflagellate Karenia mikimotoi to simulated ocean acidification at the transcriptional level. HARMFUL ALGAE 2022; 111:102167. [PMID: 35016771 DOI: 10.1016/j.hal.2021.102167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The HAB-forming, toxic dinoflagellate Karenia mikimotoi, previously found to benefit from ocean acidification (OA), was cultivated to investigate its transcriptional response to simulated OA for 30 generations. Batch cultures were grown under two CO2 concentrations, 450 (control) and 1100 (simulated OA) μatm, and physiological parameters [growth, pigments, catalase (CAT), glutathione reductase (GR), and superoxide dismutase (SOD) activity], as well as transcriptomes (obtained via RNA-seq), were compared. Chlorophyll a (Chl a) and carotenoid (Caro) contents, as well as CAT and GR activities, were significantly increased under OA conditions. Transcriptomic analysis revealed 2,490 differentially expressed unigenes in response to OA, which comprised 1.54% of all unigenes. A total of 1,121 unigenes were upregulated, and 1,369 unigenes were downregulated in OA compared to control conditions. The downregulated expression of bicarbonate transporter and carbonic anhydrase genes was a landmark of OA acclimation. Key genes involved in energy metabolism, e.g., photosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, and nitrogen metabolism, were highly upregulated under OA, contributing to increases in the Chl a (55.05%) and Caro (28.37%). The enhanced antioxidant enzyme activities (i.e. CAT, GR) and upregulated genes (i.e. glutathione peroxidase, ascorbate peroxidase, heat shock protein, 20S proteasome, aldehyde dehydrogenase, and apolipoprotein) benefit cells against the potential lower pH stress condition under OA. In addition, the downregulation of four genes associated with motility suggested that the preserved energy could further boost growth. In conclusion, the present study suggests that K. mikimotoi exhibits efficient gene expression regulation for the utilization of energy and resistance to OA-induced stress. Taken together, K. mikimotoi appeared as a tolerant species in response to OA. Thus, more extensive algal blooms that threaten marine organisms are likely in the future. These findings expand current knowledge on the gene expression of HAB-forming species in response to future OA.
Collapse
Affiliation(s)
- Jiazhu Zhang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiongying Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qianlou Liu
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuqi Liu
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yue Zhu
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiang Yao
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hong Wang
- Department of Medical Laboratory Technology, Xinyang Vocational and Technical College, Xinyang, Henan 464000, China
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
10
|
Calmodulin and Its Interactive Proteins Participate in Regulating the Explosive Growth of Alexandrium pacificum (Dinoflagellate). Int J Mol Sci 2021; 23:ijms23010145. [PMID: 35008568 PMCID: PMC8745774 DOI: 10.3390/ijms23010145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Alexandrium pacificum is a typical dinoflagellate that can cause harmful algal blooms, resulting in negative impacts on ecology and human health. The calcium (Ca2+) signal transduction pathway plays an important role in cell proliferation. Calmodulin (CaM) and CaM-related proteins are the main cellular Ca2+ sensors, and can act as an intermediate in the Ca2+ signal transduction pathway. In this study, the proteins that interacted with CaM of A. pacificum were screened by two-dimensional electrophoresis analysis and far western blots under different growth conditions including lag phase and high phosphorus and manganese induced log phase (HPM). The interactive proteins were then identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Four proteins were identified, including Ca2+/CaM-dependent protein kinase, serine/threonine kinase, annexin, and inositol-3-phosphate synthase, which all showed high expression levels under HPM. The gene expression levels encoding these four proteins were also up-regulated under HPM, as revealed by quantitative polymerase chain reaction, suggesting that the identified proteins participate in the Ca2+ transport channel and cell cycle regulation to promote cell division. A network of proteins interacting with CaM and their target proteins involved in the regulation of cell proliferation was raised, which provided new insights into the mechanisms behind the explosive growth of A. pacificum.
Collapse
|
11
|
Wang D, Zhang S, Zhang H, Lin S. Omics study of harmful algal blooms in China: Current status, challenges, and future perspectives. HARMFUL ALGAE 2021; 107:102079. [PMID: 34456014 DOI: 10.1016/j.hal.2021.102079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In the past two decades, the frequency, scale, and scope of harmful algal blooms (HABs) have increased significantly in the coastal waters of China. HABs have become a major ecological and environmental problem in China that seriously threatens the structure and function of marine ecosystems, the sustainable development of mariculture, and the health of human beings. Much effort has been devoted to studying HABs in China, and great achievements have been made in understanding the oceanographic and ecological mechanisms of HABs as well as the biology and physiological ecology of HAB-causing species. Furthermore, state-of-the-art omics technologies, such as transcriptomics and proteomics, have been used to elucidate the physiological responses of HAB-causing species to environmental changes, the biosynthesis of paralytic shellfish toxin, and the mechanisms underlying the formation of HABs. This review summarizes omics studies of HABs in China over the past few years and discusses challenges and future perspectives of HAB research.
Collapse
Affiliation(s)
- Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Shufeng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science/College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
12
|
Zhang H, Zhou Y, Liu TQ, Yin XJ, Lin L, Lin Q, Wang DZ. Initiation of efficient C 4 pathway in response to low ambient CO 2 during the bloom period of a marine dinoflagellate. Environ Microbiol 2021; 23:3196-3211. [PMID: 33938118 DOI: 10.1111/1462-2920.15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Dinoflagellates are important primary producers and major causative agents of harmful algal blooms in the global ocean. Despite the great ecological significance, the photosynthetic carbon acquisition by dinoflagellates is still poorly understood. The pathways of photosynthetic carbon assimilation in a marine dinoflagellate Prorocentrum donghaiense under both in situ and laboratory-simulated bloom conditions were investigated using a combination of metaproteomics, qPCR, stable carbon isotope and targeted metabolomics approaches. A rapid consumption of dissolved CO2 to generate high biomass was observed as the bloom proceeded. The carbon assimilation genes and proteins including intracellular carbonic anhydrase 2, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase and RubisCO as well as their enzyme activities were all highly expressed at the low CO2 level, indicating that C4 photosynthetic pathway functioned in the blooming P. donghaiense cells. Furthermore, δ13 C values and content of C4 compound (malate) significantly increased with the decreasing CO2 concentration. The transition from C3 to C4 pathway minimizes the internal CO2 leakage and guarantees efficient carbon fixation at the low CO2 level. This study demonstrates the existence of C4 photosynthetic pathway in a marine dinoflagellate and reveals its important complementary role to assist carbon assimilation for cell proliferation during the bloom period.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China.,CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Youping Zhou
- Isotopomics in Chemical Biology & Shaanxi Key Laboratory of Chemical Additives for Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Tian-Qi Liu
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Xi-Jie Yin
- Laboratory of Marine & Coastal Geology, MNR Third Institute of Oceanology, Xiamen, 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|