1
|
Wawryk MMH, Ley P, Vasquez-Cardenas D, Tabor RF, Cook PLM. Multidisciplinary methodologies used in the study of cable bacteria. FEMS Microbiol Rev 2025; 49:fuae030. [PMID: 39673715 PMCID: PMC11774119 DOI: 10.1093/femsre/fuae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/21/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024] Open
Abstract
Cable bacteria are a unique type of filamentous microorganism that can grow up to centimetres long and are capable of long-distance electron transport over their entire lengths. Due to their unique metabolism and conductive capacities, the study of cable bacteria has required technical innovations, both in adapting existing techniques and developing entirely new ones. This review discusses the existing methods used to study eight distinct aspects of cable bacteria research, including the challenges of culturing them in laboratory conditions, performing physical and biochemical extractions, and analysing the conductive mechanism. As cable bacteria research requires an interdisciplinary approach, methods from a range of fields are discussed, such as biogeochemistry, genomics, materials science, and electrochemistry. A critical analysis of the current state of each approach is presented, highlighting the advantages and drawbacks of both commonly used and emerging methods.
Collapse
Affiliation(s)
| | - Philip Ley
- Department of Biology, University of Antwerp, Wilrijk 2020, Belgium
| | | | - Rico F Tabor
- School of Chemistry, Monash University, Clayton 3800 VIC, Australia
| | - Perran L M Cook
- School of Chemistry, Monash University, Clayton 3800 VIC, Australia
| |
Collapse
|
2
|
Ley P, Geelhoed JS, Vasquez-Cardenas D, Meysman FJR. On the diversity, phylogeny and biogeography of cable bacteria. Front Microbiol 2024; 15:1485281. [PMID: 39629215 PMCID: PMC11611824 DOI: 10.3389/fmicb.2024.1485281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Cable bacteria have acquired a unique metabolism, which induces long-distance electron transport along their centimeter-long multicellular filaments. At present, cable bacteria are thought to form a monophyletic clade with two described genera. However, their diversity has not been systematically investigated. To investigate the phylogenetic relationships within the cable bacteria clade, 16S rRNA gene sequences were compiled from literature and public databases (SILVA 138 SSU and NCBI GenBank). These were complemented with novel sequences obtained from natural sediment enrichments across a wide range of salinities (2-34). To enable taxonomic resolution at the species level, we designed a procedure to attain full-length 16S rRNA gene sequences from individual cable bacterium filaments using an optimized nested PCR protocol and Sanger sequencing. The final database contained 1,876 long 16S rRNA gene sequences (≥800 bp) originating from 92 aquatic locations, ranging from polar to tropical regions and from intertidal to deep sea sediments. The resulting phylogenetic tree reveals 90 potential species-level clades (based on a delineation value of 98.7% 16S rRNA gene sequence identity) that reside within six genus-level clusters. Hence, the diversity of cable bacteria appears to be substantially larger than the two genera and 13 species that have been officially named up to now. Particularly brackish environments with strong salinity fluctuations, as well as sediments with low free sulfide concentrations and deep sea sediments harbor a large pool of novel and undescribed cable bacteria taxa.
Collapse
Affiliation(s)
- Philip Ley
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jeanine S. Geelhoed
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Diana Vasquez-Cardenas
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Filip J. R. Meysman
- Geobiology Research Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
3
|
Yang S, Dong M, Lin L, Wu B, Huang Y, Guo J, Sun G, Zhou S, Xu M. Distribution and response of electroactive microorganisms to freshwater river pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124814. [PMID: 39209057 DOI: 10.1016/j.envpol.2024.124814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Electroactive microorganisms (EAMs) play a vital role in biogeochemical cycles by facilitating extracellular electron transfer. They demonstrate remarkable adaptability to river sediments that are characterized by pollution and poor water quality, significantly contributing to the sustainability of river ecosystems. However, the distribution and diversity of EAMs remain poorly understood. In this study, 16S rRNA gene high-throughput sequencing and real-time fluorescence quantitative PCR were used to assess EAMs in 160 samples collected from eight rivers within the Pearl River Delta of Southern China. The results indicated that specialized EAMs communities in polluted sediments exhibited variations in response to water quality and sediment depth. Compared to clean sediment, polluted sediments showed a 4.5% increase in the relative abundances of EAMs communities (59 genera), with 45- and 17-times higher abundances of Geobacter and cable bacteria. Additionally, the abundance of cable bacteria decreased with increasing sediment depth in polluted sediments, while the abundance of L. varians GY32 exhibited an opposite trend. Finally, the abundances of Geobacter, cable bacteria, and L. varians GY32 were positively correlated with the abundance of filamentous microorganisms (FMs) across all samples, with stronger interactions in polluted sediments. These findings suggest that EAMs demonstrate heightened sensitivity to polluted environments, particularly at the genus (species) level, and exhibit strong adaptability to conditions characterized by high levels of acid volatile sulfide, low dissolved oxygen, and elevated nitrate nitrogen. Therefore, environmental factors could be manipulated to optimize the growth and efficiency of EAMs for environmental engineering and natural restoration applications.
Collapse
Affiliation(s)
- Shan Yang
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meijun Dong
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Lizhou Lin
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Youda Huang
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jun Guo
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guoping Sun
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shaofeng Zhou
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Meiying Xu
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
4
|
Dong M, Nielsen LP, Yang S, Klausen LH, Xu M. Cable bacteria: widespread filamentous electroactive microorganisms protecting environments. Trends Microbiol 2024; 32:697-706. [PMID: 38151387 DOI: 10.1016/j.tim.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Cable bacteria have been identified and detected worldwide since their discovery in marine sediments in Aarhus Bay, Denmark. Their activity can account for the majority of oxygen consumption and sulfide depletion in sediments, and they induce sulfate accumulation, pH excursions, and the generation of electric fields. In addition, they can affect the fluxes of other elements such as calcium, iron, manganese, nitrogen, and phosphorous. Recent developments in our understanding of the impact of cable bacteria on element cycling have revealed their positive contributions to mitigating environmental problems, such as recovering self-purification capacity, enhancing petroleum hydrocarbon degradation, alleviating phosphorus eutrophication, delaying euxinia, and reducing methane emission. We highlight recent research outcomes on their distribution, state-of-the-art findings on their physiological characteristics, and ecological contributions.
Collapse
Affiliation(s)
- Meijun Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, Guangdong, China
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, Guangdong, China
| | - Lasse Hyldgaard Klausen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, Guangdong, China.
| |
Collapse
|
5
|
Wang Z, Digel L, Yuan Y, Lu H, Yang Y, Vogt C, Richnow HH, Nielsen LP. Electrogenic sulfur oxidation mediated by cable bacteria and its ecological effects. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100371. [PMID: 38283867 PMCID: PMC10821171 DOI: 10.1016/j.ese.2023.100371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
At the sediment-water interfaces, filamentous cable bacteria transport electrons from sulfide oxidation along their filaments towards oxygen or nitrate as electron acceptors. These multicellular bacteria belonging to the family Desulfobulbaceae thus form a biogeobattery that mediates redox processes between multiple elements. Cable bacteria were first reported in 2012. In the past years, cable bacteria have been found to be widely distributed across the globe. Their potential in shaping the surface water environments has been extensively studied but is not fully elucidated. In this review, the biogeochemical characteristics, conduction mechanisms, and geographical distribution of cable bacteria, as well as their ecological effects, are systematically reviewed and discussed. Novel insights for understanding and applying the role of cable bacteria in aquatic ecology are summarized.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Leonid Digel
- Center for Electromicrobiology, Department of Biology, Aarhus University, DK-8000, Aarhus, Denmark
| | - Yongqiang Yuan
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yonggang Yang
- School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510007, China
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Department of Biology, Aarhus University, DK-8000, Aarhus, Denmark
| |
Collapse
|
6
|
Xiong X, Li Y, Zhang C. Cable bacteria: Living electrical conduits for biogeochemical cycling and water environment restoration. WATER RESEARCH 2024; 253:121345. [PMID: 38394932 DOI: 10.1016/j.watres.2024.121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Since the discovery of multicellular cable bacteria in marine sediments in 2012, they have attracted widespread attention and interest due to their unprecedented ability to generate and transport electrical currents over centimeter-scale long-range distances. The cosmopolitan distribution of cable bacteria in both marine and freshwater systems, along with their substantial impact on local biogeochemistry, has uncovered their important role in element cycling and ecosystem functioning of aquatic environments. Considerable research efforts have been devoted to the potential utilization of cable bacteria for various water management purposes during the past few years. However, there lacks a critical summary on the advances and contributions of cable bacteria to biogeochemical cycles and water environment restoration. This review aims to provide an up-to-date and comprehensive overview of the current research on cable bacteria, with a particular view on their participation in aquatic biogeochemical cycles and promising applications in water environment restoration. It systematically analyzes (i) the global distribution of cable bacteria in aquatic ecosystems and the major environmental factors affecting their survival, diversity, and composition, (ii) the interactive associations between cable bacteria and other microorganisms as well as aquatic plants and infauna, (iii) the underlying role of cable bacteria in sedimentary biogeochemical cycling of essential elements including but not limited to sulfur, iron, phosphorus, and nitrogen, (iv) the practical explorations of cable bacteria for water pollution control, greenhouse gas emission reduction, aquatic ecological environment restoration, as well as possible combinations with other water remediation technologies. It is believed to give a step-by-step introduction to progress on cable bacteria, highlight key findings, opportunities and challenges of using cable bacteria for water environment restoration, and propose directions for further exploration.
Collapse
Affiliation(s)
- Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China.
| | - Chi Zhang
- College of Materials Science and Engineering, Hohai University, Changzhou 213200, PR China.
| |
Collapse
|
7
|
Huang L, Tang R, Huang S, Tang J, Lin H, Yuan Y, Zhou S. Fate of carbon influenced by the in-situ growth of phototrophic biofilms at the soil-water interface of paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168451. [PMID: 37956834 DOI: 10.1016/j.scitotenv.2023.168451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Phototrophic biofilms (PBs) are commonly found in the sediment/soil-water interface of paddy soils and have a significant impact on carbon cycles. However, the specific carbon fate influenced by the in-situ growth of PBs in paddy soil remains unclear. In this study, we investigated the effect of in situ PBs growth on methane and carbon dioxide emissions, as well as dissolved organic matter (DOM) transformation. Our findings demonstrated a negative correlation between PBs growth and methane and carbon dioxide emissions, while showing a positive correlation with DOM composition. The in-situ growth of PBs reduced methane emissions by approximately 79 % and carbon dioxide emissions by approximately 33 % in the daytime, and also slowed down the degradation rate of dissolved organic matter from over 30.4 % to <16 %. Microsensor measurements revealed that these changes were attributed to the increased concentration and penetration depth of oxygen, as well as variations in pH caused by the growth of in situ PBs. Co-occurrence analysis indicated a robust correlation between DOM transformation and the significantly suppressed methanogenesis by methanogens such as Methanosaeta, Methanomassiliicoccus and Methanosarcina, and also the notably enhanced methane oxidation by methanotrophs including Methylobacterium, Methyloversatilis and Methylomonas, in response to the growth of PBs. These findings shed light on the impact of in situ PBs on methane and carbon dioxide emissions and DOM transformation, providing new insights for understanding carbon cycling in paddy soils.
Collapse
Affiliation(s)
- Lingyan Huang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rong Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China
| | - Shaofu Huang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Lin
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Hou J, HuibinYu, Wu F, Xi B, Li Z. Applying fluorescence spectroscopy and DNA pyrosequencing with 2D-COS and co-occurrence network to deconstruct dynamical DOM degradation of air-land-water sources in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166794. [PMID: 37673237 DOI: 10.1016/j.scitotenv.2023.166794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
In an urban river, comprehending the interplay between dissolved organic matter (DOM) and atmospheric, terrestrial, and aquatic sources is crucial. This encompassed investigating temporal variations in DOM and its association with the bacterioplankton community to gain profound insights into the biogeochemical dynamics and biodegradability of DOM. DOM was extracted from PM2.5, soil, sediment, bait, and terrestrial/aquatic plant residuals collected along the Wenyuhe River in Beijing, China - a region predominantly supplied with reclaimed water. Subsequently, mixed microbial communities from the river were introduced into DOM samples originating from each source and incubated for 10 days. Principal component analysis (PCA) applied to reassembled excitation-emission matrix (EEM) data revealed two distinct clusters: cluster 1 comprising soil, sediment, and PM2.5 samples; and cluster 2 consisting of bait as well as terrestrial/aquatic plant residuals. According to parallel factor analysis, C1 (microbial humic-like) and C2-C3 (fulvic-like) dominated the DOM from soil, sediment, and PM2.5. These components were continuously degraded during incubation, except for PM2.5. DOM from bait and terrestrial/aquatic plants contained representative components of C6 (phenolic-like) and C7 (tryptophan-like), which underwent extensive decomposition. Interestingly, DOM in PM2.5 contained aliphatic compounds and polycyclic aromatic hydrocarbons (PAHs) but exhibited weak degradation with the complete disappearance of C6 and C7. Rhodococcus was a unique species capable of degrading PAHs, which might be particularly important considering the specificity of PM2.5 pollution. Based on two-dimensional correlation spectroscopy (2D-COS), variations in DOM components such as C6, and C7 were significantly larger compared to those of C1, C2, C3, and C5 (terrestrial humic-like) from bait samples, sediments, and residual terrestrial plants. MW-2D-COS analysis revealed that DOM from bait samples and terrestrial/aquatic plants experienced substantial degradation by the second day while DOM from soil or sediment decomposed mainly on the fourth day. Notably, the decomposition of DOM fractions in PM2.5 occurred throughout the entire four-day period. Co-occurrence network analysis classified sources of DOM into two clusters similar to PCA results: cluster 1 showed significant microbial degradation of fulvic-like compounds while cluster 2 demonstrated deep microbial decomposition of tyrosine-like and phenolic compounds. Therefore, the artificial loading of DOM into rivers not only expands the chemical diversity within DOM but also perturbs bacterioplankton diversities.
Collapse
Affiliation(s)
- Junwen Hou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - HuibinYu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Beidou Xi
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zhengying Li
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Xu X, Weng N, Zhang H, van de Velde SJ, Hermans M, Wu F, Huo S. Cable bacteria regulate sedimentary phosphorus release in freshwater sediments. WATER RESEARCH 2023; 242:120218. [PMID: 37390661 DOI: 10.1016/j.watres.2023.120218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/14/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023]
Abstract
Previous studies have demonstrated that e-SOx can regulate the sedimentary release of phosphorus (P) in brackish and marine sediments. When e-SOx is active, an iron (Fe) and manganese (Mn) oxide rich layer is formed near the sediment surface, which prevents P release. When e-SOx becomes inactive, the metal oxide layer is reduced via sulfide-mediated dissolution, and P is subsequently released to the water column. Cable bacteria have been shown to also occur in freshwater sediments. In these sediments, sulfide production is limited, and the metal oxide layer would thus dissolve less efficiently, leaving the P trapped at the sediment surface. This lack of an efficient dissolution mechanism implies that e-SOx could play an important role in the regulation of P availability in eutrophied freshwater streams. To test this hypothesis, we incubated sediments from a eutrophic freshwater river to investigate the impact of cable bacteria on sedimentary cycling of Fe, Mn and P. High-resolution depth profiling of pH, O2 and ΣH2S complemented with FISH analysis and high-throughput gene sequencing showed that the development of e-SOx activity was closely linked to the enrichment of cable bacteria in incubated sediments. Cable bacteria activity caused a strong acidification in the suboxic zone, leading to the dissolution of Fe and Mn minerals and consequently a strong release of dissolved Fe2+ and Mn2+ to the porewater. Oxidation of these mobilized ions at the sediment surface led to the formation of a metal oxide layer that trapped dissolved P, as shown by the enrichment of P-bearing metal oxides in the top layer of the sediment and low phosphate in the pore and overlying water. After e-SOx activity declined, the metal oxide layer did not dissolve and P remained trapped at the surface. Overall, our results suggested cable bacteria can play an important role to counteract eutrophication in freshwater systems.
Collapse
Affiliation(s)
- Xiaoling Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Nanyan Weng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Hanxiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Sebastiaan J van de Velde
- Department of Biology, University of Antwerp, Wilrijk, Belgium; Operationale Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Martijn Hermans
- Baltic Sea Centre, Stockholm University, Stockholm 106 91, Sweden; Environmental Geochemistry Group, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| |
Collapse
|
10
|
Lustermans JJM, Bjerg JJ, Burdorf LDW, Nielsen LP, Schramm A, Marshall IPG. Persistent flocks of diverse motile bacteria in long-term incubations of electron-conducting cable bacteria, Candidatus Electronema aureum. Front Microbiol 2023; 14:1008293. [PMID: 36910179 PMCID: PMC9998039 DOI: 10.3389/fmicb.2023.1008293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Cable bacteria are centimeters-long filamentous bacteria that oxidize sulfide in anoxic sediment layers and reduce oxygen at the oxic-anoxic interface, connecting these reactions via electron transport. The ubiquitous cable bacteria have a major impact on sediment geochemistry and microbial communities. This includes diverse bacteria swimming around cable bacteria as dense flocks in the anoxic zone, where the cable bacteria act as chemotactic attractant. We hypothesized that flocking only appears when cable bacteria are highly abundant and active. We set out to discern the timing and drivers of flocking over 81 days in an enrichment culture of the freshwater cable bacterium Candidatus Electronema aureum GS by measuring sediment microprofiles of pH, oxygen, and electric potential as a proxy of cable bacteria activity. Cable bacterial relative abundance was quantified by 16S rRNA amplicon sequencing, and microscopy observations to determine presence of flocking. Flocking was always observed at some cable bacteria, irrespective of overall cable bacteria rRNA abundance, activity, or sediment pH. Diverse cell morphologies of flockers were observed, suggesting that flocking is not restricted to a specific, single bacterial associate. This, coupled with their consistent presence supports a common mechanism of interaction, likely interspecies electron transfer via electron shuttles. Flocking appears exclusively linked to the electron conducting activity of the individual cable bacteria.
Collapse
Affiliation(s)
- Jamie J. M. Lustermans
- Section for Microbiology, Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Jesper J. Bjerg
- Section for Microbiology, Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
- Department of Biology, Microbial Systems Technology Excellence Centre, University of Antwerp, Wilrijk, Belgium
| | - Laurine D. W. Burdorf
- Section for Microbiology, Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
- Department of Biology, Microbial Systems Technology Excellence Centre, University of Antwerp, Wilrijk, Belgium
| | - Lars Peter Nielsen
- Section for Microbiology, Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| | - Ian P. G. Marshall
- Section for Microbiology, Department of Biology, Center for Electromicrobiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Dong M, Yang S, Yang X, Xu M, Hu W, Wang B, Huang Y, Xu J, Lu H, Yang Y, Chen X, Huang H, Sun G. Water quality drives the distribution of freshwater cable bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156468. [PMID: 35660596 DOI: 10.1016/j.scitotenv.2022.156468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Cable bacteria are a group of recently found filamentous sulfide-oxidizing Desulfobulbaceae that significantly impact biogeochemical cycling. However, the limited understanding of cable bacteria distribution patterns and the driving force hindered our abilities to evaluate and maximize their contribution to environmental health. We evaluated cable bacteria assemblages from ten river sediments in the Pearl River Delta, China. The results revealed a clear biogeographic distribution pattern of cable bacteria, and their communities were deterministically assembled through water quality-driven selection. Cable bacteria are diverse in the river sediments with a few generalists and many specialists, and the water quality IV and V environments are the "hot spot." We then provided evidence on their morphology, function, and genome to demonstrate how water quality might shape the cable bacteria assemblages. Reduced cell width, inhibited function, and water quality-related adaptive genomic traits were detected in sulfide-limited water quality III and contaminant-stressed water quality VI environments. Specifically, those genomic traits were contributed to carbon and sulfur metabolism in the water quality III environment and stress resistance in the water quality VI environment. Overall, these findings provided a helpful baseline in evaluating the contribution of cable bacteria in the freshwater ecosystem and suggested that their high diversity and flexibility in phylogeny, morphology, and genome allowed them to adapt and contribute to various environmental conditions.
Collapse
Affiliation(s)
- Meijun Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Wenzhe Hu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Youda Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Jiarou Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Huibin Lu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Yonggang Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xingjuan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Haobin Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
12
|
Xu X, Huo S, Weng N, Zhang H, Ma C, Zhang J, Wu F. Effects of sulfide availability on the metabolic activity and population dynamics of cable bacteria in freshwater sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151817. [PMID: 34848270 DOI: 10.1016/j.scitotenv.2021.151817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Cable bacteria occur in many natural environments, and their electrogenic sulfide oxidation (e-SOx) may influence sediment biogeochemistry. The environmental factors determining the growth and diversity of cable bacteria are poorly known, especially in freshwater sediments. We conducted a laboratory incubation experiment, using freshwater sediments with different sulfide supply levels, to study how sulfide availability in sediment affects the metabolic activity and population dynamics of cable bacteria. A moderate increase in the sulfide availability in sediment significantly promoted metabolic activity and the proliferation of the cable bacteria population, as revealed by enhanced e-SOx intensity and increased bacteria abundance. In high-sulfide treatments there was a more significant increase in the population of cable bacteria in the deeper sediment layers, indicating that increased sulfide availability may expand the vertical scale impact of cable bacteria activities on sediment biogeochemistry. The relative proportions of co-existing species in the cable bacteria population also changed with sulfide supply levels, indicating that sulfide availability can be involved in determining the interspecies relationships of cable bacteria. Our findings provide new insight into the relationship between sediment sulfide availability and the growth, depth distribution, and species composition of cable bacteria, implying the consideration of regulating environmental sulfide availability as a potential management practice for the development of cable bacteria-based environmental biotechnologies.
Collapse
Affiliation(s)
- Xiaoling Xu
- College of Water Sciences, Beijing Normal University, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Shouliang Huo
- College of Water Sciences, Beijing Normal University, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Nanyan Weng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hanxiao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Chunzi Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Jingtian Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|