1
|
Li F, Zeng Z, Wu Y, Wang Y, Shen L, Huang X, Wang X, Sun Y. Characteristics of microplastics in typical poultry farms and the association of environment microplastics colonized-microbiota, waterfowl gut microbiota, and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137808. [PMID: 40043390 DOI: 10.1016/j.jhazmat.2025.137808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) pollution is a growing global environmental concern. MPs serve as ecological niches for microbial communities, which may accelerate the spread of antibiotic resistance genes (ARGs), posing risks to the breeding industry. While studies on MPs in aquatic organisms are common, research on farmed poultry is limited. This study investigates MPs in poultry farm environments and waterfowl intestines for the first time. MPs were isolated via density separation and analyzed for characterization in soil, pond water, and waterfowl intestines. Metagenomics was used to investigate the association between environment MPs colonized-microbiota and waterfowl gut microbiota. Our findings reveal that MPs are abundant in soil (6.75 ± 2.78 items/g d.w.), pond water (0.94 ± 0.28 items/g w.w.), and poultry intestines (45.35 ± 19.52 items/g w.w.), primarily appearing as fragmented particles sized 20-50 μm. MPs abundance in intestines correlates with environmental levels. Colonized-microbiota on MPs are linked to poultry intestinal microbiota, with greater diversity and microbial functions. Network analysis reveals that Corynebacterium plays a key role in MPs and poultry intestinal. Polymyxin resistance exhibits high clustering. Procrustes analysis reveals correlations between MPs, bacteria, and ARGs in the farming environment. Overall, MPs in poultry farms may facilitate pathogen and ARGs transmission, posing risks to animal gut health.
Collapse
Affiliation(s)
- Fulin Li
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Ziru Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yixiao Wu
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yefan Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Lingyan Shen
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xingru Huang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xue Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Kerek Á, Szabó Á, Jerzsele Á. Antimicrobial Susceptibility Profiles of Escherichia coli Isolates from Clinical Cases of Ducks in Hungary Between 2022 and 2023. Antibiotics (Basel) 2025; 14:491. [PMID: 40426557 PMCID: PMC12108305 DOI: 10.3390/antibiotics14050491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/27/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Antimicrobial resistance (AMR) poses a growing threat to veterinary medicine and food safety. This study examines Escherichia coli antibiotic resistance patterns in ducks, focusing on multidrug-resistant (MDR) strains. Understanding resistance patterns and predicting MDR occurrence are critical for effective intervention strategies. Methods: E. coli isolates were collected from duck samples across multiple regions. Descriptive statistics and resistance frequency analyses were conducted. A decision tree classifier and a neural network were trained to predict MDR status. Cross-resistance relationships were visualized using graph-based models, and Monte Carlo simulations estimated MDR prevalence variations. Results: Monte Carlo simulations estimated an average MDR prevalence of 79.6% (95% CI: 73.1-86.1%). Key predictors in MDR classification models were enrofloxacin, neomycin, amoxicillin, and florfenicol. Strong cross-resistance associations were detected between neomycin and spectinomycin, as well as amoxicillin and doxycycline. Conclusions: The high prevalence of MDR strains underscores the urgent need to revise antibiotic usage guidelines in veterinary settings. The effectiveness of predictive models suggests that machine learning tools can aid in the early detection of MDR, contributing to the optimization of treatment strategies and the mitigation of resistance spread. The alarming MDR prevalence in E. coli isolates from ducks reinforces the importance of targeted surveillance and antimicrobial stewardship. Predictive models, including decision trees and neural networks, provide valuable insights into resistance trends, while Monte Carlo simulations further validate these findings, emphasizing the need for proactive antimicrobial management.
Collapse
Affiliation(s)
- Ádám Kerek
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, HU-1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, HU-1078 Budapest, Hungary
| | - Ábel Szabó
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, HU-1078 Budapest, Hungary; (Á.S.); (Á.J.)
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, István utca 2, HU-1078 Budapest, Hungary; (Á.S.); (Á.J.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, István utca 2, HU-1078 Budapest, Hungary
| |
Collapse
|
3
|
Zhang S, Yang J, Yang Q, Li Q, Zhong Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Sun D, Tian B, Wu Z, He Y, Cheng A. High prevalence of plasmid-mediated Fosfomycin resistance in waterfowl-derived Escherichia coli strains: insights into genetic context and transmission dynamics in China. Front Vet Sci 2025; 12:1481822. [PMID: 40191084 PMCID: PMC11969801 DOI: 10.3389/fvets.2025.1481822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/31/2025] [Indexed: 04/09/2025] Open
Abstract
Fosfomycin (FOS) is a critical antibiotic for treating multi-drug resistant (MDR) Enterobacteriaceae infections, but its effectiveness is jeopardized by the dissemination of plasmids encoding enzymes that modify FOS. Despite the prohibition on its use in animal breeding in China, 100 strains of Escherichia coli (E. coli) exhibiting high resistance to FOS (MIC≥512 mg/L) were isolated from samples of waterfowl origin collected in Hainan, Sichuan, and Anhui. These strains commonly carried the fosA3 (88/100, 88.0%). In addition, 21 other antimicrobial resistance genes (ARGs) were detected in these strains, with high positivity rates for tetA, aphA1, sul2, folR, qnrS, and bla CTX-M. It is noteworthy that there was a significant positive correlation between the fosA3 and bla CTX-M (OR = 15.162, 95% CI: 1.875-122.635). The results of pulsed-field gel electrophoresis (PFGE) demonstrated the existence of multiple dispersed clonal clusters. Multilocus sequence typing (MLST) analysis identified 45 ST types, with ST48 and ST10 representing the most dominant clones. In the conjugation experiments, 53 fosA-like genes positive transconjugants were obtained with measurable conjugation frequency, which strongly demonstrated that these fosA3 may mainly locate on different types of plasmids possessing an efficient transmission ability. Whole genome sequencing (WGS) analysis further showed that the fosA3 was co-localized with the bla CTX-M on plasmids that showed a high degree of similarity in genetic structure. Of particular interest is the observation that the fosA3 is frequently accompanied by IS26 on either side of the gene. This structure may play a pivotal role in the horizontal transfer of the fosA3. The study revealed the alarming prevalence of FOS resistance in E. coli of waterfowl origin and delved deeply into the genetic characteristics and transmission mechanisms of the fosA3. The discovery of plasmid-mediated, transmissible FOS resistance in waterfowl E. coli poses a threat to "One Health". There's an urgent need for thorough monitoring and control measures against FOS resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Jing Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qianlong Li
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Yu He
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
| |
Collapse
|
4
|
Xiao R, Tian C, Wang H, Zhang H, Chen H, Chou HH. Two-stage continuous cultivation of microalgae overexpressing cytochrome P450 improves nitrogen and antibiotics removal from livestock and poultry wastewater. BIORESOURCE TECHNOLOGY 2025; 418:131994. [PMID: 39694106 DOI: 10.1016/j.biortech.2024.131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Improper treatment of livestock and poultry wastewater (LPWW) rich in ammonium nitrogen (NH4-N) and antibiotics leads to eutrophication, and contributes to the risk of creating drug-resistant pathogens. The design-build-test-learn strategy was used to engineer a continuous process using Chlorella vulgaris to remove NH4-N and antibiotics. The optimized system removed NH4-N at a rate of 306 mg/L/d, degraded 99 % of lincomycin, and reduced the hydraulic retention time to 4 days. The physiological, metabolic, and genetic mechanisms used by microalgae to tolerate LPWW, remove NH4-N, and degrade antibiotics were elucidated. A new cytochrome P450 enzyme important for NH4-N and antibiotic removal was identified. Finally, application of synthetic biology improved the NH4-N removal rate to 470 mg/L/d, which is the highest removal rate using microalgae reported to date. This research contributes to the mechanistic understanding of wastewater detoxification by microalgae, and the goal of achieving a circular bioeconomy for nutrient and water recycling.
Collapse
Affiliation(s)
- Rui Xiao
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China; Department of Environmental Engineering and Earth Science, Clemson University, South Carolina 29634, United States
| | - Chang Tian
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China
| | - Haijun Wang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, South Carolina 29634, United States
| | - Howard H Chou
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, China.
| |
Collapse
|
5
|
Zhang S, Shu Y, Yang Z, Zhong Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Sun D, Tian B, Wu Z, He Y, Cheng A. Decoding the enigma: unveiling the transmission characteristics of waterfowl-associated bla NDM-5-positive Escherichia coli in select regions of China. Front Microbiol 2024; 15:1501594. [PMID: 39717269 PMCID: PMC11663885 DOI: 10.3389/fmicb.2024.1501594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Escherichia coli (E. coli) serves as a critical indicator microorganism for assessing the prevalence and dissemination of antibiotic resistance, notably harboring various antibiotic-resistant genes (ARGs). Among these, the emergence of the bla NDM gene represents a significant threat to public health, especially since carbapenem antibiotics are vital for treating severe infections caused by Gram-negative bacteria. This study aimed to characterize the antibiotic resistance features of bla NDM-5-positive E. coli strains isolated from waterfowl in several regions of China and elucidate the dissemination patterns of the bla NDM-5 gene. We successfully isolated 103 bla NDM-5-positive E. coli strains from 431 intestinal fecal samples obtained from waterfowl across five provincial-level units in China, with all strains exhibiting multidrug resistance (MDR). Notably, the bla NDM-5 gene was identified on plasmids, which facilitate efficient and stable horizontal gene transfer (HGT). Our adaptability assays indicated that while the bla NDM-5-positive plasmid imposed a fitness cost on the host bacteria, the NDM-5 protein was successfully induced and purified, exhibiting significant enzymatic activity. One strain, designated DY51, exhibited a minimum inhibitory concentration (MIC) for imipenem of 4 mg/L, which escalated to 512 mg/L following exposure to increasing imipenem doses. This altered strain demonstrated stable resistance to imipenem alongside improved adaptability, correlating with elevated relative expression levels of the bla NDM-5 and overexpression of efflux pumps. Collectively, this study highlights the horizontal dissemination of the bla NDM-5 plasmid among E. coli strains, confirms the associated fitness costs, and provides insights into the mechanisms underlying the stable increase in antibiotic resistance to imipenem. These findings offer a theoretical framework for understanding the dissemination dynamics of bla NDM-5 in E. coli, which is essential for developing effective strategies to combat carbapenem antibiotic resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Yanxi Shu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhechen Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Yu He
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| |
Collapse
|
6
|
Fang C, Liu KD, Tian FJ, Li JY, Li SJ, Zhang RM, Sun J, Fang LX, Ren H, Wang MG, Liao XP. Metagenomic analysis unveiled the response of microbial community and antimicrobial resistome in natural water body to duck farm sewage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124784. [PMID: 39182818 DOI: 10.1016/j.envpol.2024.124784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/06/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Sewages from duck farms are often recognized as a major source of antimicrobial resistance and pathogenic bacteria discharged to natural water bodies, but few studies depicted the dynamic changes in resistome and microbial communities in the rivers under immense exposure of sewage discharge. In this study, we investigated the ecological and environmental risks of duck sewages to the rivers that geographically near to the duck farms with short-distance (<1 km) using 16S rRNA amplicon and metagenomic sequencing. The results showed that a total of 20 ARG types were identified with abundances ranged from 0.61 to 1.33 cpc. Of note, the genes modulate resistances against aminoglycoside, bacitracin and beta-lactam were the most abundant ARGs. Limnohabitans, Fluviibacter and Cyanobium were the top 3 predominant genera in the microbial community. The alpha diversity of overall microbial community decrease while the abundance of pathogen increase during the input of sewage within 200 m. Sul1 and bacA were the dominant ARGs brought from duck farm sewage. The community variations of ARGs and microbiome were primarily driven by pH and temperature. Total phosphorus was significantly correlated to alpha diversity and top 30 ARGs subtype. Stochastic processes was the dominated microbial assembly pattern and did not be altered by sewage. We also highlighted the ecological risk caused by blaGES which possibly could be mitigated by Cyanobacteria, and the natural water body can purify partial ARGs as well as microbiome from duck farms sewage. These findings expanded our knowledge regarding the ecological risks by wastes from the livestock farm, and underscoring the necessity to monitor ARGs in farm-surrounding water bodies.
Collapse
Affiliation(s)
- Chang Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; College of Marine Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Kai-di Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Feng-Jie Tian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jin-Ying Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Si-Jie Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Rong-Min Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Hao Ren
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Min-Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Phage Research Center, Liaocheng University, Liaocheng, 252000, PR China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
7
|
Chen C, Li Y, Wu Z, Ruan Y, Long T, Wang X, Li W, Ren H, Liao X, Liu Y, Lian X, Sun J. Cat and dog feces as reservoirs of diverse novel antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2024; 261:119690. [PMID: 39068967 DOI: 10.1016/j.envres.2024.119690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Companion animals have the potential to greatly enhance the physical and mental health of humans, thus leading to an increased focus on the interactions between humans and pets. Currently, the inappropriate and excessive utilization of antimicrobial agents has become prevalent in veterinary clinical practice for pets. This antibiotic contamination phenomenon has a profound impact on the enrichment of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) in pets. However, the pet-associated resistome, especially the novel ARGs in pets, represents a relatively neglected area. In this study, we successfully constructed a total of 12 libraries using the functional metagenomics approach to assess the diversity of ARGs in pet cats and dogs from four pet hospitals. Through the integration of functional screening and high-throughput sequencing, a total of 122 antibiotic resistance determinants were identified, of which 15 were classified as putative novel ARGs originating from five classes. Functional assessment demonstrated that 6 novel ARGs including one β-lactam, two macrolides, two aminoglycosides, and one rifamycin (RIF), namely blaPF, ermPF, msrPF, aac(6')PF, aph(3')PF, and arrPF, exhibited functionally activity in conferring bacterial phenotypic resistance by increasing the minimum inhibitory concentrations (MICs) with a 4- to 128-fold. Genetic context analysis demonstrated that, with the exception of aac(6')PF and arrPF, the remaining four novel ARGs were found adjacent to mobile genetic elements (MGEs) including IS elements or transposases, which provided a prerequisite for horizontal transfer of these novel ARGs, thereby offering an explanation for their detection in diverse samples collected from various sampling sites. The current study has unveiled the significant role of cat and dog feces as one source of reservoirs of diverse novel ARGs, while also highlighting the potential adverse consequences of their further spread to medically significant pathogens and human commensal organisms.
Collapse
Affiliation(s)
- Caiping Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yali Ruan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Tengfei Long
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Xiran Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xinlei Lian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Ma L, Lyu W, Zeng T, Wang W, Chen Q, Zhao J, Zhang G, Lu L, Yang H, Xiao Y. Duck gut metagenome reveals the microbiome signatures linked to intestinal regional, temporal development, and rearing condition. IMETA 2024; 3:e198. [PMID: 39135685 PMCID: PMC11316934 DOI: 10.1002/imt2.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Guolong Zhang
- Department of Animal and Food SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
9
|
Zhu DM, Yan YS, Wang H, Zhong Y, Inam, Gao YH, Li GM, Mu GD, Dong HF, Li Y, Liu DK, Ma HX, Kong LC. Transmission of human-pet antibiotic resistance via aerosols in pet hospitals of Changchun. One Health 2024; 18:100765. [PMID: 38855194 PMCID: PMC11157275 DOI: 10.1016/j.onehlt.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
In recent years, aerosols have been recognized as a prominent medium for the transmission of antibiotic-resistant bacteria and genes. Among these, particles with a particle size of 2 μm (PM2.5) can directly penetrate the alveoli. However, the presence of antibiotic-resistant genes in aerosols from pet hospitals and the potential risks posed by antibiotic-resistant bacteria in these aerosols to humans and animals need to be investigated. In this study, cefotaxime-resistant bacteria were collected from 5 representative pet hospitals in Changchun using a Six-Stage Andersen Cascade Impactor. The distribution of bacteria in each stage was analyzed, and bacteria from stage 5 and 6 were isolated and identified. Minimal inhibitory concentrations of isolates against 12 antimicrobials were determined using broth microdilution method. Quantitative Polymerase Chain Reaction was employed to detect resistance genes and mobile genetic elements that could facilitate resistance spread. The results indicated that ARBs were enriched in stage 5 (1.1-2.1 μm) and stage 3 (3.3-4.7 μm) of the sampler. A total of 159 isolates were collected from stage 5 and 6. Among these isolates, the genera Enterococcus spp. (51%), Staphylococcus spp. (19%), and Bacillus spp. (14%) were the most prevalent. The isolates exhibited the highest resistance to tetracycline and the lowest resistance to cefquinome. Furthermore, 56 (73%) isolates were multidrug-resistant. Quantitative PCR revealed the expression of 165 genes in these isolates, with mobile genetic elements showing the highest expression levels. In conclusion, PM2.5 from pet hospitals harbor a significant number of antibiotic-resistant bacteria and carry mobile genetic elements, posing a potential risk for alveolar infections and the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Dao Mi Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Ya Song Yan
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Hao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Inam
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Yun Hang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Gong Mei Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Guo Dong Mu
- Jilin Provincial Animal Disease Prevention and Control Center, Jilin Animal Husbandry Building, Xi'an Road No. 4510, Changchun, PR China
| | - Hui Feng Dong
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Yuan Li
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Ding Kuo Liu
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Hong Xia Ma
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Ling Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| |
Collapse
|
10
|
Wang C, Wu S, Zhou W, Hu L, Hu Q, Cao Y, Wang L, Chen X, Zhang Q. Effects of Neolamarckia cadamba leaves extract on microbial community and antibiotic resistance genes in cecal contents and feces of broilers challenged with lipopolysaccharides. Appl Environ Microbiol 2024; 90:e0110723. [PMID: 38231769 PMCID: PMC10880616 DOI: 10.1128/aem.01107-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/20/2023] [Indexed: 01/19/2024] Open
Abstract
The effects of Neolamarckia cadamba leaves extract (NCLE), with effective ingredients of flavonoids, on antibiotic resistance genes (ARGs) and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation (LPS) were investigated. LPS stimulation increased (P < 0.05) the relative abundance of ARGs and mobile genetic elements (MGEs), such as tet(W/N/W), APH(3')-IIIa, ErmB, tet (44), ANT (6)-Ia, tet(O), tet (32), Vang_ACT_CHL, myrA, ANT (6)-Ib, IncQ1, tniB, and rep2 in cecal contents. However, the difference disappeared (P > 0.05) when NCLE was added at the same time. These differential ARGs and MGEs were mainly correlated (P < 0.01) with Clostridiales bacterium, Lachnospiraceae bacterium, and Candidatus Woodwardibium gallinarum. These species increased in LPS-stimulated broilers and decreased when NCLE was applied at the same time. In feces, LPS stimulation decreased (P < 0.05) the relative abundance of tet(Q), adeF, ErmF, Mef(En2), OXA-347, tet (40), npmA, tmrB, CfxA3, and ISCrsp1, while the LPS + NCLE treated group showed no significant effect (P > 0.05) on these ARGs. These differential ARGs and MGEs in feces were mainly correlated (P < 0.01) with Clostridiales bacterium, Pseudoflavonifractor sp. An184, Flavonifractor sp. An10, Ruminococcaceae bacterium, etc. These species increased in LPS-stimulated broilers and increased when NCLE was applied at the same time. In conclusion, LPS stimulation and NCLE influenced microbial communities and associated ARGs in both cecal contents and feces of broilers. NCLE alleviated the change of ARGs and MGEs in LPS-induced broilers by maintaining the microbial balance.IMPORTANCEAntibiotics showed a positive effect on gut health regulation and growth performance improvement in livestock breeding, but the antimicrobial resistance threat and environment pollution problem are increasingly severe with antibiotics abuse. As alternatives, plant extract containing bioactive substances are increasingly used to improve immunity and promote productivity. However, little is known about their effects on diversity and abundance of ARGs. Here, we investigated the effects of NCLE, with effective ingredients of flavonoids, on ARGs and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation. We found that NCLE reduced the abundance of ARGs in cecal contents of lipopolysaccharide-induced broilers by maintaining the microbial balance. This study provides a comprehensive view of cecal and fecal microbial community, ARGs, and MGEs of broiler following LPS stimulation and NCLE treatment. It might be used to understand and control ARGs dissemination in livestock production.
Collapse
Affiliation(s)
- Cheng Wang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
- State key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuo Wu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Lei Hu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Qi Hu
- Bioinformation Center, NEOMICS Institute, Shenzhen, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- State key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
He B, Zhu TT, Liang Y, Wei HJ, Huang ZL, Liang LJ, Zhong JH, Luo Y, Lian XL, Zhao DH, Liao XP, Liu YH, Ren H, Sun J. Adaptive evolution in asymptomatic host confers MDR Salmonella with enhanced environmental persistence and virulence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168340. [PMID: 37931815 DOI: 10.1016/j.scitotenv.2023.168340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
As a common cause for food-borne diseases, the Salmonella spp. are generally prevalent among livestock, whereby they are likely to be transmitted to human via environmental contamination. To explore the potential mechanism for prevalence of MDR Salmonella and its risk for dissemination via contaminated environments, we profiled the colonization dynamics of MDR Salmonella in chicken, herein we found that an adaptive evolution, driven by mutagenesis in a small protein-encoding gene (STM14_1829), conferred the multidrug resistant (MDR) Salmonella with increased fitness in asymptomatic host. Then the mechanistic study demonstrated that only one amino acid substitution in small protein STM14_1829 rendered MDR Salmonella capable to better invade and persist in phagocytotic cells by modulating bacterial flagella overexpression. Concerningly, the evolved Salmonella was also more resilient to the potential stressors generally found in environments and food processing, including heat, cold, adverse pH and oxidations. It implied that the evolved subpopulations are plausibly more persistent in environments once they contaminated through animal manure or human excreta. Moreover, the evolution promoted the pathogenesis caused by MDR Salmonella in susceptible hosts, resulting in higher risk for dissemination of pathogens via contaminated environments. Together, our data provided the novel insights into that in vivo adaptive evolution benefits Salmonella colonization, persistence and pathogenesis, by promoting bacterial tolerance via modulating flagella expression. These findings may explain the rationale behind the increasing prevalence of certain MDR Salmonella clones in livestock and associated environment, and underscoring the need for advanced strategies to tackle the possible evolution of such zoonotic pathogens.
Collapse
Affiliation(s)
- Bing He
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ting-Ting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yin Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Hai-Jing Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Zi-Lei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Li-Jie Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Jia-Hao Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Yang Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xin-Lei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Dong-Hao Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiao-Ping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
12
|
Sarkar A, McInroy CJA, Harty S, Raulo A, Ibata NGO, Valles-Colomer M, Johnson KVA, Brito IL, Henrich J, Archie EA, Barreiro LB, Gazzaniga FS, Finlay BB, Koonin EV, Carmody RN, Moeller AH. Microbial transmission in the social microbiome and host health and disease. Cell 2024; 187:17-43. [PMID: 38181740 PMCID: PMC10958648 DOI: 10.1016/j.cell.2023.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Cameron J A McInroy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Siobhán Harty
- Independent, Tandy Court, Spitalfields, Dublin, Ireland
| | - Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK; Department of Computing, University of Turku, Turku, Finland
| | - Neil G O Ibata
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mireia Valles-Colomer
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Katerina V-A Johnson
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Francesca S Gazzaniga
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Li X, Li G, Huang H, Wan P, Lu Y, Li Z, Xie L, Xiong W, Zeng Z. The occurrence and contamination of optrA-positive methicillin-resistant Staphylococcus aureus from duck farms in Guangdong, China. J Glob Antimicrob Resist 2023; 35:86-92. [PMID: 37689309 DOI: 10.1016/j.jgar.2023.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023] Open
Abstract
OBJECTIVES Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), is an important zoonotic microorganism that increasingly causes public health concern worldwide. The objective of this study was to determine the prevalence and transmission of S. aureus in duck farms and evaluate its antimicrobial resistance and genetic characteristics. METHODS The samples associated with ducks, feeders, and the environment were collected on 14 duck farms from four areas in Guangdong, China, from 2020 to 2021. All isolates were subjected to antimicrobial susceptibility testing. A comprehensive epidemiological survey of S. aureus was conducted by S. aureus protein A typing and whole-genome sequencing. RESULTS A total of 560 samples were collected. The prevalence rate of MRSA among ducks (8.1%, 11 of 135) was higher compared with that in environmental samples. OptrA-positive ST398-t034 MRSA were first detected from duck farms in China. A total of 79.3% (34 of 46) S. aureus isolates showed multidrug-resistant phenotypes. Notably, some isolates carried multidrug-resistant genes encoding macrolide-lincosamide-streptogramin B, pleuromutilin-pleuromutilin-streptogramin A, and oxazolidinone. Analysis of the virulence genes revealed that the MRSA isolates carried genes encoding gamma-hemolysin, enterotoxin, and leukocidin. ST9-t899 is a primary clonal lineage among duck- and environment-associated MRSA. Single-nucleotide polymorphism analysis showed the potential contamination relationship of optrA-positive ST2308 MRSA isolates carrying the gamma-hemolysin genes and the leukocidin virulence genes between airborne dust and sick ducks. CONCLUSION The contamination of MRSA, especially optrA-positive MRSA, between food animals and the environment is a growing public health concern worldwide. Based on One Health principles, continuous surveillance of MRSA is urgently needed.
Collapse
Affiliation(s)
- Xiaoshen Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Guihua Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Honghao Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Peng Wan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Zhi Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Longfei Xie
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
Zhang S, Shu Y, Wang Y, Zhong Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. High rate of multidrug resistance and integrons in Escherichia coli isolates from diseased ducks in select regions of China. Poult Sci 2023; 102:102956. [PMID: 37586192 PMCID: PMC10450990 DOI: 10.1016/j.psj.2023.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023] Open
Abstract
With the increasing number of ducks being raised and consumed, it is crucial to monitor the presence of multidrug resistant (MDR) bacteria in duck farming. Waterfowl, such as ducks, can contribute to the rapid dissemination of antibiotic resistance genes (ARGs). The objective of this study was to investigate the antimicrobial resistance (AMR), ARGs, and mobile genetic elements (MGEs), such as IS26, tbrC, ISEcp1 in Escherichia coli(E. coli) isolated from the intestinal contents of diseased ducks between 2021 and 2022 in Sichuan, Chongqing and Anhui, China. The AMR phenotypes of 201 isolated E. coli strains were determined using the minimum inhibitory concentrations (MICs) method. Subsequently, polymerase chain reaction and sequencing techniques were employed to screen for integron-integrase genes (intI1, intI2, intI3 genes), gene cassettes (GCs), MGEs, and ARGs. The results demonstrated that 96.5% of the E. coli isolates were resistant to at least 1 antibiotic, with 88.1% of the strains displaying MDR phenotype. The highest AMR phenotype observed was for trimethoprim-sulfamethoxazole (88.1%). Furthermore, class 1 and class 2 integrons were detected in 68.2% and 3.0% of all the isolates, respectively, whereas no class 3 integrons were found. Ten types of GCs were identified in the variable regions of class 1 and class 2 integrons. Moreover, 10 MGEs were observed in 46 combinations, with IS26 exhibiting the highest detection rate (89.6%). Among the 22 types of ARGs, tetA (77.1%) was the most frequently detected. In the conjugational transfer experiment, transconjugants were found to carry specific ARGs and MGEs, with their MIC values were significantly higher than those of recipient E. coli J53, indicating their status as MDR bacteria. This study emphasizes the necessity of monitoring MGEs, ARGs, and integrons in duck farms. It provides valuable insights into the complex formation mechanisms of AMR and may aid in preventing and controlling the spread of MDR bacteria in waterfowl breeding farm.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Yanxi Shu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Yuwei Wang
- Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan 621023, P.R. China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan 611130, P.R. China.
| |
Collapse
|
15
|
Zhang LJ, Yang JT, Chen HX, Liu WZ, Ding YL, Chen RA, Zhang RM, Jiang HX. F18:A-:B1 Plasmids Carrying blaCTX-M-55 Are Prevalent among Escherichia coli Isolated from Duck-Fish Polyculture Farms. Antibiotics (Basel) 2023; 12:961. [PMID: 37370280 DOI: 10.3390/antibiotics12060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
We determined the prevalence and molecular characteristics of blaCTX-M-55-positive Escherichia coli (E. coli) isolated from duck-fish polyculture farms in Guangzhou, China. A total of 914 E. coli strains were isolated from 2008 duck and environmental samples (water, soil and plants) collected from four duck fish polyculture farms between 2017 and 2019. Among them, 196 strains were CTX-M-1G-positive strains by PCR, and 177 (90%) blaCTX-M-1G-producing strains were blaCTX-M-55-positive. MIC results showed that the 177 blaCTX-M-55-positive strains were highly resistant to ciprofloxacin, ceftiofur and florfenicol, with antibiotic resistance rates above 95%. Among the 177 strains, 37 strains carrying the F18:A-:B1 plasmid and 10 strains carrying the F33:A-:B- plasmid were selected for further study. Pulse field gel electrophoresis (PFGE) combined with S1-PFGE, Southern hybridization and whole-genome sequencing (WGS) analysis showed that both horizontal transfer and clonal spread contributed to dissemination of the blaCTX-M-55 gene among the E. coli. blaCTX-M-55 was located on different F18:A-:B1 plasmids with sizes between ~76 and ~173 kb. In addition, the presence of blaCTX-M-55 with other resistance genes (e.g., tetA, floR, fosA3, blaTEM, aadA5 CmlA and InuF) on the same F18:A-:B1 plasmid may result in co-selection of resistance determinants and accelerate the dissemination of blaCTX-M-55 in E. coli. In summary, the F18:A-:B1 plasmid may play an important role in the transmission of blaCTX-M-55 in E. coli, and the continuous monitoring of the prevalence and transmission mechanism of blaCTX-M-55 in duck-fish polyculture farms remains important.
Collapse
Affiliation(s)
- Li-Juan Zhang
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Life Science Department, Foshan University, Foshan 528000, China
| | - Jin-Tao Yang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hai-Xin Chen
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wen-Zi Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yi-Li Ding
- Life Science Department, Foshan University, Foshan 528000, China
| | - Rui-Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Rong-Min Zhang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hong-Xia Jiang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
16
|
Gschwind R, Ugarcina Perovic S, Weiss M, Petitjean M, Lao J, Coelho LP, Ruppé E. ResFinderFG v2.0: a database of antibiotic resistance genes obtained by functional metagenomics. Nucleic Acids Res 2023:7173762. [PMID: 37207327 DOI: 10.1093/nar/gkad384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Metagenomics can be used to monitor the spread of antibiotic resistance genes (ARGs). ARGs found in databases such as ResFinder and CARD primarily originate from culturable and pathogenic bacteria, while ARGs from non-culturable and non-pathogenic bacteria remain understudied. Functional metagenomics is based on phenotypic gene selection and can identify ARGs from non-culturable bacteria with a potentially low identity shared with known ARGs. In 2016, the ResFinderFG v1.0 database was created to collect ARGs from functional metagenomics studies. Here, we present the second version of the database, ResFinderFG v2.0, which is available on the Center of Genomic Epidemiology web server (https://cge.food.dtu.dk/services/ResFinderFG/). It comprises 3913 ARGs identified by functional metagenomics from 50 carefully curated datasets. We assessed its potential to detect ARGs in comparison to other popular databases in gut, soil and water (marine + freshwater) Global Microbial Gene Catalogues (https://gmgc.embl.de). ResFinderFG v2.0 allowed for the detection of ARGs that were not detected using other databases. These included ARGs conferring resistance to beta-lactams, cycline, phenicol, glycopeptide/cycloserine and trimethoprim/sulfonamide. Thus, ResFinderFG v2.0 can be used to identify ARGs differing from those found in conventional databases and therefore improve the description of resistomes.
Collapse
Affiliation(s)
- Rémi Gschwind
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| | - Svetlana Ugarcina Perovic
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Maja Weiss
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs, Lyngby 2800, Denmark
| | - Marie Petitjean
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| | - Julie Lao
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
| | - Etienne Ruppé
- University of Paris Cité, INSERM UMR 1137 IAME, F-75018Paris, France
| |
Collapse
|
17
|
Yang JT, Xiao DY, Zhang LJ, Chen HX, Zheng XR, Xu XL, Jiang HX. Antimicrobial resistome during the transition from an integrated to a monoculture aquaculture farm in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163511. [PMID: 37080303 DOI: 10.1016/j.scitotenv.2023.163511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Integrated and monoculture freshwater aquaculture systems are often regarded as important reservoirs for antimicrobial resistance genes (ARGs) and antimicrobial resistance bacteria (ARBs), yet only a few studies have assessed differences in the antimicrobial resistome and antibiotic residues between aquaculture modes. In this study, a metagenomic approach was used to comprehensively explore the dynamic patterns and potential transmission mechanisms of ARGs in ducks, human workers, fish, water and sediments during the transition from an integrated to a monoculture freshwater aquaculture mode and to investigate the associations of ARGs with potential hosts in microbial communities using network analysis and a binning approach. The results showed that the abundance and diversity of ARGs were higher under integrated fish-duck farming than in single fish ponds. During the transition from an integrated to a monoculture aquaculture farm, ARGs in workers and sediments were not easily removed. However, ARGs in the aquatic environment underwent regular changes. In addition, duck manure was probably the most dominant source of ARGs in the duck farm environment. Network analysis indicated that Escherichia spp. were the most dominant hosts of ARGs. Variation partitioning analysis (VPA) showed that in water samples, the bacterial community played an important role in the ARG profile. In addition, we identified a potential risk of the presence of highly virulent and antimicrobial-resistant Klebsiella pneumoniae in workers. These results help assess the risk of ARG transmission in integrated and monoculture aquaculture farms and suggest that we should strengthen the monitoring of long-term resistance in integrated aquaculture environments.
Collapse
Affiliation(s)
- Jin-Tao Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dan-Yu Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Li-Juan Zhang
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526000, China
| | - Hai-Xin Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Run Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Li Xu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Xia Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Ren H, Lu Z, Sun R, Wang X, Zhong J, Su T, He Q, Liao X, Liu Y, Lian X, Sun J. Functional metagenomics reveals wildlife as natural reservoirs of novel β-lactamases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161505. [PMID: 36626997 DOI: 10.1016/j.scitotenv.2023.161505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The antibiotic resistances in bacteria are believed to rapidly evolve over time in the anthropogenic environments which enriched with selection pressures. However, the knowledge regarding the development of antibiotic resistance in wildlife and their habitats is scarce. It is, therefore, of great interest and significance to unveil the yet-unknown antibiotic resistances in wildlife in accordance with One Health concept. To this end, we analyzed the samples taken from wildlife and surrounding environments using a functional metagenomics approach. By functional screening in combination with Illumina sequencing, a total of 32 candidate genes which encoding putative novel β-lactamase were identified. These putative β-lactamase were taxonomically assigned into bacteria of 23 genera from 7 phyla, where Proteobacteria, Actinobacteria and Firmicutes were dominant. The following functional assessment demonstrated that 4 novel β-lactamases, namely blaSSA, blaSSB1, blaSSB2 and blaSSD, were functionally active to confer the phenotypical resistance to bacteria by increasing MICs up to 128-fold. Further analysis indicated that the novel β-lactamases identified in the current study were able to hydrolyze a broad spectrum of β-lactams including cephalosporins, and they were genetically unique comparing with known β-lactamases. The plausible transmission of some novel β-lactamase genes was supported by our results as the same gene was detected in different samples from different sites. This study shed the light on the active role of wildlife and associated environments as natural reservoirs of novel β-lactamases, implying that the antibiotic resistances might evolve in absence of selection pressure and threaten public health once spread into clinically important pathogens.
Collapse
Affiliation(s)
- Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxiang Lu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ruanyang Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiran Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Su
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Qian He
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
19
|
Wang X, Chen D, Du J, Cheng K, Fang C, Liao X, Liu Y, Sun J, Lian X, Ren H. Occupational exposure in swine farm defines human skin and nasal microbiota. Front Microbiol 2023; 14:1117866. [PMID: 37065142 PMCID: PMC10090692 DOI: 10.3389/fmicb.2023.1117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
Anthropogenic environments take an active part in shaping the human microbiome. Herein, we studied skin and nasal microbiota dynamics in response to the exposure in confined and controlled swine farms to decipher the impact of occupational exposure on microbiome formation. The microbiota of volunteers was longitudinally profiled in a 9-months survey, in which the volunteers underwent occupational exposure during 3-month internships in swine farms. By high-throughput sequencing, we showed that occupational exposure compositionally and functionally reshaped the volunteers’ skin and nasal microbiota. The exposure in farm A reduced the microbial diversity of skin and nasal microbiota, whereas the microbiota of skin and nose increased after exposure in farm B. The exposure in different farms resulted in compositionally different microbial patterns, as the abundance of Actinobacteria sharply increased at expense of Firmicutes after exposure in farm A, yet Proteobacteria became the most predominant in the volunteers in farm B. The remodeled microbiota composition due to exposure in farm A appeared to stall and persist, whereas the microbiota of volunteers in farm B showed better resilience to revert to the pre-exposure state within 9 months after the exposure. Several metabolic pathways, for example, the styrene, aminobenzoate, and N-glycan biosynthesis, were significantly altered through our PICRUSt analysis, and notably, the function of beta-lactam resistance was predicted to enrich after exposure in farm A yet decrease in farm B. We proposed that the differently modified microbiota patterns might be coordinated by microbial and non-microbial factors in different swine farms, which were always environment-specific. This study highlights the active role of occupational exposure in defining the skin and nasal microbiota and sheds light on the dynamics of microbial patterns in response to environmental conversion.
Collapse
Affiliation(s)
- Xiran Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dongrui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Juan Du
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ke Cheng
- Guangxi State Farms Yongxin Jinguang Animal Husbandry Group Co., Ltd, Nanning, China
| | - Chang Fang
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoping Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yahong Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
- *Correspondence: Jian Sun,
| | - Xinlei Lian
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Xinlei Lian,
| | - Hao Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Hao Ren,
| |
Collapse
|
20
|
Hu J, Chen L, Li G, Pan Y, Lu Y, Chen J, Xiong W, Zeng Z. Prevalence and genetic characteristics of fosB-positive Staphylococcus aureus in duck farms in Guangdong, China in 2020. J Antimicrob Chemother 2023; 78:802-809. [PMID: 36691844 DOI: 10.1093/jac/dkad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES To investigate the epidemiology of fosB-positive Staphylococcus aureus in waterfowl farms in the Pearl River tributaries in Guangdong Province, China in 2020. METHODS A total of 63 S. aureus were recovered from 315 samples collected from six duck farms and one goose farm. PFGE, WGS and analysis were performed on 19 fosB-positive S. aureus. RESULTS The fosfomycin resistance rate of the strains was as high as 52.4% (33/63), and 30.1% (19/63) of the strains carried fosB. Resistance gene prediction results showed that duck farm environment-derived strains contained the oxazolidinone drug resistance gene optrA. All fosB-positive S. aureus were MRSA and most of them were MDR, mainly ST9-t899 and ST164-t899. PFGE showed that fosB-positive S. aureus from humans and ducks could be clustered into the same clade. In addition, core-genome SNP analysis showed that clonal transmission of S. aureus occurred between humans and water. Pan-genome analysis showed that S. aureus had an open pangenome. The fosB gene was located on 2610-2615 bp plasmids, which all contained a broad host-range plasmid replication protein family 13. Small plasmids carrying the fosB gene could be found in different multilocus STs of S. aureus. CONCLUSIONS This study indicated that duck farms in Guangdong, China could be an important reservoir of fosB-positive S. aureus. The spread of drug-resistant bacteria in waterfowl farms requires further monitoring.
Collapse
Affiliation(s)
- Jianxin Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Guihua Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Jin Chen
- National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.,National Risk Assessment Laboratory for Antimicrobial Resistant of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
21
|
Tansirichaiya S, Hutton W, Roberts AP. Functional and Sequence-Specific Screening Protocols for the Detection of Novel Antimicrobial Resistance Genes in Metagenomic DNA. Methods Mol Biol 2023; 2555:51-72. [PMID: 36306078 DOI: 10.1007/978-1-0716-2795-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Antimicrobial resistance (AMR) is an increasingly important global challenge for healthcare systems as well as agricultural food production systems. Our ability to prepare for, and respond to, emerging AMR threats is dependent on our knowledge of genes able to confer AMR that are circulating within various environmental, animal, and human microbiomes. Targeted, sequence-specific, detection of AMR genes and functional resistance assays, described here, carried out on metagenomic DNA gives us unique insights into the presence of AMR genes and how these are associated with mobile genetic elements that may be responsible for their dissemination and can also provide important information about the mechanisms of resistance underpinning the phenotype.
Collapse
Affiliation(s)
- Supathep Tansirichaiya
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - William Hutton
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
22
|
Li Z, Sang QQ, Sun YX, Liu Y, Hou ZC. Exploring the effect of the microbiota on the production of duck striped eggs. Poult Sci 2022; 102:102436. [PMID: 36623335 PMCID: PMC9842688 DOI: 10.1016/j.psj.2022.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The microbiota has received plenty of attention in recent years due to its influence on host health and productivity. The striped eggs have reduced hatching performance and resulted in economic loss. The reasons are still unknown. Microbiota is one of the potentially important factors contributing to striped egg formation. This study investigates the relationship between the microbiota and striped eggs. The litter samples, feed samples, and cloacal swab samples of female ducks that produce striped eggs and normal eggs were performed for microbial diversity and composition using 16S rRNA sequencing. The results showed that there was no significant difference between feed microbiota and cloacal swab microbiota by alpha diversity, whereas, the number of microorganisms in the litter samples of female ducks that produced striped eggs was less than those of female ducks with normal eggs. There were compositional differences in litter microbiota of female ducks between the striped egg and the normal eggs. Among them, the abundance of Staphylococcus, Corynebacterium, and Brevibacterium in the litter of female ducks that produced striped eggs was significantly higher than that produced normal eggs. And these differential bacteria maybe affect the health of female ducks and cause abnormalities in the formation process of duck eggs. Therefore, the reduction of harmful bacteria may protect the reproductive health of female ducks and decrease the proportion of striped eggs. It provides an important reference to explore why female ducks produce striped eggs.
Collapse
Affiliation(s)
| | | | | | | | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Peng S, Zhang H, Song D, Chen H, Lin X, Wang Y, Ji L. Distribution of antibiotic, heavy metals and antibiotic resistance genes in livestock and poultry feces from different scale of farms in Ningxia, China. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129719. [PMID: 35985212 DOI: 10.1016/j.jhazmat.2022.129719] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of livestock and poultry breeding industries, pollution problems caused by the discharge of animal feces have become increasingly severe. Nevertheless, there are limited investigations about nutrients and pollutants in animal feces from different scale of farms, especially in Northwest China. Here we investigated nutrients content, 19 antibiotics, 7 heavy metals, 329 antibiotic resistance genes (ARGs) and 35 mobile genetic elements (MGEs) in six main livestock and poultry feces collected from 5 coastal regions of Ningxia. Pig and chicken feces exhibited higher levels of nutrients content, but antibiotics, heavy metals, ARGs and MGEs were also more abundant than those in cattle and sheep feces. Chlortetracycline hydrochloride and doxycycline hyclate were the most commonly used antibiotic, which detected with the highest rate and concentrations, especially in broiler, layer and pig feces. Strong positive correlations were found among different ARGs or between ARGs and MGEs, indicated the risk of horizontal gene transfer of ARGs. Residual antibiotic and heavy metals significantly affect the abundance of ARGs. Feeding mode and the scales of the animal farms served little effect on the distribution of the pollutants (including residual antibiotics, heavy metals, MGEs and ARGs), which were significantly different among animal types. Use of antibiotics and heavy metals should be strictly regulated, especially in chicken and pig farms, in order to control contaminants and reduce potential risks to the environment.
Collapse
Affiliation(s)
- Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China; College of Environment and Ecology, Jiangsu Open University, Nanjing, Jiangsu 210017, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Hongyan Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Dan Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Hong Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China.
| | - Lidong Ji
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry, Yinchuan 750002, China.
| |
Collapse
|
24
|
Su H, Wu C, Han P, Liu Z, Liang M, Zhang Z, Wang Z, Guo G, He X, Pang J, Wang C, Weng S, He J. The microbiome and its association with antibiotic resistance genes in the hadal biosphere at the Yap Trench. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129543. [PMID: 35870206 DOI: 10.1016/j.jhazmat.2022.129543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses. Novel ARG subtypes mexFYTV-1, mexFYTV-2, mexFYTV-3, vanRYTV-1, vanSYTV-1 (carried by unclassified viruses), and bacAYTB-1 (carried by phylum Firmicutes) were detected in seawater samples. Overall, our findings imply that the hadal environment of the YT is a repository of viral and ARG diversity.
Collapse
Affiliation(s)
- Hualong Su
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Chengcheng Wu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Peiyun Han
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zixuan Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Mincong Liang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Zheng Zhang
- Baidu International Technology (Shenzhen), Shenzhen 518062, China
| | - Zhike Wang
- Hainan Guodun Information Development, Haikou 570206, China
| | - Guangyu Guo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Xinyi He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianhu Pang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China; State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
25
|
Xu C, Kong L, Gao H, Cheng X, Wang X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front Microbiol 2022; 13:822689. [PMID: 35633728 PMCID: PMC9133924 DOI: 10.3389/fmicb.2022.822689] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
The overuse of antibiotics in food animals has led to the development of bacterial resistance and the widespread of resistant bacteria in the world. Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in food animals are currently considered emerging contaminants, which are a serious threat to public health globally. The current situation of ARB and ARGs from food animal farms, manure, and the wastewater was firstly covered in this review. Potential risks to public health were also highlighted, as well as strategies (including novel technologies, alternatives, and administration) to fight against bacterial resistance. This review can provide an avenue for further research, development, and application of novel antibacterial agents to reduce the adverse effects of antibiotic resistance in food animal farms.
Collapse
Affiliation(s)
- Chunming Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Lingqiang Kong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hanfang Gao
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Pan Y, Zeng Z, Niu H, Huang L, Hu J, Li G, Li Y. Whole-genome epidemiology and characterisation of mcr-1-encoding Escherichia coli in aquatic bird farms from the Pearl River Delta, China, 2019-2020. Int J Antimicrob Agents 2021; 59:106478. [PMID: 34801677 DOI: 10.1016/j.ijantimicag.2021.106478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Due to their unique breeding pattern, aquatic bird farms are increasingly considered as hotspots in the development and spread of antimicrobial resistance. However, comprehensive studies addressing the whole-genomic features of colistin-resistant bacteria in aquatic bird farms are scarce. Over a 2-year period, we conducted surveillance to determine the whole-genome epidemiology and characterisation of mcr-1-positive Escherichia coli in aquatic bird farms in southeastern coastal China. A total of 100 mcr-1-producing isolates among 654 E. coli strains were recovered from 781 samples collected in 11 aquatic bird farms and 1 veterinary clinic in the Pearl River Delta area. Higher resistance phenotypes to 17 antibiotics were found in mcr-1-positive isolates compared with other isolates. Subsequently, 20 mcr-1-carrying isolates were sequenced to analyse the whole-genomic features. Molecular typing as well as antimicrobial resistance gene and virulence factor profiles of the isolates showed considerable diversity. Three types of genetic backbones of mcr-1 in the isolates were assembled and were identified in diverse broad-host-range plasmids and bacterial species. Pangenome analyses revealed a large genetic pool composed of the isolates. Furthermore, phylogenetic trees both of the isolates in this study and a global data set were built, indicating the spread of the three mcr-1 backbones and the mcr-1-positive isolates among different habitats, farms and even countries. This study highlights that aquatic bird farms may act as an important reservoir for mcr-1-producing E. coli, from which colistin resistance may be spread to diverse habitats, different geographical locations and even across bacterial species.
Collapse
Affiliation(s)
- Yu Pan
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Huijun Niu
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lang Huang
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jianxin Hu
- College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guihua Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yafei Li
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|