1
|
Ontita NC, Anaman R, Sarkodie EK, Wang Y, Bichi AH, Shanshan X, Nyangweso HN, Xu Y, Amanze C, El Houda Bouroubi N, Yin Z, Zeng W. Electrochemically active biofilms responses to gadolinium stress during wastewater treatment in bioelectrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137941. [PMID: 40107103 DOI: 10.1016/j.jhazmat.2025.137941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/15/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Gadolinium-based contrast agents used in magnetic resonance imaging (MRI) contribute to increasing gadolinium(III) [Gd(III)] concentrations in aquatic environments, as conventional wastewater treatment plants lack effective removal mechanisms. This study investigated the potential of single-chamber microbial fuel cells (SCMFCs) for Gd(III) removal, focusing on removal efficiency and the physiological responses of electrochemically active biofilms. SCMFCs demonstrated exceptional Gd(III) removal efficiency exceeding 99.75 ± 0.007 % across various initial concentrations (10-60 mg/L). Power output and chemical oxygen demand (COD) removal efficiency showed dose-dependent responses to Gd(III) stress, with maximum power output decreasing from 479.56 mV to 260.43 mV as Gd(III) increased from 0 to 60 mg/L. COD removal efficiency declined from 96.49 ± 1.2 % to 90.23 ± 1.6 % over the same range. Microbial community analysis revealed selective enrichment of exoelectrogens at lower Gd(III) concentrations, with Geobacter relative abundance decreasing from 11.14 % to 1.82 %. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) analyses demonstrated that elevated Gd(III) concentrations reduced electrochemically active bacterial colonization in anode biofilms. Fourier-transform infrared spectroscopy (FTIR) identified specific functional groups associated with Gd(III) biosorption, while predictive functional profiling indicated upregulation of metal resistance genes under Gd(III) exposure. These findings demonstrate the effectiveness of SCMFCs in Gd(III) removal from wastewater while elucidating microbial adaptation mechanisms to rare earth element exposure, providing insights for developing sustainable treatment solutions for emerging contaminants.
Collapse
Affiliation(s)
- Nyambane Clive Ontita
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Yanchu Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | | | - Xiao Shanshan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Hyline N Nyangweso
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yilin Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Nour El Houda Bouroubi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Zhuzhong Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Perchikov R, Cheliukanov M, Plekhanova Y, Tarasov S, Kharkova A, Butusov D, Arlyapov V, Nakamura H, Reshetilov A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. BIOSENSORS 2024; 14:302. [PMID: 38920606 PMCID: PMC11201457 DOI: 10.3390/bios14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial biofilms present one of the most widespread forms of life on Earth. The formation of microbial communities on various surfaces presents a major challenge in a variety of fields, including medicine, the food industry, shipping, etc. At the same time, this process can also be used for the benefit of humans-in bioremediation, wastewater treatment, and various biotechnological processes. The main direction of using electroactive microbial biofilms is their incorporation into the composition of biosensor and biofuel cells This review examines the fundamental knowledge acquired about the structure and formation of biofilms, the properties they have when used in bioelectrochemical devices, and the characteristics of the formation of these structures on different surfaces. Special attention is given to the potential of applying the latest advances in genetic engineering in order to improve the performance of microbial biofilm-based devices and to regulate the processes that take place within them. Finally, we highlight possible ways of dealing with the drawbacks of using biofilms in the creation of highly efficient biosensors and biofuel cells.
Collapse
Affiliation(s)
- Roman Perchikov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Maxim Cheliukanov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Yulia Plekhanova
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Sergei Tarasov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Anna Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Denis Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg 197022, Russia;
| | - Vyacheslav Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Tokyo, Japan;
| | - Anatoly Reshetilov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| |
Collapse
|
3
|
Zhang Y, Li D, Zhang L, Li J, Fu Q, Zhu X, Liao Q. Response of current distribution in a liter-scale microbial fuel cell to variable operating conditions. Bioelectrochemistry 2024; 156:108622. [PMID: 38070364 DOI: 10.1016/j.bioelechem.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 01/14/2024]
Abstract
Microbial fuel cells (MFCs) are an emerging technology in renewable energy and waste treatment and the scale-up is crucial for practical applications. Undoubtedly, the analysis and comprehension of MFC operation necessitate essential information regarding the response of the current distribution to variable operating conditions, which stands as one of its significant dynamic characteristics. In this study, the dynamic responses of current distribution to external stimuli (external load, temperature, pH, and electrolyte concentration) were investigated by employing a segmented anode current collector in a liter-scale MFC. The results demonstrated that, with respect to the anodic segment close to the cathode, a major response of the segment current to changes in load, temperature and pH was observed while minor response to changes in ion concentration. It was also found that external stimuli-induced high current usually led to a worse current distribution while increasing electrolyte ion concentration could simultaneously improve the maximal power generation and current distribution. In addition, the response time of segment current to input stimulus followed the pattern of temperature ˃ pH ˃ ion concentration ˃ external load. The results and implication of this study would be helpful in enhancing the operational stability of scale-up MFCs in future practical application.
Collapse
Affiliation(s)
- Yudong Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China; School of Energy and Power Engineering, North University of China, Taiyuan 030051, China
| | - Dong Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Liang Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China.
| | - Jun Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
4
|
Chu N, Jiang Y, Zhang L, Zeng RJ, Li D. Biocathode prepared at low anodic potentials achieved a higher response for water biotoxicity monitoring after polarity reversal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157553. [PMID: 35878860 DOI: 10.1016/j.scitotenv.2022.157553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Microbial electrochemical sensors equipped with biocathode sensing elements have attracted a growing interest, but their startup and recovery properties remain unclear. In this study, the approach of polarity reversal was applied for the biocathode sensing element fabrication and biosensor recovery. The stimulating/suppressing effect of formaldehyde was determined by the anode potential before polarity reversal as well as the increased trials of toxic exposure. Increasing anode potential from -0.3 V to +0.3 V before polarity reversal, the baseline electric signal was changed from -0.028 ± 0.001 mA to -0.005 ± 0.003 mA, while the maximum normalized electrical signal (NES) was increased from 1.1 ± 0.1 to 4.1 ± 1.9, and thus a general downtrend was observed for Response as a newly induced indicator. Polarity reversal failed to recover the electroactivity of these poisoned bioelectrodes. This study demonstrated that electrode potential was critical when using the approach of polarity reversal to construct the biocathode sensing element, and revealed an urgent need for strategies toward high recoverability of such biosensors.
Collapse
Affiliation(s)
- Na Chu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
5
|
Chen X, Li Y, Wu J, Li N, He W, Feng Y, Liu J. Heterogeneous Structure Regulated by Selection Pressure on Bacterial Adhesion Optimized the Viability Stratification Structure of Electroactive Biofilms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2754-2767. [PMID: 34982530 DOI: 10.1021/acsami.1c19767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the core of microbial fuel cells (MFCs), the components and structure of electroactive biofilms (EABs) are essential for MFC performance. Bacterial adhesion plays a vital role in shaping the structure of EABs, but the effect of bacterial adhesion under selection pressure on EABs has not been systematically studied. Here, the response of the composition, structure, and electrochemical performance of EABs to the selective adhesion pressure due to the selective coordination of Fe(III) and Co(II) with thiol and the different affinities for bacteria on hybrid electrodes (Fe1Co, Fe4Co, and Fe10Co) were comprehensively investigated. Compared with carbon cloth (CC), the appropriate selective adhesion pressure of Fe4Co activated the dead inner core of EABs and optimized their viability stratification structure. Both the total viability and the viability of the inner core layer in the Fe4Co EAB (0.67, 0.70 ± 0.01) were higher than those of the CC (0.46, 0.54 ± 0.01), Fe1Co (0.50, 0.48 ± 0.03), and Fe10Co (0.51, 0.51 ± 0.03). Moreover, a higher proportion of proteins was detected in the Fe4Co EAB, enhancing the redox activity of extracellular polymeric substances. Fe4Co enriched Geobacter and stimulated microbial metabolism. Electrochemical analysis revealed that the Fe4Co EAB was the most electroactive EAB, with a maximum power density of 2032.4 mW m-2, which was 1.7, 1.3, and 1.1 times that of the CC (1202.6 mW m-2), Fe1Co (1610.3 mW m-2), and Fe10Co (1824.4 mW m-2) EABs, respectively. Our findings confirmed that highly active EABs could be formed by imposing selection pressure on bacterial adhesion.
Collapse
Affiliation(s)
- Xuepeng Chen
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yunfei Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jingxuan Wu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
6
|
Chu N, Cai J, Li Z, Gao Y, Liang Q, Hao W, Liu P, Jiang Y, Zeng RJ. Indicators of water biotoxicity obtained from turn-off microbial electrochemical sensors. CHEMOSPHERE 2022; 286:131725. [PMID: 34352539 DOI: 10.1016/j.chemosphere.2021.131725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The development of biosensors is critical to reducing potential risks associated with contamination accidents. However, the application of microbial electrochemical sensors for water biotoxicity monitoring is hampered by the lack of an indicator with high response magnitudes. In this study, microbial electrochemical sensors were fabricated with interdigitated electrode arrays (IDAs), and indicators from various electrochemical analyses were comprehensively investigated. Only the peak of cyclic voltammetry (CV) was highly linearly correlated with the commonly used current indicator during the enrichment of the electroactive biofilm. The resistance fitted from the electrochemical impedance spectroscopy (EIS) data provided a comparable and even higher inhibition ratio (IR) than the current during toxicity assessments. The differential pulse voltammetry (DPV) did not exhibit a higher sensitivity than the CV peak. However, no clear response was observed in the real-time impedance analysis for use in water biotoxicity monitoring. Most of the microbes were in the propidium iodide (PI)-permeable state after the toxicity assessments, although the current was fully recovered. This study demonstrates the potential to use EIS data as indicators of water biotoxicity using microbial electrochemical sensors.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiayi Cai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Zhigang Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yu Gao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
7
|
Qi X, Wang S, Jiang Y, Liu P, Hao W, Han J, Zhou Y, Huang X, Liang P. Additional polypyrrole as conductive medium in artificial electrochemically active biofilm (EAB) to increase the sensitivity of EAB based biosensor in water quality early-warning. Biosens Bioelectron 2021; 190:113453. [PMID: 34174528 DOI: 10.1016/j.bios.2021.113453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022]
Abstract
Researchers believe that adding conductive mediums in electrochemically active biofilms (EABs) would improve the sensitivity of EAB-based biosensor for real-time water quality early-warning through facilitating the extracellular electron transfer (EET), which has been hardly evidenced mostly because naturally formed EABs employed in previous biosensor studies were recognized distinct and incapable of delivering comparable electrical signals. By preparing artificial EABs where Shewanella oneidensis MR-1 was encapsulated in sodium alginate (SA), this study solved how polypyrrole (PPy) as conductive medium would affect the sensitivity of EAB-based biosensor, as well as mass transfer of toxicant during this process. Different mass ratios (0.125:1, 0.25:1 and 1:1) of PPy over SA were tested, and the sensitivity promoted by 20%, 15% and 6%, respectively. Results indicated that a small amount of PPy addition (PPy: SA = 0.125: 1 in mass ratio) was more effective to increase the biosensor's sensitivity compared to larger amount of PPy employed in EAB. This was when improved conductivity introduced by PPy would dominate in affecting the sensitivity over contrarily weakened mass transfer in the meantime.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Shuyi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wen Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Jinbin Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yuexi Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|