1
|
Sinha S, Ahmad R, Chowdhury K, Islam S, Mehta M, Haque M. Childhood Obesity: A Narrative Review. Cureus 2025; 17:e82233. [PMID: 40231296 PMCID: PMC11995813 DOI: 10.7759/cureus.82233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025] Open
Abstract
Obesity among children has emerged as a worldwide health issue due to childhood obesity becoming a pandemic, and it is often linked to various illnesses, fatal outcomes, and disability in adulthood. Obesity has become an epidemic issue in both developed and developing countries, particularly among youngsters. The most common factors contributing to non-communicable diseases (NCDs) are unhealthy eating habits, desk-bound games, avoidance of physical activity-requiring activities, smoking, alcohol usage, and other added items. All these factors increase NCDs, including obesity, resulting in various morbidities and early death. Additionally, childhood obesity has psychological, emotional, cognitive, societal, and communicative effects. For example, it raises the possibility of issues related to physical appearance, self-esteem, confidence level, feelings of isolation, social disengagement, stigma, depression, and a sense of inequality. Children who consume more energy-dense, high-fat, low-fiber-containing food than they need usually store the excess as body fat. Standardizing indicators and terminology for obesity-related metrics is critical for better understanding the comparability of obesity prevalence and program effectiveness within and between countries. The underlying variables must be altered to reduce or avoid harm to the target organ in children. As a result, reducing childhood obesity is a considerable public health goal for the benefit of society and the long-term well-being of individuals.
Collapse
Affiliation(s)
- Susmita Sinha
- Physiology, Enam Medical College and Hospital, Dhaka, BGD
| | - Rahnuma Ahmad
- Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Kona Chowdhury
- Pediatrics, Enam Medical College and Hospital, Dhaka, BGD
| | - Shamima Islam
- Forensic Medicine, Enam Medical College and Hospital, Dhaka, BGD
| | - Miral Mehta
- Pedodontics and Preventive Dentistry, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
2
|
Duan X, Liang M, Wei B, Gu J, Zhao Q, Ji G, Jin S, Chen H. Internal Bisphenol Analogue Exposure in an Elderly Chinese Population: Knowledge from Dietary Exposure. TOXICS 2025; 13:259. [PMID: 40278575 PMCID: PMC12031501 DOI: 10.3390/toxics13040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025]
Abstract
Due to its endocrine-disrupting effects and neurotoxicity, Bisphenol A (BPA) has been banned from some products and some countries; therefore, alternatives are increasingly being used. Studies have been performed to evaluate internal Bisphenol analogue (BP) exposure in children, adolescents and adults; however, little information on elderly age groups is available. In this study, a cohort of 161 senior residents aged 60-70 years, from a coastal residential district in Jiangsu Province of China, was selected, and blood samples were collected from these individuals to evaluate internal BP exposure. The serum concentrations of eleven BPs (BPA, BPB, BPC, BPE, BPF, BPS, BPZ, BPP, BPAF, BPAP and TBBPA) were quantitatively determined by HPLC-MS/MS. In parallel, demographic and dietary surveys were conducted, and the potential association between BP levels and dietary habits was analyzed. Noteworthily, the detection rate of 10 BPs in serum samples exceeded 78%. Of all the BPs, BPA displayed the highest level, followed by BPAF, BPB, and BPS. Interestingly, the levels of most types of BPs in males were higher than those in females, and individuals above 65 years of age exhibited significantly higher BPA levels. Dietary analysis indicated a significant correlation between meat consumption and BP levels, implying that this is an important source of BP exposure. The current study uncovers previously unknown aspects of BPs exposure, characterized by high internal BP levels in the elderly, and risk factors such as gender and meat consumption. This offers valuable insights for preventing region-specific BP exposure in the elderly.
Collapse
Affiliation(s)
- Xinjie Duan
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing 210029, China; (X.D.); (B.W.)
| | - Mengyuan Liang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, No. 8, Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China; (M.L.); (J.G.); (G.J.)
| | - Beibei Wei
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing 210029, China; (X.D.); (B.W.)
- Department of Endocrinology, Nanjing Lishui People’s Hospital, No. 86, Chongwen Road, Lishui District, Nanjing 211200, China
| | - Jie Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, No. 8, Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China; (M.L.); (J.G.); (G.J.)
| | - Qian Zhao
- Department of Endocrinology, Nanjing Liuhe District People’s Hospital, No. 28, Yanan Road, Liuhe District, Nanjing 211500, China;
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, No. 8, Jiangwangmiao Street, Xuanwu District, Nanjing 210042, China; (M.L.); (J.G.); (G.J.)
| | - Shengyang Jin
- Development Area Branch of Lianyungang Municipal Bureau of Ecology and Environment, No. 601, Huaguoshan Road, Lianyungang Economic & Technological Development Area, Lianyungang 222069, China
| | - Huanhuan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing 210029, China; (X.D.); (B.W.)
| |
Collapse
|
3
|
Liang KH, Colombijn JMT, Verhaar MC, Ghannoum M, Timmermans EJ, Vernooij RWM. The general external exposome and the development or progression of chronic kidney disease: A systematic review and meta-analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124509. [PMID: 38968981 DOI: 10.1016/j.envpol.2024.124509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The impact of environmental risk factors on chronic kidney disease (CKD) remains unclear. This systematic review aims to provide an overview of the literature on the association between the general external exposome and CKD development or progression. We searched MEDLINE and EMBASE for case-control or cohort studies, that investigated the association of the general external exposome with a change in eGFR or albuminuria, diagnosis or progression of CKD, or CKD-related mortality. The risk of bias of included studies was assessed using the Newcastle-Ottawa Scale. Summary effect estimates were calculated using random-effects meta-analyses. Most of the 66 included studies focused on air pollution (n = 33), e.g. particulate matter (PM) and nitric oxides (NOx), and heavy metals (n = 21) e.g. lead and cadmium. Few studies investigated chemicals (n = 7) or built environmental factors (n = 5). No articles on other environment factors such as noise, food supply, or urbanization were found. PM2.5 exposure was associated with an increased CKD and end-stage kidney disease incidence, but not with CKD-related mortality. There was mixed evidence regarding the association of NO2 and PM10 on CKD incidence. Exposure to heavy metals might be associated with an increased risk of adverse kidney outcomes, however, evidence was inconsistent. Studies on effects of chemicals or built environment on kidney outcomes were inconclusive. In conclusion, prolonged exposure to PM2.5 is associated with an increased risk of CKD incidence and progression to kidney failure. Current studies predominantly investigate the exposure to air pollution and heavy metals, whereas chemicals and the built environment remains understudied. Substantial heterogeneity and mixed evidence were found across studies. Therefore, long-term high-quality studies are needed to elucidate the impact of exposure to chemicals or other (built) environmental factors and CKD.
Collapse
Affiliation(s)
- Kate H Liang
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Julia M T Colombijn
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc Ghannoum
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; National Poison Information Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik J Timmermans
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Robin W M Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Sattar S, Nadeem A, Shehzad W, Ur Rehman H, Javed M. A biochemical and histological evaluation of in vivo exposure of bisphenol P for multi-organ toxicity and pathology in rats. Toxicol Ind Health 2024; 40:194-205. [PMID: 38346931 DOI: 10.1177/07482337241233312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
Bisphenol P (BPP) is a structural analog of bisphenol A (BPA) and is increasingly used as a substitute of BPA in commercial and household applications. In recent years, BPP has been frequently detected in terrestrial and aquatic ecosystems. Very little epidemiological and experimental information are available on the toxicity potential of BPP in human and animal systems, which is very concerning in view of its increasing use. The current study evaluated the biochemical and histopathological effects of BPP in rats. The seven experimental groups (n = 5 rats/group) included BPA5 (5 mg), BPA50 (50 mg), BPA100 (100 mg), BPP5 (5 mg), BPP50 (50 mg), and BPP100 (100 mg) while the remaining one group served as untreated control. At the end of treatment, the organs (liver, kidney, heart, and lung) of rats were harvested for oxidative stress and histopathological analyses. A significant (p < .05) decrease was observed in the weight of the liver, lungs, and kidneys in the BPP100 group similar to the BPA100 group compared with the control group. Further, a significant (p < .05) decrease was also observed for concentrations of antioxidant enzymes (catalase, peroxidase, superoxide dismutase, and glutathione peroxidase) in the liver, lungs, kidneys, and heart at the highest two doses of BPP similar to the respective BPA groups compared with the control group. The two highest doses of BPP induced histopathological changes in the liver such as nuclei distortion, excessive necrosis of hepatocytes, nuclei shrinkage and pyknosis of cells with disrupted cell structure (BPP100), and cellular congestion and degeneration of hepatocytes (BPP50) similar to the two respective doses of BPA. The BPP treated groups also showed varying histopathological changes in kidney tissue, heart tissue, and lung tissue similar to BPA treated rats. In conclusion, the present study indicated that BPP has the potential to induce oxidative stress and alter the histomorphological architecture of different organs and is as deleterious as BPA.
Collapse
Affiliation(s)
- Saadia Sattar
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asif Nadeem
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
- Department of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habib Ur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Maryam Javed
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
5
|
Wu J, Zhou T, Shen H, Jiang Y, Yang Q, Su S, Wu L, Fan X, Gao M, Wu Y, Cheng Y, Qi Y, Lei T, Xin Y, Han S, Li X, Wang Y. Mixed probiotics modulated gut microbiota to improve spermatogenesis in bisphenol A-exposed male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115922. [PMID: 38171106 DOI: 10.1016/j.ecoenv.2023.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Bisphenol A (BPA), an environmental endocrine disruptor (EDC), has been implicated in impairing intestinal and male reproductive dysfunction. The efficacy of gut microbiota modulation for BPA-exposed testicular dysfunction has yet to be verified through research. Therefore, this study explored the potential of mixed probiotics in restoring spermatogenesis damage through the gut-testis axis under BPA exposure. We selected two probiotics strains (Lactobacillus rhamnosus and Lactobacillus plantarum) with BPA removal properties in vitro and the BPA-exposed male mice model was established. The probiotics mixture effectively reduced BPA residue in the gut, serum, and testis in mice. Through 16 S rDNA-seq and metabolomics sequencing, we uncovered that vitamin D metabolism and bile acid levels in the gut was abolished under BPA exposure. This perturbation was linked to an increased abundance of Faecalibaculum and decreased abundance of Lachnospiraceae_NK4A136_group and Ligilactobacillus. The probiotics mixture restored this balance, enhancing intestinal barrier function and reducing oxidative stress. This improvement was accompanied by a restored balance of short-chain fatty acids (SCFAs). Remarkably, the probiotics ameliorated testicular dysfunction by repairing structures of seminiferous tubules and reversing arrested spermiogenesis. Further, the probiotics mixture enhanced testosterone-driven increases in spermatogonial stem cells and all stages of sperm cells. Testicular transcriptome profiling linked these improvements to fatty acid degradation and peroxisome pathways. These findings suggest a significant interplay between spermatogenesis and gut microbiota, demonstrating that probiotic intake could be a viable strategy for combating male subfertility issues caused by BPA exposure.
Collapse
Affiliation(s)
- Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haofei Shen
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Yanbiao Jiang
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Qi Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shaochen Su
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Luming Wu
- Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Gansu Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China
| | - Xue Fan
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Min Gao
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yang Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yun Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yuan Qi
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Ting Lei
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China
| | - Yongan Xin
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, China; Gansu International Scientific and Technological Cooperation Base of Reproductive Medicine Transformation Application, Gansu Key Laboratory of Reproductive Medicine and Embryo, Lanzhou, China.
| |
Collapse
|
6
|
Gonkowski S, Tzatzarakis M, Vakonaki E, Meschini E, Rytel L. Exposure assessment to bisphenol A (BPA) and its analogues bisphenol S (BPS) and bisphenol F (BPF) in wild boars by hair analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167076. [PMID: 37714361 DOI: 10.1016/j.scitotenv.2023.167076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Bisphenols are widely used in various branches of industry for the production of plastics. They penetrate to the natural environment and thus living organisms. As endocrine disruptors, bisphenols have adverse effects on various internal organs and systems. Contrary to humans, the knowledge of the exposure of wild terrestrial mammals to bisphenols is extremely limited. Therefore, this study for the first time assessed the exposure level of wild boars to three bisphenols commonly used in industry (i.e. bisphenol A - BPA, bisphenol S - BPS and bisphenol F - BPF) using hair sample analysis in liquid chromatography-mass spectrometry (LC-MS). The presence of BPA and/or BPS has been noted in the samples collected from >80 % of animals included in the study (n = 54), while the presence of BPF was not found in any sample. At least one of the bisphenols was present in every sample tested. Mean concentrations of BPA and BPS in the hair of wild boars were 151.40 ± 135.10 pg/mg dry weight (dw.) and 29.40 ± 36.97 pg./mg dw, respectively. Concentrations of BPA and BPS in females were statistically higher than in males (p < 0.05). Moreover, statistically significantly higher concentration levels of BPA (and not BPS) in the areas with higher degree of industrialization and higher human population density were also found. This is the first study concerning the use of hair samples to assess the exposure of wild terrestrial mammals to bisphenols. The obtained results show that an analysis of the hair may be a useful tool of biomonitoring bisphenols in wild animals. The presence of BPA and BPS in wild boar hair in relatively high concentration also suggests that these substances may have an influence on the health status not only in humans and aquatic animals, but also in wild terrestrial mammals. However, many aspects connected with this issue are not clear and require further study.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Elena Meschini
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 14, 10-718 Olsztyn, Poland.
| |
Collapse
|
7
|
Kang JH, Asai D, Toita R. Bisphenol A (BPA) and Cardiovascular or Cardiometabolic Diseases. J Xenobiot 2023; 13:775-810. [PMID: 38132710 PMCID: PMC10745077 DOI: 10.3390/jox13040049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Bisphenol A (BPA; 4,4'-isopropylidenediphenol) is a well-known endocrine disruptor. Most human exposure to BPA occurs through the consumption of BPA-contaminated foods. Cardiovascular or cardiometabolic diseases such as diabetes, obesity, hypertension, acute kidney disease, chronic kidney disease, and heart failure are the leading causes of death worldwide. Positive associations have been reported between blood or urinary BPA levels and cardiovascular or cardiometabolic diseases. BPA also induces disorders or dysfunctions in the tissues associated with these diseases through various cell signaling pathways. This review highlights the literature elucidating the relationship between BPA and various cardiovascular or cardiometabolic diseases and the potential mechanisms underlying BPA-mediated disorders or dysfunctions in tissues such as blood vessels, skeletal muscle, adipose tissue, liver, pancreas, kidney, and heart that are associated with these diseases.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Osaka 564-8565, Japan
| | - Daisuke Asai
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Tokyo 194-8543, Japan;
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Osaka 563-8577, Japan;
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Jiang W, Ding K, Huang W, Xu F, Lei M, Yue R. Potential effects of bisphenol A on diabetes mellitus and its chronic complications: A narrative review. Heliyon 2023; 9:e16340. [PMID: 37251906 PMCID: PMC10213369 DOI: 10.1016/j.heliyon.2023.e16340] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease caused by multiple factors such as genetics, environment, and lifestyle. Bisphenol A (BPA), as one of the most common endocrine-disrupting chemicals (EDCs), has been strongly implicated in the development of type 2 diabetes mellitus (T2DM). BPA exposure is associated with target organ damage in DM and may exacerbate the progression of some chronic complications of DM. This paper reviews relevant epidemiological, in vivo, and in vitro studies to better understand BPA's potential risk associations and pathological mechanisms in several chronic diabetic complications.
Collapse
Affiliation(s)
- Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenjie Huang
- Chengdu University of Technology, College of Ecology and Environment, Chengdu, 610075, China
| | - Feng Xu
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| |
Collapse
|
9
|
Xu C, Zhang Q, Huang G, Huang J, Zhang H. The impact of PM2.5 on kidney. J Appl Toxicol 2023; 43:107-121. [PMID: 35671242 DOI: 10.1002/jat.4356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 01/09/2023]
Abstract
PM2.5 poses a severe risk to kidneys, inducing kidney function decline, increasing the risk of suffering from chronic kidney diseases and promoting the occurrence and development of various renal tumors. The mechanism of PM2.5-induced renal injury may involve oxidative stress, inflammatory response, and cytotoxicity. This paper elaborated PM2.5-induced kidney damage and the corresponding possible mechanism so as to raise awareness of air pollution and reduce the damage to human body.
Collapse
Affiliation(s)
- Chunming Xu
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China
| | - Qian Zhang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Guochen Huang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Jia Huang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China.,Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Hongxia Zhang
- Department of Clinical Pathology, Weifang Medical University, Weifang, Shandong, China.,Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Weifang Medical University, Weifang, Shandong, China.,Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
10
|
Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. TOXICS 2022; 11:32. [PMID: 36668758 PMCID: PMC9863798 DOI: 10.3390/toxics11010032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies. In this review, we discuss renal accumulation of select EDCs such as dioxins, per- and polyfluoroalkyl substances (PFAS), bisphenol A (BPA), and phthalates, and delineate how exposures to such EDCs cause renal lesions and diseases, including cancer. The regulation of typical EDCs with specific target genes and the activation of related pathways are summarized.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Cheng X, Wei Y, Zhang Z, Wang F, He J, Wang R, Xu Y, Keerman M, Zhang S, Zhang Y, Bi J, Yao J, He M. Plasma PFOA and PFOS Levels, DNA Methylation, and Blood Lipid Levels: A Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17039-17051. [PMID: 36374530 DOI: 10.1021/acs.est.2c04107] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) is associated with blood lipids in adults, but the underlying mechanisms remain unclear. This pilot study aimed to investigate the associations between PFOA or PFOS and epigenome-wide DNA methylation and assess the mediating effect of DNA methylation on the PFOA/PFOS-blood lipid association. We measured plasma PFOA/PFOS and leukocyte DNA methylation in 98 patients enrolled from the hospital between October 2018 and August 2019. The median plasma PFOA/PFOS levels were 0.85 and 2.29 ng/mL. Plasma PFOA and PFOS levels were significantly associated with elevated total cholesterol (TC) and low-density lipoprotein cholesterol (LDL) levels. There were 63/87 CpG positions and 8/11 differentially methylated regions (DMRs) associated with plasma PFOA/PFOS levels, respectively. In addition, 5 CpG positions (annotated to AFF3, CREB5, NRG2, USF2, and intergenic region) and one DMR annotated to IRF6 may mediate the association between plasma PFOA/PFOS and LDL levels (mediated proportion from 7.29 to 46.77%); two CpG positions may mediate the association between plasma PFOA/PFOS and TC levels (annotated to CREB5 and USF2, mediated proportion is around 30%). The data suggest that PFOA/PFOS exposure alters DNA methylation. More importantly, the association of PFOA/PFOS with lipid indicators was partly mediated by DNA methylation changes in lipid metabolism-related genes.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yue Wei
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yali Xu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Mulatibieke Keerman
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jiao Bi
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| |
Collapse
|
12
|
Zhang Z, Wang F, Zhang Y, Yao J, Bi J, He J, Zhang S, Wei Y, Guo H, Zhang X, He M. Associations of serum PFOA and PFOS levels with incident hypertension risk and change of blood pressure levels. ENVIRONMENTAL RESEARCH 2022; 212:113293. [PMID: 35427595 DOI: 10.1016/j.envres.2022.113293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Evidence on the associations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with hypertension or blood pressure (BP) levels was limited and inconsistent. The present prospective study aims to evaluate the longitudinal associations of serum levels of PFOA and PFOS with incident hypertension risk and change of blood pressure levels. At baseline 1080 participants (mean age 62 years, 58.9% females) free of hypertension, cardiovascular disease, diabetes, and cancer were followed up for nearly 5 years. Baseline serum levels of PFOA and PFOS were measured with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS). Hypertension was defined as any of (1) self-reported physician-diagnosed hypertension (2) use of hypotension drugs (3) measured systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg. Change of BP was evaluated as a difference between twice measurements (BP at follow-up visit-BP at baseline). After adjustment for multiple covariates, serum PFOS levels were negatively correlated with risk of hypertension [RR per lg-unit = 0.94 (95% CI: 0.88, 0.99)] and change of systolic BP [β = -1.48 (95% CI: -2.56, -0.41)]. The highest vs lowest quartiles of PFOS concentration was negatively associated with hypertension risk. Compared with Q1, the RRs (95% CIs) for Q2, Q3, and Q4 were 0.83 (0.67-0.98), 0.81 (0.67-0.97), and 0.81(0.67-0.97), respectively (p for trend = 0.016). The negative associations remained in females but not in males (p for interaction = 0.44). No significant association of PFOA with hypertension risk was observed. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Zefang Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Fei Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Ying Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jiao Bi
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jia He
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Department of Public Health, Shihezi University School of Medicine, Shihezi, 832000, Xinjiang, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yue Wei
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
13
|
Wang F, Zhang Y, Zhang S, Han X, Wei Y, Guo H, Zhang X, Yang H, Wu T, He M. Combined effects of bisphenol A and diabetes genetic risk score on incident type 2 diabetes: A nested case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119581. [PMID: 35680067 DOI: 10.1016/j.envpol.2022.119581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Observational studies reported inconsistent results on the association between bisphenol A (BPA) and type 2 diabetes (T2D) risk. Whether genetic factors modified the association remains unclear. The present nested case-control study prospectively investigated the association of BPA with T2D risk, and the interaction and combined effects of diabetes genetic risk score (GRS) and serum BPA on T2D risk. Based on the Dongfeng-Tongji cohort study, 995 incident diabetes cases and 1:1 age- and gender-matched controls were included. T2D was diagnosed based on the American Diabetes Association criteria. Serum BPA concentration was measured at baseline. Diabetes GRS was constructed by 88 diabetes-related SNPs selected from large-scale GWASs. A U-shaped association was observed between serum BPA levels and T2D risk, with the lowest odds of T2D at the serum BPA levels of 1.00 ng/mL (P = 0.001 for nonlinearity). Compared with the middle group, the multivariate-adjusted ORs of T2D in the lowest group and the highest group of serum BPA were 1.52 (95% CI: 1.04, 2.22) and 1.40 (95% CI: 1.08, 1.81), respectively. Both serum BPA levels (β = 0.107, P = 0.001) and weighted-GRS (w-GRS) (β = 0.072, P = 0.02) were significantly associated with baseline FPG levels. Participants with both highest w-GRS and serum BPA levels had highest risk of T2D (OR = 2.53, 95%CI: 1.49, 4.31, P = 0.001) and higher baseline FPG levels (β = 0.218, P = 0.01), compared with those with both lowest w-GRS and serum BPA levels. Non modified effects of serum BPA levels and w-GRS on T2D, baseline FPG levels, and 5-y changes of FPG levels were detected (All Pinteraction > 0.05). Our results suggested a U-shaped association between serum BPA levels and T2D risk. Participants with higher serum BPA levels and diabetes genetic risk had higher FPG levels and higher risk of T2D.
Collapse
Affiliation(s)
- Fei Wang
- Department of Occupational and Environmental Health and Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Ying Zhang
- Department of Occupational and Environmental Health and Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xu Han
- Department of Occupational and Environmental Health and Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yue Wei
- Department of Occupational and Environmental Health and Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Huan Guo
- Department of Occupational and Environmental Health and Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, Hubei, 442008, PR China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Meian He
- Department of Occupational and Environmental Health and Key Laboratory of Environmental and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
14
|
Li Z, Zhang Y, Wang F, Wang R, Zhang S, Zhang Z, Li P, Yao J, Bi J, He J, Keerman M, Guo H, Zhang X, He M. Associations between serum PFOA and PFOS levels and incident chronic kidney disease risk in patients with type 2 diabetes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113060. [PMID: 34890990 DOI: 10.1016/j.ecoenv.2021.113060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 05/26/2023]
Abstract
Chronic kidney disease (CKD) is a common comorbidity among patients with type 2 diabetes. Exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) has been linked to poorer kidney function in general population, but the related studies in individuals with diabetes were very limited. We aimed to examine the longitudinal associations of PFOA and PFOS exposure and CKD incidence among diabetes patients. Baseline levels of PFOA and PFOS were measured in serum in 967 diabetes patients from the Dongfeng-Tongji cohort. Multivariable logistic regression models were used to characterize the relationship between serum PFOA and PFOS levels and incident CKD risk (defined as estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2). During 10-years follow-up, 267 incident CKD cases were identified. Only PFOS level was significantly associated with lower risk of CKD incidence (adjusted OR: 0.67; 95%CI: 0.51, 0.88). Such inverse association was only observed among participants with lower eGFR levels (< 70 mL/min/1.73 m2), although the interaction did not achieve statistical significance. Notably, an inverted U-shaped relationship between eGFR and serum PFOS level (Pfor nonlinearity < 0.001) was observed based on the 1825 subjects with available data at baseline. PFOS exposure was negatively associated with CKD incidence in patients with diabetes, especially in those with baseline eGFR levels < 70 mL/min/1.73 m2. This may be explained by the implication of baseline kidney function on the serum PFAS concentrations which in turn affect the relationship between PFOS exposure and the incident CKD risk among diabetes.
Collapse
Affiliation(s)
- Zhaoyang Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruixin Wang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zefang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinqiu Yao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiao Bi
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mulatibieke Keerman
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
15
|
Strategies to Protect Dialysis Patients against Bisphenol A. Biomolecules 2021; 11:biom11091375. [PMID: 34572587 PMCID: PMC8471555 DOI: 10.3390/biom11091375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
Bisphenol A (BPA), also known as 2,2,-bis(4-hydroxyphenyl) propane, is a common component of plastics worldwide. However, it has been shown to act as an endocrine disruptor with some hormonal functions. Furthermore, high levels of BPA have been related to the development of cardiovascular events and the activation of carcinogenesis pathways. Patients with chronic kidney disease (CKD) have higher serum concentrations of BPA due to their impaired renal function. This situation is aggravated in CKD patients requiring dialysis, because the BPA content of dialysis devices (such as, for example, the filters) is added to the lack of excretion. In addition to the development of BPA-free dialysis filters, some techniques can contribute to the reduction of BPA levels in these patients. The aim of this review is to illustrate the impact of BPA on dialysis patients and suggest some strategies to reduce its inherent risks.
Collapse
|
16
|
Moreno-Gómez-Toledano R, Arenas MI, Vélez-Vélez E, Coll E, Quiroga B, Bover J, Bosch RJ. Bisphenol a Exposure and Kidney Diseases: Systematic Review, Meta-Analysis, and NHANES 03-16 Study. Biomolecules 2021; 11:1046. [PMID: 34356670 PMCID: PMC8301850 DOI: 10.3390/biom11071046] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Bisphenol A (BPA) is a compound that is especially widespread in most commonly used objects due to its multiple uses in the plastic industry. However, several data support the need to restrict its use. In recent years, new implications of BPA on the renal system have been discovered, which denotes the need to expand studies in patients. To this end, a systematic review and a meta-analysis was performed to explore existing literature that examines the BPA-kidney disease paradigm and to determine what and how future studies will need to be carried out. Our systematic review revealed that only few relevant publications have focused on the problem. However, the subsequent meta-analysis revealed that high blood concentrations of BPA could be a factor in developing kidney disease, at least in people with previous pathologies such as diabetes or hypertension. Furthermore, BPA could also represent a risk factor in healthy people whose urinary excretion is higher. Finally, the data analyzed from the NHANES 03-16 cohort provided new evidence on the possible involvement of BPA in kidney disease. Therefore, our results underline the need to carry out a thorough and methodologically homogeneous study, delving into the relationship between urinary and blood BPA, glomerular filtration rate, and urine albumin-to-creatinine ratio, preferably in population groups at risk, and subsequently in the general population, to solve this relevant conundrum with critical potential implications in Public Health.
Collapse
Affiliation(s)
- Rafael Moreno-Gómez-Toledano
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, 28871 Alcalá de Henares, Spain;
| | - María I. Arenas
- Universidad de Alcalá, Department of Biomedicine and Biotechnology, 28871 Alcalá de Henares, Spain;
| | - Esperanza Vélez-Vélez
- Fundación Jiménez Díaz School of Nursing, Jiménez Díaz Foundation, Autonomous University of Madrid, 28040 Madrid, Spain;
| | - Elisabeth Coll
- Nephrology Service, Fundació Puigvert, 08025 Barcelona, Spain;
| | - Borja Quiroga
- Nephrology Service, La Princesa Universitary Hospital, 28806 Madrid, Spain;
| | - Jordi Bover
- Nephrology Service, Germans Trias i Pujol Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Ricardo J. Bosch
- Universidad de Alcalá, Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology, 28871 Alcalá de Henares, Spain;
| |
Collapse
|