1
|
Deng K, Yang R, Zhang S, Fang F, Huo Y, Yan P, Chen Y, Guo J. Extracellular polymeric substances enhanced photosynthesis over respiration in Microcystis aeruginosa. HARMFUL ALGAE 2025; 145:102843. [PMID: 40324853 DOI: 10.1016/j.hal.2025.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/09/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025]
Abstract
Extracellular polymeric substances (EPS) play a critical role in Microcystis-dominated freshwater cyanobacterial blooms. However, the mechanisms through which EPS affects Microcystis photosynthesis, respiration, and further affects its growth are not understood completely. To address this, we investigated the effects of varying EPS concentrations on the physiological processes of Microcystis aeruginosa. The results demonstrated that increasing EPS concentrations significantly enhanced both cell density and energy fixation efficiency, accompanied by a reduction in CO2 emission flux. Specifically, compared with the control group, the addition of 20 mg·L-¹ EPS increased respiratory rates by 2.14 μmol·mg·h-¹ and photosynthetic rates by 2.48 μmol·mg·h-¹, suggesting that EPS stimulated both respiration and photosynthesis, with a more pronounced effect on photosynthesis, thereby leading to a substantial increase in algal growth. Further analysis indicated that EPS enhanced respiration by retaining hydrolases capable of breaking down macromolecules into bioavailable micromolecular substrates, which elevated acetyl-CoA concentrations and citrate synthase activity, thus improving respiratory efficiency. In terms of photosynthesis, EPS enhanced light utilization, as indicated by an increase in FV/FM, and improved the efficiency of inorganic carbon supply by enriching CO2 and creating extracellular inorganic carbon gradients. Moreover, EPS enhanced the activities of carbonic anhydrase and ribulose bisphosphate carboxylase/oxygenase. These findings emphasize the essential role of EPS in promoting algal growth and its potential impact on CO2 fixation. Future research should incorporate the role of EPS in reducing carbon limitation into discussions of algal growth mechanisms and develop technologies that use algal blooms to harvest high-value carbon products such as ethanol, astaxanthin, lipids, and other valuable compounds.
Collapse
Affiliation(s)
- Kaikai Deng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Rui Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Shirong Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanchen Huo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Youpeng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
2
|
Bensalem M, Amrani A, Zaidi H, Sedrati F, Laouar O, Wang Z, Nasri H. Impact of long-term cyanotoxin exposure on cattle: Biochemical, histological, and oxidative stress assessment. Vet World 2025; 18:189-201. [PMID: 40041503 PMCID: PMC11873389 DOI: 10.14202/vetworld.2025.189-201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/24/2024] [Indexed: 03/06/2025] Open
Abstract
Background and Aim Cyanobacterial blooms, driven by anthropogenic and climatic changes, pose significant ecological and health threats. This study investigates the long-term effects of microcystins (MCs), potent cyanotoxins, on cattle at Lake des Oiseaux, a Ramsar-listed wetland in Algeria. Aligning with the "One Health" framework, the research evaluates the biochemical, histological, and oxidative stress impacts of MCs on livestock as environmental sentinels. Materials and Methods A herd of 40 cattle (20 exposed and 20 non-exposed) was studied during the summer bloom period of 2019. Blood and liver samples were analyzed to assess biochemical markers (ALT, AST, ALP, GGT, etc.), histopathological changes, and oxidative stress parameters (GPx, CAT, SOD, LPO and GSH). Results Exposed cattle exhibited significant elevations in liver enzymes and oxidative stress markers, indicating hepatic inflammation and redox imbalance. Histological analysis revealed macrovacuolar steatosis, fibrosis, and bile duct dilatation. Antioxidant enzyme activities (GPx, CAT and SOD) were reduced, with notable depletion of GSH levels and increased lipid peroxidation. These findings reflect the cumulative cytotoxic effects of MC exposure. Non-exposed cattle showed no such changes. Conclusion Long-term MC exposure disrupts liver function and induces oxidative stress in cattle, implicating significant risks for both animal and human health. The bioaccumulation of cyanotoxins in livestock emphasizes the urgent need for preventive measures, including water monitoring, restricted livestock access to contaminated sites, and farmer education. These strategies are vital to mitigate risks under the "One Health" approach, ensuring sustainable livestock and public health.
Collapse
Affiliation(s)
- Mounira Bensalem
- Laboratory of Biodiversity and Ecosystems Pollution, University of Chadli Bendjedid, El Tarf, Algeria
- Department of Life and Nature Sciences, Sciences Faculty, University 20 Août 1955 Skikda, Algeria
| | - Amina Amrani
- Laboratory of Biodiversity and Ecosystems Pollution, University of Chadli Bendjedid, El Tarf, Algeria
- Department of Research Project Monitoring, Thematic Agency for Research in Health Sciences, Oran, Algeria
| | - Hadjer Zaidi
- Laboratory of Biodiversity and Ecosystems Pollution, University of Chadli Bendjedid, El Tarf, Algeria
| | - Fateh Sedrati
- Laboratory of Sciences and Technology of Water and Environment, Mohamed Cherif Messaadia University, Souk Ahras
| | - Omar Laouar
- Laboratory of Biodiversity and Ecosystems Pollution, University of Chadli Bendjedid, El Tarf, Algeria
- Central Pathology Laboratory, Mutaeb Hospital, Sakaka, Al Jouf, Kingdom of Saudi Arabia
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
| | - Hichem Nasri
- Laboratory of Biodiversity and Ecosystems Pollution, University of Chadli Bendjedid, El Tarf, Algeria
- Department of Research Project Monitoring, Thematic Agency for Research in Health Sciences, Oran, Algeria
| |
Collapse
|
3
|
Kang M, Jeong S, Ko SR, Kim MS, Ahn CY. Biotechnological approaches for suppressing Microcystis blooms: insights and challenges. Appl Microbiol Biotechnol 2024; 108:466. [PMID: 39283515 PMCID: PMC11405451 DOI: 10.1007/s00253-024-13260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 09/22/2024]
Abstract
Cyanobacterial harmful algal blooms, particularly those dominated by Microcystis, pose significant ecological and health risks worldwide. This review provides an overview of the latest advances in biotechnological approaches for mitigating Microcystis blooms, focusing on cyanobactericidal bacteria, fungi, eukaryotic microalgae, zooplankton, aquatic plants, and cyanophages. Recently, promising results have been obtained using cyanobactericidal bacteria: not through the inoculation of cultured bacteria, but rather by nurturing those already present in the periphyton or biofilms of aquatic plants. Fungi and eukaryotic microalgae also exhibit algicidal properties; however, their practical applications still face challenges. Zooplankton grazing on Microcystis can improve water quality, but hurdles exist because of the colonial form and toxin production of Microcystis. Aquatic plants control blooms through allelopathy and nutrient absorption. Although cyanophages hold promise for Microcystis control, their strain-specificity hinders widespread use. Despite successful laboratory validation, field applications of biological methods are limited. Future research should leverage advanced molecular and bioinformatic techniques to understand microbial interactions during blooms and offer insights into innovative control strategies. Despite progress, the efficacy of biological methods under field conditions requires further verification, emphasizing the importance of integrating advanced multi-meta-omics techniques with practical applications to address the challenges posed by Microcystis blooms. KEY POINTS: • A diverse range of biotechnological methods is presented for suppressing Microcystis blooms. • Efficacy in laboratory experiments needs to be proved further in field applications. • Multi-meta-omics techniques offer novel insights into Microcystis dynamics and interactions.
Collapse
Affiliation(s)
- Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Seonah Jeong
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Min-Seong Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Wang T, Xu D, Chang X, MacIsaac HJ, Li J, Xu J, Zhang J, Zhang H, Zhou Y, Xu R. Can a shift in dominant species of Microcystis alter growth and reproduction of waterfleas? HARMFUL ALGAE 2024; 136:102657. [PMID: 38876528 DOI: 10.1016/j.hal.2024.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
The bloom-forming species Microcystis wesenbergii and M. aeruginosa occur in many lakes globally, and may exhibit alternating blooms both spatially and temporally. As environmental changes increase, cyanobacteria bloom in more and more lakes and are often dominated by M. wesenbergii. The adverse impact of M. aeruginosa on co-existing organisms including zooplanktonic species has been well-studied, whereas studies of M. wesenbergii are limited. To compare effects of these two species on zooplankton, we explored effects of exudates from different strains of microcystin-producing M. aeruginosa (Ma905 and Ma526) and non-microcystin-producing M. wesenbergii (Mw908 and Mw929), on reproduction by the model zooplankter Daphnia magna in both chronic and acute exposure experiments. Specifically, we tested physiological, biochemical, molecular and transcriptomic characteristics of D. magna exposed to Microcystis exudates. We observed that body length and egg and offspring number of the daphnid increased in all treatments. Among the four strains tested, Ma526 enhanced the size of the first brood, as well as total egg and offspring number. Microcystis exudates stimulated expression of specific genes that induced ecdysone, juvenile hormone, triacylglycerol and vitellogenin biosynthesis, which, in turn, enhanced egg and offspring production of D. magna. Even though all strains of Microcystis affected growth and reproduction, large numbers of downregulated genes involving many essential pathways indicated that the Ma905 strain might contemporaneously induce damage in D. magna. Our study highlights the necessity of including M. wesenbergii into the ecological risk evaluation of cyanobacteria blooms, and emphasizes that consequences to zooplankton may not be clear-cut when assessments are based upon production of microcystins alone.
Collapse
Affiliation(s)
- Tao Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Ningbo Yonghuanyuan Environmental Engineering and Technology CO., LTD, Ningbo 315000, China
| | - Daochun Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hugh J MacIsaac
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Jingjing Li
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Jun Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinlong Zhang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hongyan Zhang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuan Zhou
- The Ecological and Environmental Monitoring Station of DEEY in Kunming, Kunming 650228, China
| | - Runbing Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
5
|
Cao J, Wu Y, Li ZK, Hou ZY, Wu TH, Chu ZS, Zheng BH, Yang PP, Yang YY, Li CS, Li QH, Guo X. Dependence of evolution of Cyanobacteria superiority on temperature and nutrient use efficiency in a meso-eutrophic plateau lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172338. [PMID: 38608897 DOI: 10.1016/j.scitotenv.2024.172338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Algal blooms in lakes have been a challenging environmental issue globally under the dual influence of human activity and climate change. Considerable progress has been made in the study of phytoplankton dynamics in lakes; The long-term in situ evolution of dominant bloom-forming cyanobacteria in meso-eutrophic plateau lakes, however, lacks systematic research. Here, the monthly parameters from 12 sampling sites during the period of 1997-2022 were utilized to investigate the underlying mechanisms driving the superiority of bloom-forming cyanobacteria in Erhai, a representative meso-eutrophic plateau lake. The findings indicate that global warming will intensify the risk of cynaobacteria blooms, prolong Microcystis blooms in autumn to winter or even into the following year, and increase the superiority of filamentous Planktothrix and Cylindrospermum in summer and autumn. High RUETN (1.52 Biomass/TN, 0.95-3.04 times higher than other species) under N limitation (TN < 0.5 mg/L, TN/TP < 22.6) in the meso-eutrophic Lake Erhai facilitates the superiority of Dolichospermum. High RUETP (43.8 Biomass/TP, 2.1-10.2 times higher than others) in TP of 0.03-0.05 mg/L promotes the superiority of Planktothrix and Cylindrospermum. We provided a novel insight into the formation of Planktothrix and Cylindrospermum superiority in meso-eutrophic plateau lake with low TP (0.005-0.07 mg/L), which is mainly influenced by warming, high RUETP and their vertical migration characteristics. Therefore, we posit that although the obvious improvement of lake water quality is not directly proportional to the control efficacy of cyanobacterial blooms, the evolutionary shift in cyanobacteria population structure from Microcystis, which thrives under high nitrogen and phosphorus conditions, to filamentous cyanobacteria adapted to low nitrogen and phosphorus levels may serve as a significant indicator of water quality amelioration. Therefore, we suggest that the risk of filamentous cyanobacteria blooms in the meso-eutrophic plateau lake should be given attention, particularly in light of improving water quality and global warming, to ensure drinking water safety.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ze-Kun Li
- Environmental Monitoring Station of Dali Prefecture, Dali 671000, China
| | - Ze-Ying Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tian-Hao Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhao-Sheng Chu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Bing-Hui Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China.
| | - Ping-Ping Yang
- Environmental Monitoring Station of Dali Prefecture, Dali 671000, China
| | - Yi-Yan Yang
- Environmental Monitoring Station of Dali Prefecture, Dali 671000, China
| | - Cun-Sheng Li
- Environmental Monitoring Station of Dali Prefecture, Dali 671000, China
| | - Qian-Hua Li
- Environmental Monitoring Station of Dali Prefecture, Dali 671000, China
| | - Xia Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
6
|
Wang L, Shan K, Yi Y, Yang H, Zhang Y, Xie M, Zhou Q, Shang M. Employing hybrid deep learning for near-real-time forecasts of sensor-based algal parameters in a Microcystis bloom-dominated lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171009. [PMID: 38402991 DOI: 10.1016/j.scitotenv.2024.171009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024]
Abstract
Harmful cyanobacterial blooms (CyanoHABs) are increasingly impacting the ecosystem of lakes, reservoirs and estuaries globally. The integration of real-time monitoring and deep learning technology has opened up new horizons for early warnings of CyanoHABs. However, unlike traditional methods such as pigment quantification or microscopy counting, the high-frequency data from in-situ fluorometric sensors display unpredictable fluctuations and variability, posing a challenge for predictive models to discern underlying trends within the time-series sequence. This study introduces a hybrid framework for near-real-time CyanoHABs predictions in a cyanobacterium Microcystis-dominated lake - Lake Dianchi, China. The proposed model was validated using hourly Chlorophyll-a (Chl a) concentrations and algal cell densities. Our results demonstrate that applying decomposition-based singular spectrum analysis (SSA) significantly enhances the prediction accuracy of subsequent CyanoHABs models, particularly in the case of temporal convolutional network (TCN). Comparative experiments revealed that the SSA-TCN model outperforms other SSA-based deep learning models for predicting Chl a (R2 = 0.45-0.93, RMSE = 2.29-5.89 μg/L) and algal cell density (R2 = 0.63-0.89, RMSE = 9489.39-16,015.37 cells/mL) at one to four steps ahead predictions. The forecast of bloom intensities achieved a remarkable accuracy of 98.56 % and an average precision rate of 94.04 % ± 0.05 %. In addition, scenarios involving various input combinations of environmental factors demonstrated that water temperature emerged as the most effective driver for CyanoHABs predictions, with a mean RMSE of 2.94 ± 0.12 μg/L, MAE of 1.55 ± 0.09 μg/L, and R2 of 0.83 ± 0.01. Overall, the newly developed approach underscores the potential of a well-designed hybrid deep-learning framework for accurately predicting sensor-based algal parameters. It offers novel perspectives for managing CyanoHABs through online monitoring and artificial intelligence in aquatic ecosystems.
Collapse
Affiliation(s)
- Lan Wang
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; School of Artificial Intelligence, Chongqing University of Education, Chongqing 400065, China
| | - Kun Shan
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Yang Yi
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, UK
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingjiang Xie
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Qichao Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Mingsheng Shang
- Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
7
|
Bi R, Yang J, Huang C, Zhang X, Liao R, Ma H. Pulse Feature-Enhanced Classification of Microalgae and Cyanobacteria Using Polarized Light Scattering and Fluorescence Signals. BIOSENSORS 2024; 14:160. [PMID: 38667153 PMCID: PMC11048193 DOI: 10.3390/bios14040160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Harmful algal blooms (HABs) pose a global threat to the biodiversity and stability of local aquatic ecosystems. Rapid and accurate classification of microalgae and cyanobacteria in water is increasingly desired for monitoring complex water environments. In this paper, we propose a pulse feature-enhanced classification (PFEC) method as a potential solution. Equipped with a rapid measurement prototype that simultaneously detects polarized light scattering and fluorescence signals of individual particles, PFEC allows for the extraction of 38 pulse features to improve the classification accuracy of microalgae, cyanobacteria, and other suspended particulate matter (SPM) to 89.03%. Compared with microscopic observation, PFEC reveals three phyla proportions in aquaculture samples with an average error of less than 14%. In this paper, PFEC is found to be more accurate than the pulse-average classification method, which is interpreted as pulse features carrying more detailed information about particles. The high consistency of the dominant and common species between PFEC and microscopy in all field samples also demonstrates the flexibility and robustness of the former. Moreover, the high Pearson correlation coefficient accounting for 0.958 between the cyanobacterial proportion obtained by PFEC and the cyanobacterial density given by microscopy implies that PFEC serves as a promising early warning tool for cyanobacterial blooms. The results of this work suggest that PFEC holds great potential for the rapid and accurate classification of microalgae and cyanobacteria in aquatic environment monitoring.
Collapse
Affiliation(s)
- Ran Bi
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China;
- Shenzhen Key Laboratory of Marine IntelliSense and Computation, Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.Y.); (C.H.)
| | - Jianxiong Yang
- Shenzhen Key Laboratory of Marine IntelliSense and Computation, Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.Y.); (C.H.)
- Division of Advanced Manufacturing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chengqi Huang
- Shenzhen Key Laboratory of Marine IntelliSense and Computation, Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.Y.); (C.H.)
| | - Xiaoyu Zhang
- Hainan Institute, Zhejiang University, Hangzhou 310058, China;
| | - Ran Liao
- Shenzhen Key Laboratory of Marine IntelliSense and Computation, Institute for Ocean Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (J.Y.); (C.H.)
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Hui Ma
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| |
Collapse
|
8
|
Luo Y, Dao G, Zhou G, Wang Z, Xu Z, Lu X, Pan X. Effects of low concentration of gallic acid on the growth and microcystin production of Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169765. [PMID: 38181948 DOI: 10.1016/j.scitotenv.2023.169765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Gallic acid (GA) is an allelochemical that has been utilized in high concentrations for the management of harmful algal blooms (HABs). However, there is limited knowledge regarding its impact on the growth of M. aeruginosa as the GA concentration transitions from high to low during the HABs control process. This study has revealed that as the GA concentration decreases (from 10 mg/L to 0.001 μg/L), a dose-response relationship becomes apparent in the growth of M. aeruginosa and microcystin production, characterized by high-dose inhibition and low-dose stimulation. Notably, at the concentration of 0.1 μg/L GA, the most significant growth-promoting effect on both growth and MCs synthesis was observed. The growth rate and maximum cell density were increased by 1.09 and 1.16 times, respectively, compared to those of the control group. Additionally, the contents of MCs synthesis saw a remarkable increase, up by 1.85 times. Furthermore, lower GA concentrations stimulated the viability of cyanobacterial cells, resulting in substantially higher levels of reactive oxygen species (ROS) and chlorophyll-a (Chl a) compared to other concentrations. Most importantly, the expression of genes governing MCs synthesis was significantly upregulated, which appears to be the primary driver behind the significantly higher MCs levels compared to other conditions. The ecological risk quotient (RQ) value of 0.1 μg/L GA was the highest of all experimental groups, which was approximately 30 times higher than that of the control, indicating moderate risk. Therefore, it is essential to pay attention to the effect of M. aeruginosa growth, metabolism and water ecological risk under the process of reducing GA concentration after dosing during the HABs control process.
Collapse
Affiliation(s)
- Yu Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, Yunnan, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Guoquan Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Zhuoxuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Xinyue Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
9
|
Li Z, Song Z, Qiu L, Cao Y, Gu H, Wang Z, Liu X, Qian X. Quantitative distribution and quantized ecological threat of microplastics in farmland: Shanghai as an example. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133069. [PMID: 38056264 DOI: 10.1016/j.jhazmat.2023.133069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
The occurrence of microplastics (MPs) in farmlands poses a threat to soil health and crop yield. There needs to be more research on the role of cropping patterns in the accumulation of MPs and quantizing the threat of MPs on soil health and crop yield. In this study, a field study was carried out to explore the role of cropping patterns in the accumulation of MPs in agricultural soil in Shanghai, China. Furthermore, the specific effect and importance of MPs and each soil physicochemical indicator to soil health and crop yield were clarified, and the threat of MPs in reducing soil health and crop yield was quantized. Relative lower MPs abundance was detected in Shanghai. MPs abundance in vegetable fields was significantly higher than that in orchards. The broad source of MPs, the acceleration of plastics breaking under artificial disturbance and warmer temperatures, and the block of MPs exchange could account for the quicker accumulation of MPs in vegetable fields. MPs have a negligible effect on microbial diversity and metabolic activity which plays a role in soil enzyme activity. Besides, MPs served as one of the critical factors for rice yield reduction.
Collapse
Affiliation(s)
- Zhengwen Li
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zhaofeng Song
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Linlin Qiu
- School of Resources·&·Environmental-Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Cao
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Hairong Gu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zhenqi Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xiaoyong Qian
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| |
Collapse
|
10
|
Qiu X, Wang J, Xin F, Wang Y, Liu Z, Wei J, Sun X, Li P, Cao X, Zheng X. Compensatory growth of Microcystis aeruginosa after copper stress and the characteristics of algal extracellular organic matter (EOM). CHEMOSPHERE 2024; 352:141422. [PMID: 38341000 DOI: 10.1016/j.chemosphere.2024.141422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/24/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Cyanobacterial blooms can impair drinking water quality due to the concomitant extracellular organic matter (EOM). As copper is often applied as an algicide, cyanobacteria may experience copper stress. However, it remains uncertain whether algal growth compensation occurs and how EOM characteristics change in response to copper stress. This study investigated the changes in growth conditions, photosynthetic capacity, and EOM characteristics of M. aeruginosa under copper stress. In all copper treatments, M. aeruginosa experienced a growth inhibition stage followed by a growth compensation stage. Notably, although chlorophyll-a fluorescence parameters dropped to zero immediately following high-intensity copper stress (0.2 and 0.5 mg/L), they later recovered to levels exceeding those of the control, indicating that photosystem II was not destroyed by copper stress. Copper stress influenced the dissolved organic carbon (DOC) content, polysaccharides, proteins, excitation-emission matrix spectra, hydrophobicity, and molecular weight (MW) distribution of EOM, with the effects varying based on stress intensity and growth stage. Principal component analysis revealed a correlation between the chlorophyll-a fluorescence parameters and EOM characteristics. These results imply that copper may not be an ideal algicide. Further research is needed to explore the dynamic response of EOM characteristics to environmental stress.
Collapse
Affiliation(s)
- Xiaopeng Qiu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Jiaqi Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Fengdan Xin
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Yangtao Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Zijun Liu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Jinli Wei
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xin Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Pengfei Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xin Cao
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xing Zheng
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| |
Collapse
|
11
|
Villanueva P, Yang J, Radmer L, Liang X, Leung T, Ikuma K, Swanner ED, Howe A, Lee J. One-Week-Ahead Prediction of Cyanobacterial Harmful Algal Blooms in Iowa Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20636-20646. [PMID: 38011382 DOI: 10.1021/acs.est.3c07764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Cyanobacterial harmful algal blooms (CyanoHABs) pose serious risks to inland water resources. Despite advancements in our understanding of associated environmental factors and modeling efforts, predicting CyanoHABs remains challenging. Leveraging an integrated water quality data collection effort in Iowa lakes, this study aimed to identify factors associated with hazardous microcystin levels and develop one-week-ahead predictive classification models. Using water samples from 38 Iowa lakes collected between 2018 and 2021, feature selection was conducted considering both linear and nonlinear properties. Subsequently, we developed three model types (Neural Network, XGBoost, and Logistic Regression) with different sampling strategies using the nine selected variables (mcyA_M, TKN, % hay/pasture, pH, mcyA_M:16S, % developed, DOC, dewpoint temperature, and ortho-P). Evaluation metrics demonstrated the strong performance of the Neural Network with oversampling (ROC-AUC 0.940, accuracy 0.861, sensitivity 0.857, specificity 0.857, LR+ 5.993, and 1/LR- 5.993), as well as the XGBoost with downsampling (ROC-AUC 0.944, accuracy 0.831, sensitivity 0.928, specificity 0.833, LR+ 5.557, and 1/LR- 11.569). This study exhibited the intricacies of modeling with limited data and class imbalances, underscoring the importance of continuous monitoring and data collection to improve predictive accuracy. Also, the methodologies employed can serve as meaningful references for researchers tackling similar challenges in diverse environments.
Collapse
Affiliation(s)
- Paul Villanueva
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jihoon Yang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Lorien Radmer
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Xuewei Liang
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Tania Leung
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011, United States
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Jaejin Lee
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
12
|
Cao J, Hou ZY, Li ZK, Zheng BH, Chu ZS. Spatiotemporal dynamics of phytoplankton biomass and community succession for driving factors in a meso-eutrophic lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118693. [PMID: 37598495 DOI: 10.1016/j.jenvman.2023.118693] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Effects of climate change and nutrient load caused by human activities on lake phytoplankton blooms have attracted much attention globally. However, their roles and synergistic effects on phytoplankton biomass and community historical succession are not well understood, especially for meso-eutrophic plateau lakes. In this study, a multi-year (1997-2022) monthly dataset including hydro-chemical and meteorological indicators of the meso-eutrophic plateau lake Erhai in China, was used to explore the contributions of climate change and nutrients on phytoplankton biomass variation and community succession. Phytoplankton biomass increased from 1997 to 2006, slowly decreased from 2006 to 2015, then increased again from 2015 to 2022, according to a generalised additive model (GAM). Alongside warming, nitrogen, phosphorus and organic matter are key drivers of long-term interannual variation in phytoplankton biomass and historical succession of the phytoplankton community. The extensive blooms in recent years were strongly associated with both organic matter accumulation and global warming. Phytoplankton biomass in northern and southern districts was greater than in central areas, with Cyanophyta and Pyrrophyta dominating in the north and Chlorophyta prevalent in the south. Since 2015, phytoplankton diversity has increased significantly, and biomass has declined in the southern district but increased markedly in the northern district. Spatial heterogeneity was caused by the spatial distribution of nutrients and the buoyancy regulation capacity of cyanobacteria. The results demonstrate that bloom mitigation responds strongly to nitrogen and phosphorus control in meso-eutrophic lakes, therefore preventing and controlling blooms through nitrogen and phosphorus reduction is still an effective measure. Given the accumulation of organic matter in recent years, synergistic control of organic matter and total nitrogen and phosphorus could effectively reduce the risk of cyanobacterial and dinoflagellate blooms.
Collapse
Affiliation(s)
- Jing Cao
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ze-Ying Hou
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ze-Kun Li
- Environmental Monitoring Station of Dali Prefecture, Dali, 671000, China
| | - Bing-Hui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhao-Sheng Chu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
13
|
Tarafdar L, Mohapatra M, Muduli PR, Kumar A, Mishra DR, Rastogi G. Co-occurrence patterns and environmental factors associated with rapid onset of Microcystis aeruginosa bloom in a tropical coastal lagoon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116580. [PMID: 36323116 DOI: 10.1016/j.jenvman.2022.116580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The environmental factors contributing to the Microcystis aeruginosa bloom (hereafter referred to as Microcystis bloom) are still debatable as they vary with season and geographic settings. We examined the environmental factors that triggered Microcystis bloom outbreak in India's largest brackish water coastal lagoon, Chilika. The warmer water temperature (25.31-32.48 °C), higher dissolved inorganic nitrogen (DIN) loading (10.15-13.53 μmol L-1), strong P-limitation (N:P ratio 138.47-246.86), higher water transparency (46.62-73.38 cm), and low-salinity (5.45-9.15) exerted a strong positive influence on blooming process. During the bloom outbreak, M. aeruginosa proliferated, replaced diatoms, and constituted 70-88% of the total phytoplankton population. The abundances of M. aeruginosa increased from 0.89 × 104 cells L-1 in September to 1.85 × 104 cells L-1 in November and reduced drastically during bloom collapse (6.22 × 103 cells L-1) by the late November of year 2017. The decrease in M. aeruginosa during bloom collapse was associated with a decline in DIN loading (2.97 μmol L-1) and N:P ratio (73.95). Sentinel-3 OLCI-based satellite monitoring corroborated the field observations showing Cyanophyta Index (CI) > 0.01 in September, indicative of intense bloom and CI < 0.0001 during late November, suggesting bloom collapse. The presence of M. aeruginosa altered the phytoplankton community composition. Furthermore, co-occurrence network indicated that bloom resulted in a less stable community with low diversity, inter-connectedness, and prominence of a negative association between phytoplankton taxa. Variance partitioning analysis revealed that TSM (16.63%), salinity (6.99%), DIN (5.21%), and transparency (5.15%) were the most influential environmental factors controlling the phytoplankton composition. This study provides new insight into the phytoplankton co-occurrences and combination of environmental factors triggering the rapid onset of Microcystis bloom and influencing the phytoplankton composition dynamics of a large coastal lagoon. These findings would be valuable for future bloom forecast modeling and aid in the management of the lagoon.
Collapse
Affiliation(s)
- Lipika Tarafdar
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India; Department of Marine Sciences, Berhampur University, Bhanjabihar, 760007, Odisha, India
| | - Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Pradipta R Muduli
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India
| | - Abhishek Kumar
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA, 30602, USA; Department of Environmental Conservation, University of Massachusetts, Amherst, MA, 01003, USA
| | - Deepak R Mishra
- Center for Geospatial Research, Department of Geography, University of Georgia, Athens, GA, 30602, USA
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, 752030, Odisha, India.
| |
Collapse
|
14
|
Revealing Physiochemical Factors and Zooplankton Influencing Microcystis Bloom Toxicity in a Large-Shallow Lake Using Bayesian Machine Learning. Toxins (Basel) 2022; 14:toxins14080530. [PMID: 36006192 PMCID: PMC9413751 DOI: 10.3390/toxins14080530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Toxic cyanobacterial blooms have become a severe global hazard to human and environmental health. Most studies have focused on the relationships between cyanobacterial composition and cyanotoxins production. Yet, little is known about the environmental conditions influencing the hazard of cyanotoxins. Here, we analysed a unique 22 sites dataset comprising monthly observations of water quality, cyanobacterial genera, zooplankton assemblages, and microcystins (MCs) quota and concentrations in a large-shallow lake. Missing values of MCs were imputed using a non-negative latent factor (NLF) analysis, and the results achieved a promising accuracy. Furthermore, we used the Bayesian additive regression tree (BART) to quantify how Microcystis bloom toxicity responds to relevant physicochemical characteristics and zooplankton assemblages. As expected, the BART model achieved better performance in Microcystis biomass and MCs concentration predictions than some comparative models, including random forest and multiple linear regression. The importance analysis via BART illustrated that the shade index was overall the best predictor of MCs concentrations, implying the predominant effects of light limitations on the MCs content of Microcystis. Variables of greatest significance to the toxicity of Microcystis also included pH and dissolved inorganic nitrogen. However, total phosphorus was found to be a strong predictor of the biomass of total Microcystis and toxic M. aeruginosa. Together with the partial dependence plot, results revealed the positive correlations between protozoa and Microcystis biomass. In contrast, copepods biomass may regulate the MC quota and concentrations. Overall, our observations arouse universal demands for machine-learning strategies to represent nonlinear relationships between harmful algal blooms and environmental covariates.
Collapse
|
15
|
Wang Z, Xu Y, Yang J, Li Y, Sun Y, Zhang L, Yang Z. Adverse role of colonial morphology and favorable function of microcystins for Microcystis to compete with Scenedesmus. HARMFUL ALGAE 2022; 117:102293. [PMID: 35944955 DOI: 10.1016/j.hal.2022.102293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In eutrophic freshwaters, Microcystis usually becomes dominant in phytoplankton communities due to the synergistic effects of its special eco-physiological traits and environmental factors. Colonial morphology can protect Microcystis from zooplankton grazing, which indirectly favors Microcystis to outcompete other phytoplankton, although the colonial form is not conducive to the absorption of nutrients. Moreover, unicellular Microcystis usually has competitive advantages over other phytoplankton due to its efficient absorption capacity for nutrients and releasing microcystins. However, the consequence of direct competition between toxic colonial Microcystis and green algae without external grazing pressure still remained unknown. In this study, the competition between toxic colonial Microcystis aeruginosa and a common green alga Scenedesmus obliquus was explored. Results showed that: (1) colonial M. aeruginosa had a higher requirement for key macro-nutrient phosphorus than S. obliquus, and thus its population declined and was replaced by S. obliquus eventually; (2) microcystins released by colonial M. aeruginosa inhibited the photosynthetic activity and growth of S. obliquus at early stage of the competition; (3) the photosynthetic potential of colonial M. aeruginosa was stimulated in response to the competitive stress from S. obliquus, although the population of colonial M. aeruginosa declined eventually; (4) microcystin production of colonial M. aeruginosa was enhanced by phosphorus limitation due to S. obliquus competition and was positively related to photosynthetic potential of colonial M. aeruginosa. These results indicated that, in the absence of complex natural environment, colonial Microcystis cannot outcompete Scenedesmus in a pure competition, although microcystins can play a favorable role in the competition, which clarified the opposite role of colonies and microcystins in the competition of colonial Microcystis against other phytoplankton.
Collapse
Affiliation(s)
- Zeshuang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yang Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jiajun Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yapeng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
16
|
Blanchet CC, Arzel C, Davranche A, Kahilainen KK, Secondi J, Taipale S, Lindberg H, Loehr J, Manninen-Johansen S, Sundell J, Maanan M, Nummi P. Ecology and extent of freshwater browning - What we know and what should be studied next in the context of global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152420. [PMID: 34953836 DOI: 10.1016/j.scitotenv.2021.152420] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Water browning or brownification refers to increasing water color, often related to increasing dissolved organic matter (DOM) and carbon (DOC) content in freshwaters. Browning has been recognized as a significant physicochemical phenomenon altering boreal lakes, but our understanding of its ecological consequences in different freshwater habitats and regions is limited. Here, we review the consequences of browning on different freshwater habitats, food webs and aquatic-terrestrial habitat coupling. We examine global trends of browning and DOM/DOC, and the use of remote sensing as a tool to investigate browning from local to global scales. Studies have focused on lakes and rivers while seldom addressing effects at the catchment scale. Other freshwater habitats such as small and temporary waterbodies have been overlooked, making the study of the entire network of the catchment incomplete. While past research investigated the response of primary producers, aquatic invertebrates and fishes, the effects of browning on macrophytes, invasive species, and food webs have been understudied. Research has focused on freshwater habitats without considering the fluxes between aquatic and terrestrial habitats. We highlight the importance of understanding how the changes in one habitat may cascade to another. Browning is a broader phenomenon than the heretofore concentration on the boreal region. Overall, we propose that future studies improve the ecological understanding of browning through the following research actions: 1) increasing our knowledge of ecological processes of browning in other wetland types than lakes and rivers, 2) assessing the impact of browning on aquatic food webs at multiple scales, 3) examining the effects of browning on aquatic-terrestrial habitat coupling, 4) expanding our knowledge of browning from the local to global scale, and 5) using remote sensing to examine browning and its ecological consequences.
Collapse
Affiliation(s)
- Clarisse C Blanchet
- Department of Biology, FI-20014, University of Turku, Finland; Department of Forest Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Céline Arzel
- Department of Biology, FI-20014, University of Turku, Finland
| | - Aurélie Davranche
- CNRS UMR 6554 LETG, University of Angers, 2 Boulevard Lavoisier, FR-49000 Angers, France
| | - Kimmo K Kahilainen
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Jean Secondi
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France; Faculty of Sciences, University of Angers, F-49000 Angers, France
| | - Sami Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Henrik Lindberg
- HAMK University of Applied Sciences, Forestry Programme, Saarelantie 1, FI-16970 Evo, Finland
| | - John Loehr
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | | | - Janne Sundell
- University of Helsinki, Lammi Biological Station, Pääjärventie 320, FI-16900 Lammi, Finland
| | - Mohamed Maanan
- UMR CNRS 6554, University of Nantes, F-44000 Nantes, France
| | - Petri Nummi
- Department of Forest Sciences, P.O. Box 27, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
17
|
Research Characteristics on Cyanotoxins in Inland Water: Insights from Bibliometrics. WATER 2022. [DOI: 10.3390/w14040667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eutrophication is a long-standing ecological and environmental problem, and the severity of harmful algal blooms continues to increase, causing large economic losses globally. One of the most important hazards created by harmful algal blooms is the production of cyanotoxins. This study aimed to analyze the characteristics and development trends of cyanotoxin research through bibliometric analysis. A total of 3265 publications from 1990 to 2020 on cyanotoxins were retrieved from the Science Citation Index (SCI) Expanded database, Web of Science. Over the past 30 years, most research has been concentrated in China (21.4%) and the USA (21.3%). Throughout the study period, microcystin was the focus of the research, accounting for 86% of the total number of publications. A word frequency analysis revealed that as people became more aware of drinking water safety and the construction of large-scale water conservation facilities, “reservoirs” and “rivers” became hot words for researchers, while “lakes” have always been important research objects. Nonmetric multidimensional scaling (NMDS) analysis of studies from the five countries with the largest numbers of publications showed that Chinese researchers typically associate eutrophication with Microcystis, while research subjects in other countries are more extensive and balanced. The development of cyanotoxin research around the world is not even, and we need to push for more research on major lakes that are outside of North America, Europe and China.
Collapse
|
18
|
Huo Y, Li Y, Guo W, Liu J, Yang C, Li L, Liu H, Song L. Evaluation of Cyanobacterial Bloom from Lake Taihu as a Protein Substitute in Fish Diet-A Case Study on Tilapia. Toxins (Basel) 2021; 13:735. [PMID: 34679028 PMCID: PMC8538822 DOI: 10.3390/toxins13100735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
The utility of cyanobacterial bloom is often hindered by concerns about the toxin content. Over three years of investigation, we found that the toxin content of cyanobacterial bloom in Lake Taihu was always low in June and higher in late summer and autumn. The findings enabled us to compare the effects of diets containing low and high toxic cyanobacterial blooms on the growth and consumption safety of tilapia. There were no negative effects on the growth of tilapia, and the muscle seemed to be safe for human consumption in the treatment of 18.5% low toxic cyanobacterial bloom. Therefore, limitations of the utilization of cyanobacterial biomass can be overcome by selecting low toxic cyanobacterial bloom that can be found and collected in large lakes.
Collapse
Affiliation(s)
- Yan Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanze Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Cuiping Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Lin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Y.H.); (Y.L.); (W.G.); (J.L.); (C.Y.); (L.L.)
| |
Collapse
|