1
|
Mohd Nazir NZ, Lee KE, Ab Rahim AR, Goh TL, Mokhtar M, Rahim Wan Abdullah WA, Husain H, Raja Mamat RB. Delineating the fundamental attributes and traits of nature-based solutions in wastewater management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124811. [PMID: 40106989 DOI: 10.1016/j.jenvman.2025.124811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Water stress, exacerbated by population growth and climate change, necessitates sustainable wastewater management solutions that promote resource recovery and environmental protection. Nature-Based Solutions (NBS) offer a viable alternative to conventional wastewater treatment by leveraging natural processes for water purification and ecosystem restoration. However, the lack of standardised criteria for defining and evaluating NBS in wastewater management has led to inconsistencies in research and practice. This study conducts a systematic review of NBS applications in wastewater treatment, using Scopus and Web of Science databases, to delineate their fundamental attributes and establish a structured evaluation framework. By assessing NBS against seven key characteristics, i.e., natural processes, sustainability and resilience, biodiversity enhancement, multifunctionality, community and stakeholder involvement, cost-effectiveness and engineering approach, this study provides a comprehensive framework for distinguishing genuine NBS from other nature-inspired interventions. The findings contribute to improving the scientific rigour of NBS classifications, ensuring their scalability and fostering their integration into environmental management. This study offers a novel methodological approach to evaluating the effectiveness and applicability of NBS in wastewater management, facilitating their broader adoption and guiding future policy and research directions.
Collapse
Affiliation(s)
- Noor Zarina Mohd Nazir
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Malaysia; Sewerage Services Department, Ministry of Energy Transition and Water Transformation (PETRA), Malaysia
| | - Khai Ern Lee
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Malaysia; Integrated Water Research Synergy Consortium (IWaReS), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Malaysia.
| | - Ainul Rasyidah Ab Rahim
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Malaysia; Public Service Department, Federal Government Administrative Centre, Malaysia
| | - Thian Lai Goh
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia
| | - Mazlin Mokhtar
- Sustainable Development Solutions Network Asia (SDSN Asia), Sunway University, Malaysia
| | | | - Huzaini Husain
- Sewerage Services Department, Ministry of Energy Transition and Water Transformation (PETRA), Malaysia
| | - Raja Baharudin Raja Mamat
- Sewerage Services Department, Ministry of Energy Transition and Water Transformation (PETRA), Malaysia
| |
Collapse
|
2
|
Nas B, Dolu T, Ateş H, Dinç S, Kara M, Argun ME, Yel E. Occurrence, distribution, and fate evaluation of endocrine disrupting compounds in three wastewater treatment plants with different treatment technologies in Türkiye. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175869. [PMID: 39214356 DOI: 10.1016/j.scitotenv.2024.175869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Nowadays, two of the endocrine disrupting compounds (EDCs) in the group of alkylphenols (APs), nonylphenol (4-NP) and octylphenol (4-t-OP), have attracted great scientific and regulatory attention mainly due to concerns about their aquatic toxicity and endocrine disrupting activity. This paper investigated the occurrence, distribution behavior, fate, and removal of 4-NP and 4-t-OP in liquid and solid phases of three full-scale wastewater treatment plants (WWTPs) with different treatment technologies comparatively. In this context, (i) advanced biological WWTP, (ii) wastewater stabilization pond (WSP), and (iii) constructed wetland (CW) were utilized. In all three investigated WWTPs, the concentrations of 4-NP (219.9-19,354.4 ng/L) in raw wastewater were higher than those of 4-t-OP (13.9-2822.4 ng/L). Within the scope of annual average removal efficiencies, 4-NP was treated highly in advanced biological WWTP (93.5 %), while it was almost not treated in WSP (3.1 %) and treated with negative removal (<0 %) in CW. While 4-t-OP was treated at a similar removal rate (93.5 %) to 4-NP in advanced biological WWTP, it was treated moderately in WSP (52.5 %) and very poorly in CW (12.4 %). It has been determined that the most important removal mechanism of both 4-NP and 4-t-OP in WWTPs is biodegradation, followed by sorption onto sewage sludge. According to the mass balance performed in advanced biological WWTP, the biodegradation rates for 4-NP and 4-t-OP were found to be 70.4 % and 86.6 %, respectively, while the sorption onto sewage sludge were determined to be 23.3 % and 6.8 %. One of the critical findings obtained within the scope of the study is that while the concentrations of both metabolites, especially 4-NP, in wastewater and sewage sludge, decreased considerably under aerobic conditions, on the contrary, their concentrations increased significantly under anaerobic conditions. Both compounds were detected at higher concentrations in primary sludge compared to secondary sludge in advanced biological WWTP, while in WSP, they were determined at higher concentrations in anaerobic stabilization pond sludge compared to facultative stabilization pond sludge. Besides, it was also determined that the sorption behavior of these alkylphenols is much more dominant than desorption.
Collapse
Affiliation(s)
- B Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye; Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA.
| | - T Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - H Ateş
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - S Dinç
- Çumra School of Applied Sciences, Selçuk University, Konya, Türkiye.
| | - M Kara
- Çumra Vocational High School, Selçuk University, Konya, Türkiye.
| | - M E Argun
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - E Yel
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| |
Collapse
|
3
|
Nosek K, Zhao D. Transformation products of diclofenac: Formation, occurrence, and toxicity implication in the aquatic environment. WATER RESEARCH 2024; 266:122388. [PMID: 39270499 DOI: 10.1016/j.watres.2024.122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Diclofenac (DCF) is the first drug on the EU Watch List of Priority Substances due to its extensive uses, incomplete removal in wastewater treatment plants (WWTPs), and toxic effects. Once in the environment, DCF undergoes processes that yield various transformation products (TPs) or metabolites, whichcan be more toxic than DCF. While these TPs or metabolites often dominate the majority of the drug load in municipal wastewater, they have been largely ignored. This review critically examines recent data on the formation, occurrence, fate, and toxicology of DCF TPs in the aquatic environment. This review reveals some important findings. First, DCF TPs may constitute >57 % of DCF in wastewater influent, ∼60 % in effluent, and ∼30 % in surface waters. Second, TPs persistently retain the core structure of DCF and may pose greater environmental risks than the parent drug. Third, some metabolites may revert back to the parent drug. Fourth, WWTPs serve as a consistent source that release DCF and its by-products into the environment. Fifth, mixtures of DCF and its metabolites, along with other contaminants, may pose elevated and synergistic environmental risks than individual compounds. These findings suggest that current risk assessment practices, which ignore the impacts of the metabolites and the chemical interactions/synergies, may seriously underestimate the overall toxicity of DCF and likely other pharmaceuticals. Further studies are needed to monitor the long-term fate and toxicity of the metabolites, as well as new analytical methods and standards to unveil the hidden metabolites and the associated environmental risks.
Collapse
Affiliation(s)
- Katarzyna Nosek
- Department of Fuels Technology, Faculty of Energy and Fuels, AGH University of Krakow, Al. A. Mickiewicza 30, Krakow 30-059, Poland.
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA 92182-1324, USA
| |
Collapse
|
4
|
Ferreira-Rodríguez N, Nión-Cabeza P, Trigo-Tasende N, Conde-Pérez K, Aja-Macaya P, Nasser-Ali M, Bou G, Poza M, Vallejo J. Native and non-native freshwater bivalves in the bioremediation of bacterial pollution caused by the disposal of sewage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124648. [PMID: 39095005 DOI: 10.1016/j.envpol.2024.124648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Treated sewage contains a large diversity of pathogens that can be transmitted to the environment and, directly or indirectly, infect humans through water use (i.e., consumption, bathing, or irrigation). In urban environments, wastewater normally flows into wastewater treatment plants (WWTPs), where it is subjected to different processes in order to eliminate the greatest amount of waste. However, there are inequalities among European countries concerning wastewater management. In this context, we evaluate the potential of freshwater mussels to improve water quality (i.e., reduce bacterial abundance) in rivers receiving primary, secondary, or tertiary sewage-treated effluents. Additionally, because freshwater mussels are declining at a global scale and empty niches are progressively occupied by non-native counterparts, we evaluate if depauperate communities and the Asian clams, Corbicula genus, can provide equivalent ecosystem services (i.e., water quality improvement by biofiltration) formerly provided by diverse native communities. For this, an analysis of the bacterial biodiversity of the samples filtered by the different bivalve communities was carried out. The experimental approach was performed by metabarcoding the 16S rRNA gene using Illumina technologies. According to the results obtained, secondary treatment processes were effective in reducing the bacterial diversity. Furthermore, the waters filtered by the bivalves presented a lower bacterial abundance for certain genera. Biofiltration differs, however, among species, with Corbicula reducing a large number of taxa much more efficiently than native freshwater mussels in both diverse and depauperated communities. These results are likely related to Corbicula being a generalist species in front of native mussels, which may be more selective. Considering it is not possible to eradicate Corbicula from European rivers, its filtering capacity should be considered when managing freshwater ecosystems.
Collapse
Affiliation(s)
- Noé Ferreira-Rodríguez
- Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain; Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, 900470, Constanța, Romania.
| | - Paula Nión-Cabeza
- Microbiology Research Group, Institute of Biomedical Research (INIBIC), Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC), CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° Planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Noelia Trigo-Tasende
- Microbiology Research Group, Institute of Biomedical Research (INIBIC), Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC), CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° Planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Kelly Conde-Pérez
- Microbiology Research Group, Institute of Biomedical Research (INIBIC), Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC), CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° Planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Pablo Aja-Macaya
- Microbiology Research Group, Institute of Biomedical Research (INIBIC), Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC), CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° Planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Mohammed Nasser-Ali
- Microbiology Research Group, Institute of Biomedical Research (INIBIC), Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC), CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° Planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Germán Bou
- Microbiology Research Group, Institute of Biomedical Research (INIBIC), Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC), CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° Planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| | - Margarita Poza
- Microbiology Research Group, Institute of Biomedical Research (INIBIC), Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC), CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° Planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain; Microbiome and Health, Faculty of Sciences, Campus da Zapateira, 15071, A Coruña, Spain
| | - Juan Vallejo
- Microbiology Research Group, Institute of Biomedical Research (INIBIC), Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña (UDC), CIBER de Enfermedades Infecciosas (CIBERINFEC-ISCIII), Madrid. Servicio de Microbiología, 3° Planta, Edificio Sur, Hospital Universitario A Coruña, As Xubias, 15006, A Coruña, Spain
| |
Collapse
|
5
|
Kariyawasam T, Helvig C, Petkovich M, Vriens B. Pharmaceutical removal from wastewater by introducing cytochrome P450s into microalgae. Microb Biotechnol 2024; 17:e14515. [PMID: 38925623 PMCID: PMC11197475 DOI: 10.1111/1751-7915.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pharmaceuticals are of increasing environmental concern as they emerge and accumulate in surface- and groundwater systems around the world, endangering the overall health of aquatic ecosystems. Municipal wastewater discharge is a significant vector for pharmaceuticals and their metabolites to enter surface waters as humans incompletely absorb prescription drugs and excrete up to 50% into wastewater, which are subsequently incompletely removed during wastewater treatment. Microalgae present a promising target for improving wastewater treatment due to their ability to remove some pollutants efficiently. However, their inherent metabolic pathways limit their capacity to degrade more recalcitrant organic compounds such as pharmaceuticals. The human liver employs enzymes to break down and absorb drugs, and these enzymes are extensively researched during drug development, meaning the cytochrome P450 enzymes responsible for metabolizing each approved drug are well studied. Thus, unlocking or increasing cytochrome P450 expression in endogenous wastewater microalgae could be a cost-effective strategy to reduce pharmaceutical loads in effluents. Here, we discuss the challenges and opportunities associated with introducing cytochrome P450 enzymes into microalgae. We anticipate that cytochrome P450-engineered microalgae can serve as a new drug removal method and a sustainable solution that can upgrade wastewater treatment facilities to function as "mega livers".
Collapse
Affiliation(s)
- Thamali Kariyawasam
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| | - Christian Helvig
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Martin Petkovich
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Bas Vriens
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
6
|
Dai H, Wang C, Yu W, Han J. Tracing COVID-19 drugs in the environment: Are we focusing on the right environmental compartment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122732. [PMID: 37838316 DOI: 10.1016/j.envpol.2023.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic led to over 770 million confirmed cases, straining public healthcare systems and necessitating extensive and prolonged use of synthetic chemical drugs around the globe for medical treatment and symptom relief. Concerns have arisen regarding the massive release of active pharmaceutical ingredients (APIs) and their metabolites into the environment, particularly through domestic sewage. While discussions surrounding this issue have primarily centered on their discharge into aquatic environments, particularly through treated effluent from municipal wastewater treatment plants (WWTPs), one often overlooked aspect is the terrestrial environment as a significant receptor of pharmaceutical-laden waste. This occurs through the disposal of sewage sludge, for instance, by applying biosolids to land or non-compliant disposal of sewage sludge, in addition to the routine disposal of expired and unused medications in municipal solid wastes. In this article, we surveyed sixteen approved pharmaceuticals for treating COVID-19 and bacterial co-infections, along with their primary metabolites. For this, we delved into their physiochemical properties, ecological toxicities, environmental persistence, and fate within municipal WWTPs. Emphasis was given on lipophilic substances with log Kow >3.0, which are more likely to be found in sewage sludge at significant factions (25.2%-75.0%) of their inputs in raw sewage and subsequently enter the terrestrial environment through land application of biosolids, e.g., 43% in the United States and as high as 96% in Ireland or non-compliant practices of sewage sludge disposal in developing communities, such as open dumping and land application without prior anaerobic digestion. The available evidence underscores the importance of adequately treating and disposing of sewage sludge before its final disposal or land application in an epidemic or pandemic scenario, as mismanaged sewage sludge could be a significant vector for releasing pharmaceutical compounds and their metabolites into the terrestrial environment.
Collapse
Affiliation(s)
- Han Dai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Chaoqi Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Wangyang Yu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
7
|
Wang Q, Zheng W, Wang Y, Zhang T, Zhou Z, Wu Z. Insights into effects of operating temperature on the removal of pharmaceuticals/pesticides/synthetic organic compounds by membrane bioreactor process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122145. [PMID: 37422084 DOI: 10.1016/j.envpol.2023.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
In this study, the removal efficiency and mechanism of 8 kinds of typical micropollutants by membrane bioreactor (MBR) at different temperatures (i.e. 15, 25 and 35 °C) were investigated. MBR exhibited the high removal rate (>85%) for 3 kinds of industrial synthetic organic micropollutants (i.e. bisphenol A (BPA), 4-tert-octylphenol (TB) and 4-n-nonylphenol (NP)) with similar functional groups, structures and high hydrophobicity (Log D > 3.2). However, the removal rates of ibuprofen (IBU), carbamazepine (CBZ) and sulfamethoxazole (SMX) with pharmaceutical activity showed great discrepancy (i.e. 93%, 14.2% and 29%, respectively), while that of pesticides (i.e. acetochlor (Ac) and 2,4-dichlorophenoxy acetic acid (2,4-D) were both lower than 10%. The results showed that the operating temperature played a significant role in microbial growth and activities. High temperature (35 °C) led to a decreased removal efficiency for most of hydrophobic organic micropollutants, and was also not conducive for refractory CBZ due to the temperature sensitivity. At lower temperature (15 °C), a large amount of exopolysaccharides and proteins were released by microorganisms, which caused the inhibited microbial activity, poor flocculation and sedimentation, resulting in the polysaccharide-type membrane fouling. It was proved that dominant microbial degradation of 61.01%-92.73% and auxiliary adsorption of 5.29%-28.30% were the main mechanisms for micropollutant removal in MBR system except for pesticides due to the toxicity. Therefore, the removal rates of most micropollutants were highest at 25 °C due to the high activity sludge so as to enhance microbial adsorption and degradation.
Collapse
Affiliation(s)
- Qiaoying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenjia Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai Institute of Pollution Control and Ecological Security, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
8
|
Dolu T, Nas B. Dissemination of nonsteroidal anti-inflammatory drugs (NSAIDs) and metabolites from wastewater treatment plant to soils and agricultural crops via real-scale different agronomic practices. ENVIRONMENTAL RESEARCH 2023; 227:115731. [PMID: 36958380 DOI: 10.1016/j.envres.2023.115731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 05/08/2023]
Abstract
One of the most consumed pharmaceutical subgroups across the world is nonsteroidal anti-inflammatory drugs (NSAIDs). However, the dissemination of these compounds to the natural environments through agronomic practices is a serious global problem. The hypothesis of this study is to reveal the transition of selected NSAIDs, paracetamol (PAR), diclofenac (DCF), ibuprofen (IBU), and naproxen (NAP) together with six main metabolites, detected in raw/treated wastewater (RWW/TWW) and sewage sludge generated in an urban wastewater treatment plant (WWTP) to soils and agricultural crops (corn, barley, sunflower, and sugar beet) through two widely applied agronomic practices, irrigation with TWW and application of sewage sludge as soil amendment. In other words, the cycles of 10 NSAIDs have been evaluated by simultaneously monitoring their concentrations in RWW/TWW, sewage sludge, soils, and crops. It was determined that the parent compounds and detected metabolites were treated at quite higher removal efficiencies (93.4 - >99.9%) in the studied WWTP, while DCF was eliminated poorly (7.9-52.2%). However, although it changes seasonally for some compounds, it was determined that the concentrations of almost all investigated NSAIDs increased at the determined irrigation points in the discharge channel (DC) where agricultural irrigations were performed. Apart from that, DCF, NAP, and 2-hydroxyibuprofen (2-OH-IBU) were always detected in sewage sludge seasonally up to about 20.5, 11.3, and 3.7 ng/g, respectively. While 2-OH-IBU was determined as the dominant metabolite in RWW, TWW, and sewage sludge, the metabolite of 1-hydroxyibuprofen (1-OH-IBU) was determined as the dominant compound in soils. Although 1-OH-IBU was not detected in TWW and sewage sludge in any season, detecting this metabolite as a common compound in all investigated soils (up to 60.1 ng/kg) reveals that this compound is the primary transformation product of IBU in soils. It was observed that at least one of the metabolites of IBU (1-OH-IBU and/or 2-OH-IBU) was detected in all plants grown (up to 0.75 ng/g), especially during the periods when both agricultural practices were applied. In addition, the detection of 1-OH-IBU with increasing concentrations from root to shoots in corn grown as a result of both agronomic practices shows that this compound has a high translocation potential in the corn plant. Apart from this, it was determined that PAR was detected in corn (up to 43.3 ng/kg) and barley (up to 16.8 ng/kg) within the scope of irrigation with TWW, and NAP was detected in sugar beet (up to 11.2 ng/kg) through sewage sludge application.
Collapse
Affiliation(s)
- Taylan Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - Bilgehan Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| |
Collapse
|
9
|
Di Marcantonio C, Chiavola A, Gioia V, Leoni S, Cecchini G, Frugis A, Ceci C, Spizzirri M, Boni MR. A step forward on site-specific environmental risk assessment and insight into the main influencing factors of CECs removal from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116541. [PMID: 36419300 DOI: 10.1016/j.jenvman.2022.116541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The presence of Contaminants of Emerging Concern (CECs) in water systems has been recognized as a potential source of risk for human health and the ecosystem. The present paper aims at evaluating the effects of different characteristics of full-scale Wastewater Treatment Plants (WWTPs) on the removal of 14 selected CECs belonging to the classes of caffeine, illicit drugs and pharmaceuticals. Particularly, the investigated plants differed because of the treatment lay-out, the type of biological process, the value of the operating parameters, the fate of the treated effluent (i.e. release into surface water or reuse), and the treatment capacity. The activity consisted of measuring concentrations of the selected CECs and also traditional water quality parameters (i.e. COD, phosphorous, nitrogen species and TSS) in the influent and effluent of 8 plants. The study highlights that biodegradable CECs (cocaine, methamphetamine, amphetamine, benzoylecgonine, 11-nor-9carboxy-Δ9-THC, lincomycin, trimethoprim, sulfamethoxazole, sulfadiazine, sulfadimethoxine, carbamazepine, ketoprofen, warfarin and caffeine) were well removed by all the WWTPs, with the best performance achieved by the MBR for antibiotics. Carbamazepine was removed at the lowest extent by all the WWTPs. The environmental risk assessed by using the site-specific value of the dilution factor resulted to be high in 3 out of 8 WWTPs for carbamazepine and less frequently for caffeine. However, the risk was reduced when the dilution factor was assumed equal to the default value of 10 as proposed by EU guidelines. Therefore, a specific determination of this factor is needed taking into account the hydraulic characteristics of the receiving water body.
Collapse
Affiliation(s)
- Camilla Di Marcantonio
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184.
| | - Agostina Chiavola
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| | | | - Simone Leoni
- ACEA ELABORI SpA, Via Vitorchiano 165, Rome, Italy
| | | | | | - Claudia Ceci
- ACEA ATO 2 SpA, Viale di Porta Ardeatina 129, 00154, Rome, Italy
| | | | - Maria Rosaria Boni
- Sapienza University of Rome, Department of Civil, Constructional and Environmental Engineering (DICEA), Via Eudossiana 18, Rome, Italy, Zip code 00184
| |
Collapse
|
10
|
Ntelane TS, Feleni U, Mthombeni NH, Kuvarega AT. Sulfate radical-based advanced oxidation process (SR-AOP) on titania supported mesoporous dendritic silica (TiO2/MDS) for the degradation of carbamazepine and other water pollutants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Yu Q, Yang X, Zhao F, Hu X, Guan L, Ren H, Geng J. Spatiotemporal variation and removal of selected endocrine-disrupting chemicals in wastewater treatment plants across China: Treatment process comparison. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155374. [PMID: 35461936 DOI: 10.1016/j.scitotenv.2022.155374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
In this study, the spatiotemporal variation in the occurrence of 19 endocrine-disrupting chemicals (EDCs) spanning four seasons in wastewater treatment plants (WWTPs) located in 17 Chinese cities was investigated. Removal efficiencies for selected EDCs in 17 WWTPs over four seasons were analyzed. Contributions of conventional and advanced process segments to the removal efficiency of EDCs were explored, which compared the removal efficacies of a variety of secondary and advanced processes for EDCs. Results showed that EDCs were extensively detected in WWTPs, with bisphenol A (BPA), dehydroepiandrosterone (DHRD), androstenedione (ADD), and pregnanediol (PD) being dominant in excess sludge and wastewater. Seasonally, the greatest seasonal differences were observed in the influent, with the concentrations of 12 EDCs varying significantly between seasons. Spatially, concentrations of BPA, DHRD, testosterone (TTR), and estriol (E3) in the influent significantly varied between the northern and southern WWTPs. Fourteen EDCs were removed steadily among the four seasons, while most EDCs had considerable removal differences between WWTPs. Contribution of the conventional process segment to the removal of individual EDCs was higher than that of the advanced process segment in WWTPs. Quantitative meta-analysis indicated that the anaerobic-anoxic-anaerobic (AAO) process in the various secondary processes had the highest removal of the target EDCs. Mass balance analysis further suggested that biodegradation in the aerobic tank of the AAO process was the major pathway for most EDCs removal. This study systematically depicts the spatiotemporal distribution of EDCs in WWTPs located across China and deepens the comprehension of EDCs removal in Chinese WWTPs from a treatment process perspective.
Collapse
Affiliation(s)
- Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xudong Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Fuzheng Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Anning West Road No. 88, Lanzhou 730070, PR China
| | - Xianda Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Linchang Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
12
|
Jain M, Upadhyay M, Gupta AK, Ghosal PS. A review on the treatment of septage and faecal sludge management: A special emphasis on constructed wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115143. [PMID: 35504184 DOI: 10.1016/j.jenvman.2022.115143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The global concern of the pollution of freshwater resources is associated with faecal sludge (FS) disposal, which is an inevitable component of onsite wastewater management mostly in developing countries. The difficulties with its treatment facilities lies in its higher organic content and low dewaterability of various available treatment systems. Moreover, the higher variability in characteristics and quantity of FS generated at different locations creates hindrances in designing the treatment system. Among the several treatment options, the constructed wetlands (CW) are an organic/green approach towards sanitation of FS with low cost and higher efficiency. The present study is an in-depth literature review on the quality and quantity of FS and septage (stabilized FS) in different regions attributed to the wide variability of its characteristics. This paper highlights the treatment of FS in different systems with a special emphasis on CW systems. Different mechanisms and factors affecting the FS treatment efficacy in CW, such as DO/aeration, macrophytes, substrate, CW configuration, and other environmental parameters, have been studied meticulously. The cost analysis revealed CW to be an economic system, and it can enable hybridization with other technologies to develop a complete treatment system with pronounced efficiencies. Several process modifications, such as augmentation with aeration, recirculation, micro-organisms, and earthworms, can enhance the treatment efficacies of CWs. The present review exhibited that the widely used plant species is Phragmites, and the optimum solid loading rate (SLR) range is 50-250 kg TS/m2/yr. The various factors to construct an optimized CW system for FS treatment were attempted, which may bolster the necessary guidelines for field-scale applications.
Collapse
Affiliation(s)
- Mahak Jain
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Maharishi Upadhyay
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Partha Sarathi Ghosal
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
13
|
Huang R, Guan C, Guo Q, Wang Z, Pan H, Jiang J. Oxidation of diclofenac by permanganate: Kinetics, products and effect of inorganic reductants. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Nas B, Ateş H, Dolu T, Yel E, Argun ME, Koyuncu S, Kara M, Dinç S. Evaluation of occurrence, fate and removal of priority phthalate esters (PAEs) in wastewater and sewage sludge by advanced biological treatment, waste stabilization pond and constructed wetland. CHEMOSPHERE 2022; 295:133864. [PMID: 35150704 DOI: 10.1016/j.chemosphere.2022.133864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Phthalate Esters (PAEs), detected in high concentrations generally in treated wastewater discharged from wastewater treatment plants (WWTPs), are important pollutants that restrict the reuse of wastewater. Investigating the fate of these endocrine-disrupting chemicals in WWTPs is crucial in order to protect both receiving environments and ecosystems. For this purpose, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP) and benzyl butyl phthalate (BBP) in the group of PAEs were monitored in simultaneously both in wastewater and sludge lines of selected two nature-based WWTPs and one advanced biological WWTP. Although it was frequently stated that phthalates were significantly removed in WWTPs in many studies found in literature, negative removal efficiencies of selected phthalates in investigated WWTPs during the sampling period were observed generally in this study. One of the reasons for this concentration increase could be releasing of phthalates from microplastics in wastewater during the treatment process or the desorption of PAEs from treatment sludge. DNOP was the compound with the highest concentration increase at almost each treatment unit of the three WWTPs. On the other hand, total PAEs load was 1997 g d-1 in advanced biological WWTP and adsorption onto sludge of PAEs were determined as 90%. The side-stream total load returned from the decanter supernatant was 0.02% of the total PAEs load coming to advanced biological WWTP from the sewer system. As a result of detailed statistical analysis, the correlation between raw wastewater and primary clarifier (PC) effluent was determined as an increasing linear relation for DEHP and DNOP. On the other hand, moderate and strong correlations were observed both between septic tank and constructed wetland (CW) processes with raw wastewater. In the waste stabilization pond (WSP), while a significant correlation was not found between the sludge line data, homogeneous variance, strong and moderate correlations were obtained in the wastewater line data. However, while mean differences for all investigated PAEs were not significant (p > 0.05) in the wastewater line, mean differences of DEHP (p < 0.05) were significant in the sludge line according to ANOVA analysis.
Collapse
Affiliation(s)
- B Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - H Ateş
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - T Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - E Yel
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - M E Argun
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - S Koyuncu
- Konya Metropolitan Municipality, Environmental Protection and Control Department, Konya, Turkey.
| | - M Kara
- Çumra Vocational High School, Selçuk University, Konya, Turkey.
| | - S Dinç
- Çumra School of Applied Sciences, Selçuk University, Konya, Turkey.
| |
Collapse
|
15
|
Mixed Contaminants: Occurrence, Interactions, Toxicity, Detection, and Remediation. Molecules 2022; 27:molecules27082577. [PMID: 35458775 PMCID: PMC9029723 DOI: 10.3390/molecules27082577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
The ever-increasing rate of pollution has attracted considerable interest in research. Several anthropogenic activities have diminished soil, air, and water quality and have led to complex chemical pollutants. This review aims to provide a clear idea about the latest and most prevalent pollutants such as heavy metals, PAHs, pesticides, hydrocarbons, and pharmaceuticals—their occurrence in various complex mixtures and how several environmental factors influence their interaction. The mechanism adopted by these contaminants to form the complex mixtures leading to the rise of a new class of contaminants, and thus resulting in severe threats to human health and the environment, has also been exhibited. Additionally, this review provides an in-depth idea of various in vivo, in vitro, and trending biomarkers used for risk assessment and identifies the occurrence of mixed contaminants even at very minute concentrations. Much importance has been given to remediation technologies to understand our current position in handling these contaminants and how the technologies can be improved. This paper aims to create awareness among readers about the most ubiquitous contaminants and how simple ways can be adopted to tackle the same.
Collapse
|
16
|
Yu Q, Yang X, Zhao F, Hu X, Ren H, Geng J. Occurrence and removal of progestogens from wastewater treatment plants in China: Spatiotemporal variation and process comparison. WATER RESEARCH 2022; 211:118038. [PMID: 35045367 DOI: 10.1016/j.watres.2022.118038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
This study investigated the overall occurrence and spatiotemporal variation of 19 progestogens in 608 samples collected from 17 wastewater treatment plants (WWTPs) distributed across China during four seasons. The aqueous removal efficiencies of progestogens were calculated and the efficacies of process segments, secondary and advanced processes, and process units in the removal of progestogens were explored. The results indicated that progestogens were widely detected in investigating WWTPs, with the progesterone, dydrogesterone, dienogest, ethisterone, and norethindrone were always dominant in the influent, secondary effluent, final effluent, and excess sludge. Seasonally, the influent exhibited more variability than the other matrices, that 10 progestogens concentrations varied significantly during the four seasons. Spatially, the influent concentrations of progestogens were generally higher in northern WWTPs than that in southern WWTPs during spring and summer. Eight progestogens were stably removed by the WWTPs across seasons, and most progestogens varied considerably in removal in different WWTPs. The conventional process segment was the dominant contributor to progestogen removal. The anaerobic-anoxic-oxic process and a combined process consisting of densadeg and cloth media filter and ultraviolet disinfection showed the highest removal of progestogens among various secondary and advanced treatment processes, respectively. Mass balance analysis showed that most progestogens were effectively eliminated in the aerobic unit, with biodegradation being the primary removal pathway. This study presents the first picture of the spatiotemporal dynamics of the distribution of progestogens in WWTPs of China and provides valuable information for better understanding of the occurrence and removal of progestogens in WWTPs.
Collapse
Affiliation(s)
- Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Xudong Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Fuzheng Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Anning West Road No. 88, Lanzhou 730070, China
| | - Xianda Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, No. 163 Xianlin Avenue, Qixia District, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
17
|
The Use of Surface-Modified Nanocrystalline Cellulose Integrated Membranes to Remove Drugs from Waste Water and as Polymers to Clean Oil Sands Tailings Ponds. Polymers (Basel) 2021; 13:polym13223899. [PMID: 34833197 PMCID: PMC8620018 DOI: 10.3390/polym13223899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
There is an urgent environmental need to remediate waste water. In this study, the use of surface-modified nanocrystalline cellulose (CNC) to remove polluting drugs or chemicals from waste water and oil sands tailing ponds has been investigated. CNC was modified by either surface adsorbing cationic or hydrophobic species or by covalent methods and integrated into membrane water filters. The removal of either diclofenac or estradiol from water was studied. Similar non-covalently modified CNC materials were used to flocculate clays from water or to bind naphthenic acids which are contaminants in tailing ponds. Estradiol bound well to hydrophobically modified CNC membrane filter systems. Similarly, diclofenac (anionic drug) bound well to covalently cationically modified CNC membranes. Non-covalent modified CNC effectively flocculated clay particles in water and bound two naphthenic acid chemicals (negatively charged and hydrophobic). Modified CNC integrated into water filter membranes may remove drugs from waste or drinking water and contaminants from tailing ponds water. Furthermore, the ability of modified CNC to flocculate clays particles and bind naphthenic acids may allow for the addition of modified CNC directly to tailing ponds to remove both contaminants. CNC offers an environmentally friendly, easily transportable and disposable novel material for water remediation purposes.
Collapse
|
18
|
Isaeva VI, Vedenyapina MD, Kurmysheva AY, Weichgrebe D, Nair RR, Nguyen NPT, Kustov LM. Modern Carbon-Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules 2021; 26:6628. [PMID: 34771037 PMCID: PMC8587771 DOI: 10.3390/molecules26216628] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/20/2022] Open
Abstract
Currently, a serious threat for living organisms and human life in particular, is water contamination with persistent organic and inorganic pollutants. To date, several techniques have been adopted to remove/treat organics and toxic contaminants. Adsorption is one of the most effective and economical methods for this purpose. Generally, porous materials are considered as appropriate adsorbents for water purification. Conventional adsorbents such as activated carbons have a limited possibility of surface modification (texture and functionality), and their adsorption capacity is difficult to control. Therefore, despite the significant progress achieved in the development of the systems for water remediation, there is still a need for novel adsorptive materials with tunable functional characteristics. This review addresses the new trends in the development of new adsorbent materials. Herein, modern carbon-based materials, such as graphene, oxidized carbon, carbon nanotubes, biomass-derived carbonaceous matrices-biochars as well as their composites with metal-organic frameworks (MOFs) and MOF-derived highly-ordered carbons are considered as advanced adsorbents for removal of hazardous organics from drinking water, process water, and leachate. The review is focused on the preparation and modification of these next-generation carbon-based adsorbents and analysis of their adsorption performance including possible adsorption mechanisms. Simultaneously, some weak points of modern carbon-based adsorbents are analyzed as well as the routes to conquer them. For instance, for removal of large quantities of pollutants, the combination of adsorption and other methods, like sedimentation may be recommended. A number of efficient strategies for further enhancing the adsorption performance of the carbon-based adsorbents, in particular, integrating approaches and further rational functionalization, including composing these adsorbents (of two or even three types) can be recommended. The cost reduction and efficient regeneration must also be in the focus of future research endeavors. The targeted optimization of the discussed carbon-based adsorbents associated with detailed studies of the adsorption process, especially, for multicomponent adsorbate solution, will pave a bright avenue for efficient water remediation.
Collapse
Affiliation(s)
- Vera I. Isaeva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Marina D. Vedenyapina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Alexandra Yu. Kurmysheva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Dirk Weichgrebe
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Rahul Ramesh Nair
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Ngoc Phuong Thanh Nguyen
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Leonid M. Kustov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
- Chemistry Department, Moscow State University, Leninskie Gory 1, Bldg. 3, 119992 Moscow, Russia
| |
Collapse
|