1
|
Hu B, Hu S, You L, Chen Z. Understanding arbuscular mycorrhizal fungi's contribution to hexabromocyclododecane metabolism: Pathways and ecological implications in contaminated environments. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137396. [PMID: 39893978 DOI: 10.1016/j.jhazmat.2025.137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
This study investigates the role of arbuscular mycorrhizal fungi (AMF) in the metabolism of hexabromocyclododecane (HBCD) and its ecological effects in contaminated environments. We focused on the symbiotic relationships between Iris pseudacorus L. and AMF (Rhizophagus irregularis) under HBCD exposure. Our results show that HBCD induces oxidative damage, which hinders plant growth. However, AMF significantly enhance the plant's antioxidant defenses, reducing oxidative damage and supporting better growth of I. pseudacorus. HBCD biodegradation patterns showed β- > γ- > α-HBCD, with AMF playing a key role in stabilizing rhizosphere microbial communities, particularly promoting Proteobacteria and potential bacterial degraders like Aeromonas and Trichococcus, which contributed to HBCD removal. Additionally, AMF appear to upregulate genes such as cypD_E, GST, dehH, dehA, dehM, Em3.8.1.2, and ligB, which are involved in debromination and hydroxylation reactions. This research highlights AMF's potential to enhance the phytoremediation of HBCD, providing valuable insights for environmental remediation strategies.
Collapse
Affiliation(s)
- Bo Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shanshan Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Lexing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha - Suchdol, Praha 16500, Czech Republic.
| |
Collapse
|
2
|
Mohammed AN. Efficient control of newly emerging bacterial pathogens in wastewater effluents of livestock farms and abattoirs using terminator disinfectant-based copper oxide nanoparticles. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:349. [PMID: 40032669 DOI: 10.1007/s10661-025-13764-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
The development of highly operational, reusable, multifunctional antibacterial agents has become an urgent need of the hour in terms of environmental safety and sustenance. This study was aimed at determining newly emerging bacterial pathogens in the wastewater effluent of broiler chicken and dairy cattle farms, beside their slaughterhouses. Also, the study assesses the biocidal effect of chitosan (CS), terminator disinfectant (TD), copper oxide nanoparticles (CuO-NPs), and terminator-based copper oxide nanoparticles (TD/CuO-NPs) against isolated emerging bacterial pathogens from wastewater effluents. Eighty wastewater samples were collected from the local sewage systems of these farms and slaughterhouses for the isolation and identification of bacterial pathogens. The biocidal activity of compounds was tested against fifty strains of isolated bacterial pathogens using an agar well diffusion and broth micro-dilution assay. CuO-NPs and TD/CuO-NPs composites were characterized using the Fourier transform infrared spectrum (FT-IR), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDX), and zeta potential distribution. The wastewater effluents of broiler chicken and dairy cattle farms reported the highest rates of bacterial pathogens (95.0% and 90.0%, respectively), followed by animal abattoirs (80.0%). The effectiveness of TD/CuO-NPs composites against all emerging bacteria was found to be highly efficient (100%) compared to the efficiency of CuO-NPs, TD, and CS (90, 70, and 60%, respectively), at the highest concentration (2.0 µg/ml, 1.0 mg/l, and 1.5 µg/ml, respectively). In conclusion, the TD/CuO-NPs composite proved its biocidal effect (100%) against all isolated bacterial pathogens at 1.0 µg/ml. The synthetic nanocomposite could be implemented in any disinfection program and/or as an effective control strategy for the bacterial pathogens in wastewater effluents in various investigated areas.
Collapse
Affiliation(s)
- Asmaa N Mohammed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| |
Collapse
|
3
|
Khant NA, Lumongsod RM, San A, Moon J, Namkoong S, Kim H. Navigating the complex landscape of waterborne disease research. JOURNAL OF WATER AND HEALTH 2025; 23:168-189. [PMID: 40018961 DOI: 10.2166/wh.2025.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/26/2024] [Indexed: 03/01/2025]
Abstract
Waterborne pathogens and associated diseases continue to pose a significant global health challenge, requiring effective monitoring, detection, and treatment strategies. This review examines the current state of waterborne pathogen management, highlighting persistent issues and recent advancements. Here, we review cutting-edge detection methods and treatment technology, emphasizing their roles in water safety and outbreak prevention. The impact of climate change on waterborne pathogen dynamics is explored, alongside a discussion of interdisciplinary research approaches. We also aimed to investigate the crucial relationship between waterborne disease control and Sustainable Development Goals (SDGs), focusing on community engagement, well-being, water sanitation, public health policies, and international cooperation. The PRISMA protocol systematic process was used to filter papers for this study and carry out the review process. Machine learning and remote sensing techniques are promising features in the pathogen detection field. SDGs 3, 6, 11, 13, and 17 are the most closely interrelated with waterborne diseases. This review provides an in-depth overview of waterborne pathogen management, contributing to improved global water quality and public health strategies. This integrated approach aims to enhance health outcomes and promote resilience against waterborne diseases, particularly for vulnerable communities.
Collapse
Affiliation(s)
- Naing Aung Khant
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | | | - Arkar San
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jinah Moon
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Heejung Kim
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea E-mail:
| |
Collapse
|
4
|
Torres-Martínez JA, Mahlknecht J, Kumar M, Loge FJ, Kaown D. Advancing groundwater quality predictions: Machine learning challenges and solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174973. [PMID: 39053524 DOI: 10.1016/j.scitotenv.2024.174973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/22/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Machine learning (ML) is revolutionizing groundwater quality research by enhancing predictive accuracy and management strategies for contamination. This comprehensive review explores the evolution of ML technologies and their integration into environmental science, assessing 230 papers to understand the advancements and challenges in groundwater quality research. It reveals that a substantial portion of the research neglects critical preprocessing steps, crucial for model accuracy, with 83 % of the studies overlooking this phase. Furthermore, while model optimization is more commonly addressed, being implemented in 65 % of the papers, there is a noticeable gap in model interpretability, with only 15 % of the research providing explanations for model outcomes. Comparative evaluation of ML algorithms and careful selection of evaluation metrics are deemed essential for determining model fitness and reliability. The review underscores the need for interdisciplinary collaboration, methodological rigor, and continuous innovation to advance ML in groundwater management. By addressing these challenges and implementing solutions, the full potential of ML can be harnessed to tackle complex environmental issues and ensure sustainable groundwater management. This comprehensive and critical review paper can serve as a guiding framework to establish minimum standards for developing ML in groundwater quality studies.
Collapse
Affiliation(s)
- Juan Antonio Torres-Martínez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico.
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Frank J Loge
- Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Dugin Kaown
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
6
|
Zhang C, Xie P, Wang Z, Chang H, Ren N, Ho SH. Amide groups within polystyrene accelerates tetracycline removal in a continuous advanced microalgal treatment system. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135346. [PMID: 39098203 DOI: 10.1016/j.jhazmat.2024.135346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Livestock effluents are challenging to be treated owing that antibiotics and microplastics are untargeted for most biological technologies. As far, microalgal wastewater treatment is recognized as an effective technique for dealing with. In this study, a continuous-flow system was conducted over 45 days to evaluate the effectiveness of Chlamydomonas sp. JSC4 in removing tetracycline (TCH) under the influence of polystyrene (PS). It shows that PS significantly enhanced the dissipation efficiency of TCH from livestock effluents, and 9.83 % TCH removal was increased under 5 mg/L of both TCH and PS exposure. Meanwhile, higher microalgal bioactivity was a significant factor in achieving desirable pollutants removal efficiency, as 87.14 % microalgal biomass was improved owing to reduction of oxidative stress and augmentation of photosynthesis. Importantly, the pivotal active sites, NH2 and CO, were rapidly covered via π-π interactions and hydrogen bonds during adsorption process between TCH and PS, accounting for mitigation of TCH-PS complexes toxicity and improvement of microalgal ribosome metabolism. Additionally, co-exposure to TCH and PS resulted in maximum lipids (0.57 g/L) and energy (20.79 kJ/L) production, further encouraging a fantastic vision for the tertiary process of livestock effluents via advanced microalgal treatment.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Zeyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
7
|
Cai S, Wen Y, Zhang Q, Zeng Q, Yang Q, Gao B, Tang G, Zeng Q. Four-in-one multifunctional self-driven photoelectrocatalytic system for water purification: Organics degradation, U(VI) reduction, electricity generation and disinfection against bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172353. [PMID: 38614351 DOI: 10.1016/j.scitotenv.2024.172353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
This study addresses the energy-intensive nature of conventional wastewater treatment processes and proposes a solution through the development of a green, low-energy, and multifunctional wastewater treatment technology. The research focuses on a multifunctional self-driven photoelectrocatalytic (PEC) system, exploring its four-in-one applications in eliminating organic pollutants, reducing U(VI), generating electrical energy, and disinfecting pathogenic microorganisms. A TiO2-decorated carbon felt (CF@TiO2) cathode is synthesized to enhance interfacial charge transfer, with TiO2 coating improving surface binding sites (edge TiO and adsorbed -OH) for UO22+ adsorption and reduction. The self-driven PEC system, illuminated solely with simulated sunlight, exhibits remarkable efficiency in removing nearly 100 % of uranium within 0.5 h and simultaneously degrading 99.9 % of sulfamethoxazole (SMX) within 1.5 h, all while generating a maximum power output density (Pmax) of approximately 1065 μW·cm-2. The system demonstrates significant anti-interference properties across a wide pH range and coexisting ions. Moreover, 49.4 % of the fixed uranium on the cathode is reduced into U(IV) species, limiting its migration. The self-driven PEC system also excels in detoxifying various toxic organic compounds, including tetracycline, chlortetracycline, and oxytetracycline, and exhibits exceptional sterilization ability by disinfecting nearly 100 % of Escherichia coli within 0.5 h. This work presents an energy-saving, sustainable, and easily recyclable wastewater purification system with four-in-one capabilities, relying solely on sunlight for operation.
Collapse
Affiliation(s)
- Sixuan Cai
- School of Public Health, University of South China, Hengyang, Hunan 421001, China
| | - Yanjun Wen
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingyan Zhang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingming Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingqing Yang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Beibei Gao
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Guolong Tang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Qingyi Zeng
- School of Public Health, University of South China, Hengyang, Hunan 421001, China; School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
8
|
Sadare OO, Oke D, Olawuni OA, Olayiwola IA, Moothi K. Modelling and optimization of membrane process for removal of biologics (pathogens) from water and wastewater: Current perspectives and challenges. Heliyon 2024; 10:e29864. [PMID: 38698993 PMCID: PMC11064141 DOI: 10.1016/j.heliyon.2024.e29864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
As one of the 17 sustainable development goals, the United Nations (UN) has prioritized "clean water and sanitation" (Goal 6) to reduce the discharge of emerging pollutants and disease-causing agents into the environment. Contamination of water by pathogenic microorganisms and their existence in treated water is a global public health concern. Under natural conditions, water is frequently prone to contamination by invasive microorganisms, such as bacteria, viruses, and protozoa. This circumstance has therefore highlighted the critical need for research techniques to prevent, treat, and get rid of pathogens in wastewater. Membrane systems have emerged as one of the effective ways of removing contaminants from water and wastewater However, few research studies have examined the synergistic or conflicting effects of operating conditions on newly developing contaminants found in wastewater. Therefore, the efficient, dependable, and expeditious examination of the pathogens in the intricate wastewater matrix remains a significant obstacle. As far as it can be ascertained, much attention has not recently been given to optimizing membrane processes to develop optimal operation design as related to pathogen removal from water and wastewater. Therefore, this state-of-the-art review aims to discuss the current trends in removing pathogens from wastewater by membrane techniques. In addition, conventional techniques of treating pathogenic-containing water and wastewater and their shortcomings were briefly discussed. Furthermore, derived mathematical models suitable for modelling, simulation, and control of membrane technologies for pathogens removal are highlighted. In conclusion, the challenges facing membrane technologies for removing pathogens were extensively discussed, and future outlooks/perspectives on optimizing and modelling membrane processes are recommended.
Collapse
Affiliation(s)
- Olawumi O. Sadare
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
| | - Doris Oke
- Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Oluwagbenga A. Olawuni
- Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg, 2028, South Africa
| | - Idris A. Olayiwola
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
| | - Kapil Moothi
- School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
9
|
Tran TV, Jalil AA, Nguyen DTC, Nguyen TTT, Nguyen LTT, Nguyen CV, Alhassan M. Effect of pyrolysis temperature on characteristics and chloramphenicol adsorption performance of NH 2-MIL-53(Al)-derived amine-functionalized porous carbons. CHEMOSPHERE 2024; 355:141599. [PMID: 38548079 DOI: 10.1016/j.chemosphere.2024.141599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 04/08/2024]
Abstract
Several activities such as aquaculture, human and feedstock therapies can directly release antibiotics into water. Due to high stability, low hydrolysis and non-biodegradation, they can accumulate in the aqueous environment and transport to aquatic species. Here, we synthesized amine-functionalized porous carbons (ANC) by a direct-pyrolysis process of NH2-MIL-53(Al) as a sacrificial template at between 600 and 900 °C and utilized them to eliminate chloramphenicol antibiotic from water. The NH2-MIL-53(Al)-derived porous carbons obtained high surface areas (304.7-1600 m2 g-1) and chloramphenicol adsorption capacities (148.3-261.5 mg g-1). Several factors such as hydrogen bonding, Yoshida hydrogen bonding, and π-π interaction, hydrophobic interaction possibly controlled adsorption mechanisms. The ANC800 could be reused four cycles along with high stability in structure. As a result, NH2-MIL-53(Al)-derived porous carbons are recommended as recyclable and efficient adsorbents to the treatment of antibiotics in water.
Collapse
Affiliation(s)
- Thuan Van Tran
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia.
| | - Duyen Thi Cam Nguyen
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | | | - Loan Thi To Nguyen
- Faculty of Chemistry, Thai Nguyen University of Education, Thai Nguyen, 240000, Viet Nam
| | - Chi Van Nguyen
- Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, 69/68 Dang Thuy Tram, Ward 13, Binh Thanh District, Ho Chi Minh City, 700000, Viet Nam
| | - Mansur Alhassan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor, Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB, 2134, Airport Road, Sokoto, Nigeria
| |
Collapse
|
10
|
Rivadulla M, Lois M, Elena AX, Balboa S, Suarez S, Berendonk TU, Romalde JL, Garrido JM, Omil F. Occurrence and fate of CECs (OMPs, ARGs and pathogens) during decentralised treatment of black water and grey water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169863. [PMID: 38190906 DOI: 10.1016/j.scitotenv.2023.169863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Decentralised wastewater treatment is becoming a suitable strategy to reduce cost and environmental impact. In this research, the performance of two technologies treating black water (BW) and grey water (GW) fractions of urban sewage is carried out in a decentralised treatment of the wastewater produced in three office buildings. An Anaerobic Membrane Bioreactor (AnMBR) treating BW and a Hybrid preanoxic Membrane Bioreactor (H-MBR) containing small plastic carrier elements, treating GW were operated at pilot scale. Their potential on reducing the release of contaminants of emerging concern (CECs) such as Organic Micropollutants (OMPs), Antibiotic Resistance Genes (ARGs) and pathogens was studied. After 226 d of operation, a stable operation was achieved in both systems: the AnMBR removed 92.4 ± 2.5 % of influent COD, and H-MBR removed 89.7 ± 3.5 %. Regarding OMPs, the profile of compounds differed between BW and GW, being BW the matrix with more compounds detected at higher concentrations (up to μg L-1). For example, in the case of ibuprofen the concentrations in BW were 23.63 ± 3.97 μg L-1, 3 orders of magnitude higher than those detected in GW. The most abundant ARGs were sulfonamide resistant genes (sul1) and integron class 1 (intl1) in both BW and GW. Pathogenic bacteria counts were reduced between 1 and 3 log units in the AnMBR. Bacterial loads in GW were much lower than in BW, being no bacterial re-growth observed for the GW effluents after treatment in the H-MBR. None of the selected enteric viruses was detected in GW treatment line.
Collapse
Affiliation(s)
- M Rivadulla
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| | - M Lois
- CRETUS, Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A X Elena
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - S Balboa
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - S Suarez
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - T U Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - J L Romalde
- CRETUS, Department of Microbiology and Parasitology, CIBUS-Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - J M Garrido
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - F Omil
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
11
|
Sithamparanathan E, Kujawa-Roeleveld K, Rijnaarts HHM, Sutton NB. Hydroponic materials improve organic micropollutant removal in vertical flow constructed wetlands treating wastewater. CHEMOSPHERE 2024; 352:141388. [PMID: 38346507 DOI: 10.1016/j.chemosphere.2024.141388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Unconventional substrata like activated carbon or clay beads can enhance micropollutant removal in constructed wetlands. However, hydroponic materials widely used in horticulture have not yet been investigated for their potential to remove micropollutants. In addition, potential effect of plant species other than reeds on micropollutant removal has not been sufficiently investigated. Therefore, a nature-based, post-treatment technology called improved vertical flow constructed wetlands (CW) with hydroponic (H) materials (CWH) was designed by employing cocopeat and mineral with ornamental plant species syngonium and periwinkle. A mesocosm CWH system was tested in a climate-controlled greenhouse for 550 days for its potential to remove frequently found micropollutants in wastewater, namely sulfamethoxazole, trimethoprim, diclofenac, erythromycin, carbamazepine, pyrimethanil, tebuconazole, pymetrozine, atrazine and DEET from wastewater effluent. The main focus was to understand the contribution of sorption, microbial degradation and phytoremediation on the removal of those micropollutants. It was found that cocopeat showed a capacity for sorbing micropollutants, ranging between 80 and 99% of the compounds added while less than 10% sorption was observed for mineral wool. Additionally moderate to high biological removal (25-60 μg of compound/kg dry weight of substratum/day) for most of the studied compounds was observed in all the cocopeat biotic groups. Furthermore, it could be stated that plants appear not to be an important factor for micropollutant removal. The observed differences in removal between the cocopeat and mineral wool systems could be explained by the difference in physico-chemical properties of the substrata, where cocopeat has a higher water holding capacity, moisture content, nutrient and organic matter content, and a higher intraparticle porosity and surface area. This study revealed notable removal of persistent and mobile micropollutants in cocopeat CWH, namely carbamazepine (80-86%) and diclofenac (97-100%). These results demonstrate the potential beneficial use of hydroponic materials as substratum in more advanced constructed wetlands designed to remove micropollutants.
Collapse
Affiliation(s)
- Elackiya Sithamparanathan
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700AA, Wageningen, the Netherlands
| | - Katarzyna Kujawa-Roeleveld
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700AA, Wageningen, the Netherlands.
| | - Huub H M Rijnaarts
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700AA, Wageningen, the Netherlands
| | - Nora B Sutton
- Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700AA, Wageningen, the Netherlands
| |
Collapse
|
12
|
Tang X, Chen L, Ding Y, Liu H, Li M, Yang Y. Impact of nanoplastics on the biodegradation, ecotoxicity, and key genes involved in imidacloprid metabolic pathways in papyrus (Cyperus papyrus L.). CHEMOSPHERE 2024; 349:140910. [PMID: 38072197 DOI: 10.1016/j.chemosphere.2023.140910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Both nanoplastics (NPs) and imidacloprid (IMI) are widely distributed in the environment and have attracted significant attention due to their adverse effects on ecosystems. Constructed wetlands have the potential to remove IMI, but there is still limited understanding of how wetland plants interact with IMI, especially when influenced by different charged NPs. This study assessed their ecotoxicological effects, as well as the fate and transformation of IMI in papyrus (Cyperus papyrus L.) under the influence of different charged NPs and identified key driving genes in the plant. Results show that simultaneous exposure to positively charged PS-NH2 and IMI inhibited plant growth. The combined action of NPs and IMI intensified their toxicity, enhancing lipid peroxidation and altering antioxidant enzyme activities. The IMI removal efficiency, which was primarily driven by biodegradation, was 80.61%, 88.91%, and 74.71% in the IMI-alone, co-IMI/PS_COOH, and co-IMI/PS_NH2 systems, respectively. PS-NH2 restricted the roots-to-shoots translocation ability of IMI. PS-COOH enhanced IMI oxidation and nitro reduction, while PS-NH2 inhibited 2-OH-IMI dehydrogenation to IMI-olefin in papyrus. Transcriptomics and gene network analysis identified the genes encoding CYP450 enzymes, reductases, hydrolases, dehydrogenases, and peroxidases as those influencing IMI biodegradation. These enzymes play a crucial role in the hydroxylation, dehydrogenation, reduction, and oxidation processes during biodegradation of IMI in the presence of NPs. This study expands the understanding of the impact of differently charged NPs on the IMI remediation efficacy of papyrus, thus providing new insights into the phytoremediation of organic contaminants in constructed wetlands.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China.
| | - Luying Chen
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Ding
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Huanping Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Muzi Li
- College of Geography and Resources, Sichuan Normal University, Chengdu 610101, China
| | - Yang Yang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Barazorda-Ccahuana HL, Fajardo AS, Dos Santos AJ, Lanza MRV. Decentralized approach toward organic pollutants removal using UV radiation in combination with H 2O 2-based electrochemical water technologies. CHEMOSPHERE 2023; 342:140079. [PMID: 37709061 DOI: 10.1016/j.chemosphere.2023.140079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
The current literature lacks a comprehensive discussion on the trade-off between pollutant degradation/mineralization and treatment time costs in utilizing UV light in combination with H2O2-based electrochemical advanced oxidation processes (EAOPs). The present study sheds light on the benefits of using the photoelectro-Fenton (PEF) process with UVA or UVC for methylparaben (MetP) degradation in real drinking water. Although light boosts the photodegradation of refractory Fe(III) complexes and the photolysis of H2O2 (with UVC only), the energy-intensive nature of light-based treatments is acknowledged. To help tackle the high energy consumption issue, a novel approach was employed: partial application of UVA or UVC light after a predetermined electro-Fenton electrolysis time. The proposed treatment approach yielded satisfactory comparable results to those obtained from the application of PEF/UVA or PEF/UVC in terms of total organic carbon removal (ca. 100%), with notably lower energy consumption (ca. 50%). The study delves into the combined method's feasibility, analyzing pollutant degradation/mineralization process and overall energy consumption. The research identifies possible degradation routes based on intermediate detection and radical quenching experiments. Finally, toxicological assessments evaluate the toxicity levels of MetP and its intermediates. The findings of this study bring meaningful contributions to the fore and point to the highly promising potential of the proposed approach, in terms of sustainability and cost-effectiveness, when applied for decentralized water treatment.
Collapse
Affiliation(s)
- Haruna L Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Catholic University of Santa María, Urb. San José s/n - Umacollo, Arequipa, 04000, Peru
| | - Ana S Fajardo
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua Da Misericórdia, Lagar Dos Cortiços - S. Martinho Do Bispo, 3045-093 Coimbra, Portugal
| | - Alexsandro J Dos Santos
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP 13566-590, Brazil.
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP 13566-590, Brazil.
| |
Collapse
|
14
|
Bangia S, Bangia R, Daverey A. Pharmaceutically active compounds in aqueous environment: recent developments in their fate, occurrence and elimination for efficient water purification. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1344. [PMID: 37857877 DOI: 10.1007/s10661-023-11858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023]
Abstract
The existence of pharmaceutically active compounds (PhACs) in the water is a major concern for environmentalists due to their deleterious effects on living organisms even at minuscule concentrations. This review focuses on PhACs such as analgesics and anti-inflammatory compounds, which are massively excreted in urine and account for the majority of pharmaceutical pollution. Furthermore, other PhACs such as anti-epileptics, beta-blockers and antibiotics are discussed because they also contribute significantly to pharmaceutical pollution in the aquatic environment. This review is divided into two parts. In the first part, different classes of PhACs and their fate in the wastewater environment are presented. In the second part, recent advances in the removal of PhACs by conventional wastewater treatment plants, including membrane bioreactors (MBRs), activated carbon adsorption and bench-scale studies concerning a broad range of advanced oxidation processes (AOPs) that render practical and appropriate strategies for the complete mineralization and degradation of pharmaceutical drugs, are reviewed. This review indicates that drugs like diclofenac, naproxen, paracetamol and aspirin are removed efficiently by conventional systems. Activated carbon adsorption is suitable for the removal of diclofenac and carbamazepine, whereas AOPs are leading water treatment strategies for the effective removal of reviewed PhACs.
Collapse
Affiliation(s)
- Saulab Bangia
- Hamburg University of Technology, 21073, Hamburg, Germany
| | - Riya Bangia
- Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248012, Uttarakhand, India.
- School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
15
|
Aoki M, Takemura Y, Kawakami S, Yoochatchaval W, Tran P. T, Tomioka N, Ebie Y, Syutsubo K. Quantitative detection and reduction of potentially pathogenic bacterial groups of Aeromonas, Arcobacter, Klebsiella pneumoniae species complex, and Mycobacterium in wastewater treatment facilities. PLoS One 2023; 18:e0291742. [PMID: 37768925 PMCID: PMC10538766 DOI: 10.1371/journal.pone.0291742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023] Open
Abstract
Water quality parameters influence the abundance of pathogenic bacteria. The genera Aeromonas, Arcobacter, Klebsiella, and Mycobacterium are among the representative pathogenic bacteria identified in wastewater. However, information on the correlations between water quality and the abundance of these bacteria, as well as their reduction rate in existing wastewater treatment facilities (WTFs), is lacking. Hence, this study aimed to determine the abundance and reduction rates of these bacterial groups in WTFs. Sixty-eight samples (34 influent and 34 non-disinfected, treated, effluent samples) were collected from nine WTFs in Japan and Thailand. 16S rRNA gene amplicon sequencing analysis revealed the presence of Aeromonas, Arcobacter, and Mycobacterium in all influent wastewater and treated effluent samples. Quantitative real-time polymerase chain reaction (qPCR) was used to quantify the abundance of Aeromonas, Arcobacter, Klebsiella pneumoniae species complex (KpSC), and Mycobacterium. The geometric mean abundances of Aeromonas, Arcobacter, KpSC, and Mycobacterium in the influent wastewater were 1.2 × 104-2.4 × 105, 1.0 × 105-4.5 × 106, 3.6 × 102-4.3 × 104, and 6.9 × 103-5.5 × 104 cells mL-1, respectively, and their average log reduction values were 0.77-2.57, 1.00-3.06, 1.35-3.11, and -0.67-1.57, respectively. Spearman's rank correlation coefficients indicated significant positive or negative correlations between the abundances of the potentially pathogenic bacterial groups and Escherichia coli as well as water quality parameters, namely, chemical/biochemical oxygen demand, total nitrogen, nitrate-nitrogen, nitrite-nitrogen, ammonium-nitrogen, suspended solids, volatile suspended solids, and oxidation-reduction potential. This study provides valuable information on the development and appropriate management of WTFs to produce safe, hygienic water.
Collapse
Affiliation(s)
- Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yasuyuki Takemura
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Shuji Kawakami
- Department of Civil Engineering, National Institute of Technology (KOSEN), Nagaoka College, Nagaoka, Niigata, Japan
| | - Wilasinee Yoochatchaval
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Thao Tran P.
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Noriko Tomioka
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Yoshitaka Ebie
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- Research Center of Water Environment Technology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
16
|
Xue W, Maung GYT, Otiti J, Tabucanon AS. Land use-based characterization and source apportionment of microplastics in urban storm runoffs in a tropical region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121698. [PMID: 37088252 DOI: 10.1016/j.envpol.2023.121698] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Urban stormwater runoff has been suggested as one important land-based pathway of microplastics (MPs) entering the oceans, in which the abundance and characteristics of MPs may be influenced by urban land use types. However, little information has been reported regarding this, especially in the tropical monsoon region. This study first reports the MPs in urban stormwater runoffs in a tropical monsoon region that were collected from four typical urban land use types, including industrial, highways, commercial, and residential areas. The average MP particle count and mass concentration were measured as 4.7 ± 3.5 particles/L and 3.8 ± 2.9 mg/L, respectively. MP abundances showed clear urban land use gradients following the order of industrial > transportation > commercial > residential area. In terms of the seasonal variation in MP abundances, a slightly increasing particle count in the dry season was noted for the residential site. Source apportionment of MPs in stormwater runoffs was demonstrated based on the land use type, particle morphology, and chemical compositions. With the simple apportionment approach, approximately 85% of the MP sources were able to be identified in the industrial, transportation, and residential sites. However, the commercial site showed high variability in terms of the morphology and polymer type of MPs. Furthermore, significantly positive correlations between MP abundance and runoff turbidity, TSS, COD, and rainfall intensity were identified, while, no significant correlation was found between MP characteristics and selected water quality/meteorological parameters.
Collapse
Affiliation(s)
- Wenchao Xue
- Department of Energy, Environment and Climate Change, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand.
| | - Gone Yi Thaw Maung
- Department of Energy, Environment and Climate Change, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | - Jerome Otiti
- Department of Energy, Environment and Climate Change, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand
| | | |
Collapse
|
17
|
Lee U, Jang ES, Lee S, Kim HJ, Kang CW, Cho M, Lee J. Near dissolved organic matter microfiltration (NDOM MF) coupled with UVC LED disinfection to maximize the efficiency of water treatment for the removal of Giardia and Cryptosporidium. WATER RESEARCH 2023; 233:119731. [PMID: 36822110 DOI: 10.1016/j.watres.2023.119731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Microfiltration (MF) membranes with a mean pore size same as or smaller than 0.45 µm have been typically used to separate pathogenic protozoa in water since materials larger than 0.45 µm are considered particulates. However, 0.45 µm is too small to separate protozoa which are 4-6 µm (Cryptosporidium oocyst) or 8-15 µm (Giardia cyst) in size. In this study, we optimized the mean pore size of MF membranes to maximize the producibility and guarantee a high removal rate simultaneously and proposed the membrane filtration using an MF membrane with an optimum mean pore size larger than but close to dissolved organic matter (DOM), which is called near DOM MF (NDOM MF). According to the MF test using polystyrene surrogate beads with diameters of 3 and 8 µm, an MF membrane with a 0.8 µm mean pore size was the best in that it showed 52% to 146% higher water fluxes than a 0.45 µm MF membrane while maintaining the removal rate at 3-4 log. It was also the case for a low-temperature MF test, revealing the NDOM MF is highly effective regardless of temperature changes. Lastly, we tried to find the possibility of combining the NDOM MF with disinfection by an ultraviolet light emitting diode (UVC LED) to further guarantee the high quality of treated water while providing high process efficiency.
Collapse
Affiliation(s)
- Uje Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Eun-Suk Jang
- Department of Housing Environmental Design and Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Somin Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Hee-Jun Kim
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Chun-Won Kang
- Department of Housing Environmental Design and Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Min Cho
- Division of Biotechnology, Advanced institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea.
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
18
|
Ali S, Khan SA, Hamayun M, Lee IJ. The Recent Advances in the Utility of Microbial Lipases: A Review. Microorganisms 2023; 11:microorganisms11020510. [PMID: 36838475 PMCID: PMC9959473 DOI: 10.3390/microorganisms11020510] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Lipases are versatile biocatalysts and are used in different bioconversion reactions. Microbial lipases are currently attracting a great amount of attention due to the rapid advancement of enzyme technology and its practical application in a variety of industrial processes. The current review provides updated information on the different sources of microbial lipases, such as fungi, bacteria, and yeast, their classical and modern purification techniques, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, aqueous two-phase system (ATPS), aqueous two-phase flotation (ATPF), and the use of microbial lipases in different industries, e.g., the food, textile, leather, cosmetics, paper, and detergent industries. Furthermore, the article provides a critical analysis of lipase-producing microbes, distinguished from the previously published reviews, and illustrates the use of lipases in biosensors, biodiesel production, and tea processing, and their role in bioremediation and racemization.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Correspondence: (M.H.); (I.-J.L.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (M.H.); (I.-J.L.)
| |
Collapse
|
19
|
Sotiropoulou M, Stefanatou A, Schiza S, Petousi I, Stasinakis AS, Fountoulakis MS. Removal of microfiber in vertical flow constructed wetlands treating greywater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159723. [PMID: 36309266 DOI: 10.1016/j.scitotenv.2022.159723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Nature-based solutions such as constructed wetlands (CW) are considered as a sustainable, green technology for greywater treatment. However, their efficiency to remove microplastics is not well-known even though greywater is considered as a significant source of microfiber pollution. In this study, the removal of fiber microplastics from greywater using a vertical flow constructed wetland (VFCW) was investigated. For the purposes of this study, an experimental wetland was constructed, planted with the flowering plant Zantedeschia aethiopica and filled with a substrate made of sand/gravel of several sizes. The system's performance was monitored for five months during which it received real laundry wastewater. Promising results were obtained showing the significant removal of microfibers from the influent (> 95 %). Moreover, the ability of the system to remove microfibers from laundry wastewater was not significantly affected from the hydraulic loading rate (HLR) applied. The average microfibers concentration decreased from 71 ± 25 microparticles/L in the influent to 1 ± 1 microparticles/L in the effluent of VFCW when an HLR of 63.7 mm/d was applied. High removal efficiencies were also observed for COD and turbidity (93 % and 94 %, respectively). Thus, the results indicate a significant improvement in the overall quality of laundry wastewater due to the use of the VFCW.
Collapse
Affiliation(s)
- M Sotiropoulou
- Department of Environment, University of the Aegean, Mytilene, Greece.
| | - A Stefanatou
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - S Schiza
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - I Petousi
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - A S Stasinakis
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - M S Fountoulakis
- Department of Environment, University of the Aegean, Mytilene, Greece
| |
Collapse
|
20
|
Ultrasonication-assisted Fouling Control during Ceramic Membrane Filtration of Primary Wastewater under Gravity-driven and Constant Flux Conditions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Sharma M, Yadav A, Dubey KK, Tipple J, Das DB. Decentralized systems for the treatment of antimicrobial compounds released from hospital aquatic wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156569. [PMID: 35690196 DOI: 10.1016/j.scitotenv.2022.156569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
In many developing countries, untreated hospital effluents are discharged and treated simultaneously with municipal wastewater. However, if the hospital effluents are not treated separately, they pose concerning health risks due to the possible transport of the antimicrobial genes and microbes in the environment. Such effluent is considered as a point source for a number of potentially infectious microorganisms, waste antimicrobial compounds and other contaminants that could promote antimicrobial resistance development. The removal of these contaminants prior to discharge reduces the exposure of antimicrobials to the environment and this should lower the risk of superbug development. At an effluent discharge site, suitable pre-treatment of wastewater containing antimicrobials could maximise the ecological impact with potentially reduced risk to human health. In addressing these points, this paper reviews the applications of decentralized treatment systems toward reducing the concentration of antimicrobials in wastewater. The most commonly used techniques in decentralized wastewater treatment systems for onsite removal of antimicrobials were discussed and evidence suggests that hybrid techniques should be more useful for the efficient removal of antimicrobials. It is concluded that alongside the cooperation of administration departments, health industries, water treatment authorities and general public, decentralized treatment technology can efficiently enhance the removal of antimicrobial compounds, thereby decreasing the concentration of contaminants released to the environment that could pose risks to human and ecological health due to development of antimicrobial resistance in microbes.
Collapse
Affiliation(s)
- Manisha Sharma
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Ankush Yadav
- Bioprocess Engineering Laboratory, Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Bioprocess Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Joshua Tipple
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Diganta Bhusan Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| |
Collapse
|
22
|
Kumar P, Alamri SAM, Alrumman SA, Eid EM, Adelodun B, Goala M, Choi KS, Kumar V. Foliar use of TiO 2-nanoparticles for okra (Abelmoschus esculentus L. Moench) cultivation on sewage sludge-amended soils: biochemical response and heavy metal accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:66507-66518. [PMID: 35503150 DOI: 10.1007/s11356-022-20526-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Considering its richness in organic and inorganic mineral nutrients, the recycling of sewage sludge (SS) is highly considered as a soil supplement in agriculture. However, the fate of hazardous heavy metal accumulation in the crops cultivated in SS amended soils is always a source of concern. Since nanoparticles are widely recognized to reduce heavy metal uptake by crop plants; thus, the present experiment deals with okra (Abelmoschus esculentus L. Moench) cultivation under the combined application of SS and TiO2-nanoparticles (NPs). Triplicated pot experiments were conducted using different doses of SS and TiO2-NPs such as 0 g/kg SS (control), 50 g/kg SS, 50 g/kg SS + TiO2, 100 g/kg SS, and 100 g/kg SS + TiO2, respectively. The findings of this study indicated that among the doses of treatment combinations investigated, 100 g/kg SS + TiO2 showed a significant (p < 0.05) increase in the okra plant yield (287.87 ± 4.06 g/plant) and other biochemical parameters such as fruit length (13.97 ± 0.54 cm), plant height (75.05 ± 3.18 cm), superoxide dismutase (SOD: 110.68 ± 3.11 μ/mg), catalase (CAT: 81.32 ± 3.52 μ/mg), and chlorophyll content (3.12 ± 0.05 mg/g fwt.). Also, the maximum contents of six heavy metals in the soil and cultivated okra plant tissues (fruit, stem, and root regions) followed the order of Fe > Mn > Cu > Zn > Cr > Cd using the same treatment. Bioaccumulation and health risk assessment indicated that foliar application of TiO2-NPs significantly reduced the fate of heavy metal accumulation under higher doses of SS application. Therefore, the findings of this study suggested that the combined use of SS and TiO2-NPs may be useful in ameliorating the negative consequences of heavy metal accumulation in cultivated okra crops.
Collapse
Affiliation(s)
- Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Saad A M Alamri
- Biology Department, College of Science, King Khalid University, Abha, 61321, Saudi Arabia
| | - Sulaiman A Alrumman
- Biology Department, College of Science, King Khalid University, Abha, 61321, Saudi Arabia
| | - Ebrahem M Eid
- Biology Department, College of Science, King Khalid University, Abha, 61321, Saudi Arabia
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, 41566, Korea
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, 240103, Nigeria
| | - Madhumita Goala
- Nehru College, Pailapool, Affiliated Assam University, Cachar, Silchar, 788098, Assam, India
| | - Kyung Sook Choi
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, 240103, Nigeria
| | - Vinod Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India.
| |
Collapse
|
23
|
Mahlangu T, Arunachellan I, Sinha Ray S, Onyango M, Maity A. Preparation of Copper-Decorated Activated Carbon Derived from Platamus occidentalis Tree Fiber for Antimicrobial Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5939. [PMID: 36079320 PMCID: PMC9457392 DOI: 10.3390/ma15175939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study focuses on a greener approach to synthesizing activated carbon by carbonizing Platamus occidentalis tree fibers (TFSA) with 98% H2SO4 at 100 °C. The resulted TFSA was employed as an effective adsorbent for copper ions in aqueous media, yielding copper decorated TFSA (Cu@TFSA). The successful adsorption of copper onto the TFSA was proven through extensive characterization techniques. Herein, the TEM and XPS showed that copper nanoparticles were formed in situ on the TFSA surface, without the use of additional reducing and stabilizing agents nor thermal treatment. The surface areas of TFSA and Cu@TFSA were 0.0150 m2/g and 0.3109 m2/g, respectively. Applying the Cu@TFSA as an antimicrobial agent against Escherica coli ( E. coli) and Salmonella resulted in the potential mitigation of complex secondary pollutants from water and wastewater. The Cu@TFSA exhibited outstanding antimicrobial activity against E. coli and Salmonella in both synthetic and raw water samples. This demonstrated a complete growth inhibition observed within 120 min of exposure. The bacteria inactivation took place through the destruction of the bacteria cell wall and was confirmed by the AFM analysis technique. Cu@TFSA has the potential to be used in the water and wastewater treatment sector as antimicrobial agents.
Collapse
Affiliation(s)
- Thembisile Mahlangu
- Green Engineering Research Group, Department of Chemical Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4000, South Africa
- DSI/CSIR Centre of Nanostructured and Advanced Materials, 1-Meiring Naude Road, Pretoria 0001, South Africa
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Iviwe Arunachellan
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Suprakas Sinha Ray
- DSI/CSIR Centre of Nanostructured and Advanced Materials, 1-Meiring Naude Road, Pretoria 0001, South Africa
| | - Maurice Onyango
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Arjun Maity
- DSI/CSIR Centre of Nanostructured and Advanced Materials, 1-Meiring Naude Road, Pretoria 0001, South Africa
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001, South Africa
| |
Collapse
|
24
|
Liu H, Li Z, Qiang Z, Karanfil T, Yang M, Liu C. The elimination of cell-associated and non-cell-associated antibiotic resistance genes during membrane filtration processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155250. [PMID: 35427607 DOI: 10.1016/j.scitotenv.2022.155250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 04/09/2022] [Indexed: 05/09/2023]
Abstract
With increasing water reuse as a sustainable water management strategy, antibiotic resistance genes (ARGs) which have been identified as emerging contaminants in wastewater are attracting global attentions. Given that wastewater treatment plants are now well-established as a sink and source of ARGs in both cell-associated and non-cell-associated forms, a need is acknowledged to reduce their proliferation and protect public health. Due to their different characteristics, cell-associated and non-cell-associated ARGs may have distinct responses to membrane filtration processes which are widely used as advanced treatment to the secondary effluent. This review improves the understanding of the abundance of cell-associated and non-cell-associated ARGs in wastewaters and the secondary effluents and compares the elimination of ARGs in cell-associated and non-cell-associated forms by low-pressure and high-pressure membrane filtration processes. The former process reduces the concentration of cell-associated ARGs by more than 2-logs on average. An increase of the retention efficiency of non-cell-associated ARGs is observed with decreasing molecular weight cut-offs in ultrafiltration. The high-pressure membrane filtration (i.e., nanofiltration and reverse osmosis) can effectively eliminate both cell-associated and non-cell-associated ARGs, with averagely more than 4.6-log reduction. In general, the two forms of ARGs can be removed from water by the membrane filtration processes via the effects of size exclusion, adsorption, and electrostatic repulsion. The size and conformation of cell-associated and non-cell-associated ARGs, characteristics of membranes, coexisting substances, and biofilm formation influence ARG retention. Accumulation and potential proliferation of cell-associated and non-cell-associated ARGs in foulants and concentrate and corresponding control strategies warrant future research.
Collapse
Affiliation(s)
- Hang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziqi Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
A BaTiO 3/WS 2 composite for piezo-photocatalytic persulfate activation and ofloxacin degradation. Commun Chem 2022; 5:95. [PMID: 36697648 PMCID: PMC9814951 DOI: 10.1038/s42004-022-00707-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/18/2022] [Indexed: 01/28/2023] Open
Abstract
Piezoelectric fields can decrease the recombination rate of photogenerated electrons and holes in semiconductors and therewith increase their photocatalytic activities. Here, a BaTiO3/WS2 composite is synthesized and characterized, which combines piezoelectric BaTiO3 nanofibers and WS2 nanosheets. The piezo-photocatalytic effect of the composite on the persulfate activation is studied by monitoring Ofloxacin (OFL) degradation efficiency. Under mechanical forces, LED lamp irradiation, and the addition of 10 mM persulfate, the OFL degradation efficiency reaches ~90% within 75 min, which is higher than efficiencies obtained for individual BaTiO3, WS2, or TiO3, widely used photocatalysts in the field of water treatment. The boosted degradation efficiency can be ascribed to the promotion of charge carrier separation, resulting from the synergetic effect of the heterostructure and the piezoelectric field induced by the vibration. Moreover, the prepared composite displays good stability over five successive cycles of the degradation process. GC-MS analysis is used to survey the degradation pathway of OFL during the degradation process. Our results offer insight into strategies for preparing highly effective piezo-photocatalysts in the field of water purification.
Collapse
|
26
|
Hube S, Lee S, Chong TH, Brynjólfsson S, Wu B. Biocarriers facilitated gravity-driven membrane filtration of domestic wastewater in cold climate: Combined effect of temperature and periodic cleaning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155248. [PMID: 35427614 DOI: 10.1016/j.scitotenv.2022.155248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In this study, two lava stone biocarrier facilitated gravity-driven membrane (GDM) reactors were operated at ~8 °C and ~22 °C in parallel for treating primary wastewater effluent. Although the biocarrier reactor at 8 °C displayed less efficient removals of biodegradable organics than that at 22 °C, both GDM systems (without cleaning) showed comparable fouling resistance distribution patterns, accompanying with similar cake filtration constants and pore constriction constants by modelling simulation. Compared to the GDM at 8 °C, more foulants were accumulated on the GDM at 22 °C, but they presented similar soluble organics/inorganics contents and specific cake resistances. This indicated the cake layers at 22 °C may contain greater-sized foulants due to proliferation of both prokaryotes and eukaryotes, leading to a relatively less-porous nature. In the presence of periodic cleaning (at 50 °C), the cleaning effectiveness followed a sequence as ultrasonication-enhanced physical cleaning > two-phase flow cleaning > chemical-enhanced physical cleaning > physical cleaning, regardless of GDM operation temperature. However, significantly higher cake resistances were observed in the GDM system at 22 °C than those at 8 °C, because shear force tended to remove loosely-attached foulant layers and may compress the residual dense cake layer. The presence of periodic cleaning led to dissimilar dominant prokaryotic and eukaryotic communities in the cake layers as those without cleaning and in the lava stone biocarriers. Nevertheless, operation temperature did not influence GDM permeate quality, which met EU discharge standards.
Collapse
Affiliation(s)
- Selina Hube
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Seonki Lee
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, S637141, Singapore; Department of Environmental Engineering, Korea Maritime & Ocean University, Busan 49112, Republic of Korea
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, S637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, S639798, Singapore
| | - Sigurður Brynjólfsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| |
Collapse
|
27
|
Cecone C, Hoti G, Caldera F, Zanetti M, Trotta F, Bracco P. NADES-derived beta cyclodextrin-based polymers as sustainable precursors to produce sub-micrometric cross-linked mats and fibrous carbons. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Effectiveness of Biochar and Zeolite Soil Amendments in Reducing Pollution of Municipal Wastewater from Nitrogen and Coliforms. SUSTAINABILITY 2022. [DOI: 10.3390/su14148880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A greenhouse experiment with soil cores and wastewater application was carried out to investigate the effects of biochar and zeolite on the mobility of nitrogen and coliform bacteria during the leaching of columns repacked by a silty loam soil. Triticum aestivum plants were grown in cores with and without biochar and zeolite irrigated with municipal wastewater for 4 months in the greenhouse. Cores were then flushed with 800 mLof distillate water and, finally, the leachate was collected. Application of biochar or zeolite significantly (p ≤ 0.05) reduced nitrate and ammonium loss in soil after leaching process, compared to their non-treated counterparts. In addition, interactions of biochar and zeolite significantly decreased nitrate and ammonium content in leachate. Biochar had higher removal effects of coliform bacteria in leachate than zeolite. Lower nitrate and ammonium content in leachate was related to the increased retention of soil amendments. Application of 5% w/w of biochar also reduced the volume of leachate by 11% compare to control, but using 5% w/w and 10% w/w of zeolite increased the volume of leachate compared with non-treated columns by 21% and 48%, respectively. Taken together, these data highlight the need to consider the potential benefits of biochar and zeolite as soil amendment to reduce nitrogen mobility and remove coliform bacteria in the leaching process of municipal wastewater in agricultural systems.
Collapse
|
29
|
Khan NA, Khan AH, Ahmed S, Farooqi IH, Alam SS, Ali I, Bokhari A, Mubashir M. Efficient removal of ibuprofen and ofloxacin pharmaceuticals using biofilm reactors for hospital wastewater treatment. CHEMOSPHERE 2022; 298:134243. [PMID: 35278448 DOI: 10.1016/j.chemosphere.2022.134243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Hospital wastewater is harmful to the environment and human health due to its complex chemical composition and high potency towards becoming a source of disease outbreaks. Due to these complexities, its treatment is neither efficient nor cost-effective. It is a challenging issue that requires immediate attention. This effort focuses on the treatment of hospital wastewater (HWW) by removing two selected drugs, namely ibuprofen (IBU) and ofloxacin (OFX) using individual biological treatment methods, such as moving bed biofilm reactors (MBBR) and physicochemical treatment, such as ozonation and peroxane process. The both methods are compared to find the best method overall based on effectiveness and removal efficiency. The optimal removal for ozone dosing range was nitrate (9.00% and 62.00%), biological oxygen demand (BOD) (92.00% and 64.00%), and chemical oxygen demand (COD) (96.00% and 92.00%) that required at least 10 min to reach considerable degradation. The MBBR process assured a better performance for ibuprofen removal, overall. The IBU and OFX removal was found to be 14.32-96.00% at a higher COD value and 11.33-94.00% at a lower COD value due to its biodegradation. This work strives to pave the way forward to build an HWW treatment technology using integrated MBBR processes for better efficiency and cost-effectiveness.
Collapse
Affiliation(s)
- Nadeem A Khan
- Department of Civil Engineering, Jamia Millia Islamia Central University, New Delhi, 110025, India.
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, 45142, Saudi Arabia
| | - Sirajuddin Ahmed
- Department of Civil Engineering, Jamia Millia Islamia Central University, New Delhi, 110025, India
| | - Izharul Haq Farooqi
- Department of Civil Engineering, Aligarh Muslim University, Aligarh, 202002, India
| | - Shah Saud Alam
- Department of Mechanical Engineering, The University of Kansas, 1530W 15th St., Lawrence, KS, 66045, USA
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia Central University, New Delhi, 110025, India.
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic.
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Baskar AV, Bolan N, Hoang SA, Sooriyakumar P, Kumar M, Singh L, Jasemizad T, Padhye LP, Singh G, Vinu A, Sarkar B, Kirkham MB, Rinklebe J, Wang S, Wang H, Balasubramanian R, Siddique KHM. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153555. [PMID: 35104528 DOI: 10.1016/j.scitotenv.2022.153555] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 04/15/2023]
Abstract
Adsorption is the most widely adopted, effective, and reliable treatment process for the removal of inorganic and organic contaminants from wastewater. One of the major issues with the adsorption-treatment process for the removal of contaminants from wastewater streams is the recovery and sustainable management of spent adsorbents. This review focuses on the effectiveness of emerging adsorbents and how the spent adsorbents could be recovered, regenerated, and further managed through reuse or safe disposal. The critical analysis of both conventional and emerging adsorbents on organic and inorganic contaminants in wastewater systems are evaluated. The various recovery and regeneration techniques of spent adsorbents including magnetic separation, filtration, thermal desorption and decomposition, chemical desorption, supercritical fluid desorption, advanced oxidation process and microbial assisted adsorbent regeneration are discussed in detail. The current challenges for the recovery and regeneration of adsorbents and the methodologies used for solving those problems are covered. The spent adsorbents are managed through regeneration for reuse (such as soil amendment, capacitor, catalyst/catalyst support) or safe disposal involving incineration and landfilling. Sustainable management of spent adsorbents, including processes involved in the recovery and regeneration of adsorbents for reuse, is examined in the context of resource recovery and circular economy. Finally, the review ends with the current drawbacks in the recovery and management of the spent adsorbents and the future directions for the economic and environmental feasibility of the system for industrial-scale application.
Collapse
Affiliation(s)
- Arun V Baskar
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Son A Hoang
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen 56000, Viet Nam
| | - Prasanthi Sooriyakumar
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Gurwinder Singh
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- The Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Jörg Rinklebe
- University of Wuppertal, Germany, Faculty of Architecture und Civil Engineering, Institute of Soil Engineering, Waste- and Water Science, Laboratory of Soil- and Groundwater-Management, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea.
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, People's Republic of China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | | | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
31
|
Salamanca M, López-Serna R, Palacio L, Hernandez A, Prádanos P, Peña M. Ecological Risk Evaluation and Removal of Emerging Pollutants in Urban Wastewater by a Hollow Fiber Forward Osmosis Membrane. MEMBRANES 2022; 12:293. [PMID: 35323768 PMCID: PMC8949913 DOI: 10.3390/membranes12030293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Forward osmosis (FO) is a promising technology for the treatment of urban wastewater. FO can produce high-quality effluents and preconcentrate urban wastewater for subsequent anaerobic treatment. This membrane technology makes it possible to eliminate the pollutants present in urban wastewater, which can cause adverse effects in the ecosystem even at low concentrations. In this study, a 0.6 m2 hollow fiber aquaporin forward osmosis membrane was used for the treatment of urban wastewater from the Valladolid wastewater treatment plant (WWTP). A total of 51 Contaminants of Emerging Concern (CECs) were investigated, of which 18 were found in the target urban wastewater. They were quantified, and their ecotoxicological risk impact was evaluated. Different salts with different concentrations were tested as draw solutions to evaluate the membrane performances when working with pretreated urban wastewater. NaCl was found to be the most appropriate salt since it leads to higher permeate fluxes and lower reverse saline fluxes. The membrane can eliminate or significantly reduce the pollutants present in the studied urban wastewater, producing water without ecotoxicological risk or essentially free of pollutants. In all cases, good recovery was achieved, which increased with molecular weight, although chemical and electrostatic interactions also played a role.
Collapse
Affiliation(s)
- Mónica Salamanca
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
| | - Rebeca López-Serna
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Laura Palacio
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Antonio Hernandez
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Pedro Prádanos
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Applied Physics, Faculty of Sciences, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain
| | - Mar Peña
- Institute of Sustainable Processes (ISP), University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, E-47011 Valladolid, Spain
| |
Collapse
|
32
|
Aly NA, Dodds JN, Luo YS, Grimm FA, Foster M, Rusyn I, Baker ES. Utilizing ion mobility spectrometry-mass spectrometry for the characterization and detection of persistent organic pollutants and their metabolites. Anal Bioanal Chem 2022; 414:1245-1258. [PMID: 34668045 PMCID: PMC8727508 DOI: 10.1007/s00216-021-03686-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Persistent organic pollutants (POPs) are xenobiotic chemicals of global concern due to their long-range transport capabilities, persistence, ability to bioaccumulate, and potential to have negative effects on human health and the environment. Identifying POPs in both the environment and human body is therefore essential for assessing potential health risks, but their diverse range of chemical classes challenge analytical techniques. Currently, platforms coupling chromatography approaches with mass spectrometry (MS) are the most common analytical methods employed to evaluate both parent POPs and their respective metabolites and/or degradants in samples ranging from d rinking water to biofluids. Unfortunately, different types of analyses are commonly needed to assess both the parent and metabolite/degradant POPs from the various chemical classes. The multiple time-consuming analyses necessary thus present a number of technical and logistical challenges when rapid evaluations are needed and sample volumes are limited. To address these challenges, we characterized 64 compounds including parent per- and polyfluoroalkyl substances (PFAS), pesticides, polychlorinated biphenyls (PCBs), industrial chemicals, and pharmaceuticals and personal care products (PPCPs), in addition to their metabolites and/or degradants, using ion mobility spectrometry coupled with MS (IMS-MS) as a potential rapid screening technique. Different ionization sources including electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) were employed to determine optimal ionization for each chemical. Collectively, this study advances the field of exposure assessment by structurally characterizing the 64 important environmental pollutants, assessing their best ionization sources, and evaluating their rapid screening potential with IMS-MS.
Collapse
Affiliation(s)
- Noor A Aly
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Fabian A Grimm
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - MaKayla Foster
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
33
|
Targuma S, Njobeh PB, Ndungu PG. Current Applications of Magnetic Nanomaterials for Extraction of Mycotoxins, Pesticides, and Pharmaceuticals in Food Commodities. Molecules 2021; 26:4284. [PMID: 34299560 PMCID: PMC8303358 DOI: 10.3390/molecules26144284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/25/2022] Open
Abstract
Environmental pollutants, such as mycotoxins, pesticides, and pharmaceuticals, are a group of contaminates that occur naturally, while others are produced from anthropogenic sources. With increased research on the adverse ecological and human health effects of these pollutants, there is an increasing need to regularly monitor their levels in food and the environment in order to ensure food safety and public health. The application of magnetic nanomaterials in the analyses of these pollutants could be promising and offers numerous advantages relative to conventional techniques. Due to their ability for the selective adsorption, and ease of separation as a result of magnetic susceptibility, surface modification, stability, cost-effectiveness, availability, and biodegradability, these unique magnetic nanomaterials exhibit great achievement in the improvement of the extraction of different analytes in food. On the other hand, conventional methods involve longer extraction procedures and utilize large quantities of environmentally unfriendly organic solvents. This review centers its attention on current applications of magnetic nanomaterials and their modifications in the extraction of pollutants in food commodities.
Collapse
Affiliation(s)
- Sarem Targuma
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick B. Njobeh
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Patrick G. Ndungu
- Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|