1
|
Praeg N, Steinwandter M, Urbach D, Snethlage MA, Alves RP, Apple ME, Bilovitz P, Britton AJ, Bruni EP, Chen TW, Dumack K, Fernandez-Mendoza F, Freppaz M, Frey B, Fromin N, Geisen S, Grube M, Guariento E, Guisan A, Ji QQ, Jiménez JJ, Maier S, Malard LA, Minor MA, Mc Lean CC, Mitchell EAD, Peham T, Pizzolotto R, Taylor AFS, Vernon P, van Tol JJ, Wu D, Wu Y, Xie Z, Weber B, Illmer P, Seeber J. Biodiversity in mountain soils above the treeline. Biol Rev Camb Philos Soc 2025. [PMID: 40369817 DOI: 10.1111/brv.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Biological diversity in mountain ecosystems has been increasingly studied over the last decade. This is also the case for mountain soils, but no study to date has provided an overall synthesis of the current state of knowledge. Here we fill this gap with a first global analysis of published research on cryptogams, microorganisms, and fauna in mountain soils above the treeline, and a structured synthesis of current knowledge. Based on a corpus of almost 1400 publications and the expertise of 37 mountain soil scientists worldwide, we summarise what is known about the diversity and distribution patterns of each of these organismal groups, specifically along elevation, and provide an overview of available knowledge on the drivers explaining these patterns and their changes. In particular, we document an elevation-dependent decrease in faunal diversity above the treeline, while for cryptogams there is an initial increase above the treeline, followed by a decrease towards the nival belt. Thus, our data confirm the key role that elevation plays in shaping the biodiversity and distribution of these organisms in mountain soils. The response of prokaryote diversity to elevation, in turn, was more diverse, whereas fungal diversity appeared to be substantially influenced by plants. As far as available, we describe key characteristics, adaptations, and functions of mountain soil species, and despite a lack of ecological information about the uncultivated majority of prokaryotes, fungi, and protists, we illustrate the remarkable and unique diversity of life forms and life histories encountered in alpine mountain soils. By applying rule- as well as pattern-based literature-mining approaches and semi-quantitative analyses, we identified hotspots of mountain soil research in the European Alps and Central Asia and revealed significant gaps in taxonomic coverage, particularly among biocrusts, soil protists, and soil fauna. We further report thematic priorities for research on mountain soil biodiversity above the treeline and identify unanswered research questions. Building upon the outcomes of this synthesis, we conclude with a set of research opportunities for mountain soil biodiversity research worldwide. Soils in mountain ecosystems above the treeline fulfil critical functions and make essential contributions to life on land. Accordingly, seizing these opportunities and closing knowledge gaps appears crucial to enable science-based decision making in mountain regions and formulating laws and guidelines in support of mountain soil biodiversity conservation targets.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Michael Steinwandter
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Davnah Urbach
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Mark A Snethlage
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Rodrigo P Alves
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Martha E Apple
- Department of Biological Sciences, Montana Technological University, Butte, 59701, MT, USA
| | - Peter Bilovitz
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Andrea J Britton
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Estelle P Bruni
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Ting-Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 702/7, České Budějovice, 37005, Czech Republic
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Fernando Fernandez-Mendoza
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Michele Freppaz
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
- Research Center on Natural Risks in Mountain and Hilly Environments, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Nathalie Fromin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Route de Mende 34199, Montpellier Cedex 5, France
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Martin Grube
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Elia Guariento
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Antoine Guisan
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Géopolis, Lausanne, 1015, Switzerland
| | - Qiao-Qiao Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
| | - Juan J Jiménez
- Instituto Pirenaico de Ecología (IPE), Consejo Superior de Investigaciones Cientificas (CSIC), Avda. Ntra. Sra. de la Victoria 16, Jaca, 22700, Huesca, Spain
| | - Stefanie Maier
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Lucie A Malard
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
| | - Maria A Minor
- School of Food Technology and Natural Sciences, Massey University, Riddett Road, Palmerston North, 4410, New Zealand
| | - Cowan C Mc Lean
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Thomas Peham
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Roberto Pizzolotto
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Ponte Pietro Bucci 4b, Rende, 87036, Italy
| | - Andy F S Taylor
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Philippe Vernon
- UMR 6553 EcoBio CNRS, University of Rennes, Biological Station, Paimpont, 35380, France
| | - Johan J van Tol
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Donghui Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yunga Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Zhijing Xie
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Bettina Weber
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Julia Seeber
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| |
Collapse
|
2
|
Zhang D, Yang H, Zhang J, Xu M, Xu W, Fu J, Feng B, Zhang H, Huang Q, Wu D, Zhang Z, Songer M, Hull V. Effects of climate warming on soil nitrogen cycles and bamboo growth in core giant panda habitat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173625. [PMID: 38848927 DOI: 10.1016/j.scitotenv.2024.173625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024]
Abstract
Climate change can pose a significant threat to terrestrial ecosystems by disrupting the circulation of soil nitrogen. However, experimental analyses on the effect of climate change on soil nitrogen cycles and the implications for the conservation of key wildlife species (i.e., the giant panda, Ailuropoda melanoleuca) remain understudied. We investigated the effects of a 1.5 °C, 3 °C, and 4.5 °C temperature increase on nitrogen distribution in different soil layers of bamboo forest via an in-situ experiment and assessed the implications for the growth and survival of arrow bamboo (Bashania faberi), a critical food resource for giant pandas. Our results showed that warming treatments generally increased soil N content, while effects differed between surface soil and subsurface soil and at different warming treatments. Particularly an increase of 1.5 °C raised the subsurface soil NO3-N content, as well as the content of N in bamboo leaves. We found a significant positive correlation between the subsurface soil NO3-N content and the N content of arrow bamboo. An increase of 3-4.5 °C raised the content of total N and NO3-N in the surface soil and led to a reduction in the total aboveground biomass and survival rate of arrow bamboo. Limited warming (e.g., the increase of 0-1.5 °C) may promote the soil N cycle, raise the N-acetylglucosaminidase (NAG) enzyme activity, increase NO3-N in subsurface soil, increase the N content of bamboo, and boost the biomass of bamboo - all of which could be beneficial to giant panda survival. However, higher warming (e.g., an increase of 3-4.5 °C) resulted in mass death of bamboo and a large reduction in aboveground biomass. Our findings provide a cautiously optimistic scenario for bamboo forest ecosystems under low levels of warming over a short period of time, but risks from higher levels of warming may be serious, especially considering the unpredictability of global climatic change.
Collapse
Affiliation(s)
- Dongyao Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan Province 637009, China
| | - Hongbo Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jindong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan Province 637009, China.
| | - Min Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Weihua Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianchao Fu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan Province 637009, China
| | - Hu Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan Province 637009, China
| | - Qiongyu Huang
- Conservation Biology Institute, National Zoological Park, Smithsonian Institution, Front Royal, VA 22630, USA
| | - Daifu Wu
- Key Laboratory of State Forestry and Grassland Administration on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China
| | - Zejun Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Ministry of Education, Nanchong, Sichuan Province 637009, China
| | - Melissa Songer
- Conservation Biology Institute, National Zoological Park, Smithsonian Institution, Front Royal, VA 22630, USA
| | - Vanessa Hull
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Chander AM, Singh NK, Venkateswaran K. Microbial Technologies in Waste Management, Energy Generation and Climate Change: Implications on Earth and Space. J Indian Inst Sci 2023; 103:1-6. [PMID: 37362853 PMCID: PMC10196283 DOI: 10.1007/s41745-023-00388-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/04/2023] [Indexed: 06/28/2023]
Abstract
Microbes are important decomposers of organic waste. By decomposing organic waste and using it for their growth, microbes play an important role in maintaining ecosystem's carbon and nitrogen cycles. An ecosystem's microbial shift may disturb it's carbon/nitrogen cycle as a result of any climate change or humanitarian factors, but heat produced by various instruments and greenhouse gases contribute significantly to global warming which in turn may be related to microbial shift of ecosystems. To reduce greenhouse gas emissions and global warming, innovative clean energy production methods must be employed to develop fuels with minimal greenhouse effect. Biofuels, such as bioethanol, provide clean energy with less carbon dioxide emissions. For the production of bioethanol, it is always recommended to use microbes that are capable of decomposing complex organic matter (cellulose, lignin, hemicellulose). Some microbes can efficiently decompose complex organic matter due to the presence of genetic machinery that produces cellulases and β-glucosidase. The membrane transporters are also important for microbes in uptake of simple sugars for metabolism and ethanol production. Microbial technologies are addressing the future needs for not only organic waste management but also clean energy/bioethanol production. However, the role of these technologies on space missions and extraterrestrial settings needs to be explored to improve long term space missions.
Collapse
Affiliation(s)
- Atul Munish Chander
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 USA
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109 USA
| |
Collapse
|
4
|
Žalnėravičius R, Paškevičius A, Samukaitė-Bubnienė U, Ramanavičius S, Vilkienė M, Mockevičienė I, Ramanavičius A. Microbial Fuel Cell Based on Nitrogen-Fixing Rhizobium anhuiense Bacteria. BIOSENSORS 2022; 12:113. [PMID: 35200373 PMCID: PMC8869864 DOI: 10.3390/bios12020113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 06/01/2023]
Abstract
In this study, the nitrogen-fixing, Gram-negative soil bacteria Rhizobium anhuiense was successfully utilized as the main biocatalyst in a bacteria-based microbial fuel cell (MFC) device. This research investigates the double-chambered, H-type R. anhuiense-based MFC that was operated in modified Norris medium (pH = 7) under ambient conditions using potassium ferricyanide as an electron acceptor in the cathodic compartment. The designed MFC exhibited an open-circuit voltage (OCV) of 635 mV and a power output of 1.07 mW m-2 with its maximum power registered at 245 mV. These values were further enhanced by re-feeding the anode bath with 25 mM glucose, which has been utilized herein as the main carbon source. This substrate addition led to better performance of the constructed MFC with a power output of 2.59 mW m-2 estimated at an operating voltage of 281 mV. The R. anhuiense-based MFC was further developed by improving the charge transfer through the bacterial cell membrane by applying 2-methyl-1,4-naphthoquinone (menadione, MD) as a soluble redox mediator. The MD-mediated MFC device showed better performance, resulting in a slightly higher OCV value of 683 mV and an almost five-fold increase in power density to 4.93 mW cm-2. The influence of different concentrations of MD on the viability of R. anhuiense bacteria was investigated by estimating the optical density at 600 nm (OD600) and comparing the obtained results with the control aliquot. The results show that lower concentrations of MD, ranging from 1 to 10 μM, can be successfully used in an anode compartment in which R. anhuiense bacteria cells remain viable and act as a main biocatalyst for MFC applications.
Collapse
Affiliation(s)
- Rokas Žalnėravičius
- Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (R.Ž.); (U.S.-B.); (S.R.)
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania;
| | - Urtė Samukaitė-Bubnienė
- Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (R.Ž.); (U.S.-B.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| | - Simonas Ramanavičius
- Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (R.Ž.); (U.S.-B.); (S.R.)
| | - Monika Vilkienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto Av.1, Akademija, LT-58344 Kedainiai, Lithuania; (M.V.); (I.M.)
| | - Ieva Mockevičienė
- Lithuanian Research Centre for Agriculture and Forestry, Instituto Av.1, Akademija, LT-58344 Kedainiai, Lithuania; (M.V.); (I.M.)
| | - Arūnas Ramanavičius
- Centre for Physical Sciences and Technology, Sauletekio Av. 3, LT-10257 Vilnius, Lithuania; (R.Ž.); (U.S.-B.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
5
|
Fox A, Widmer F, Barreiro A, Jongen M, Musyoki M, Vieira Â, Zimmermann J, Cruz C, Dimitrova-Mårtensson LM, Rasche F, Silva L, Lüscher A. Small-scale agricultural grassland management can affect soil fungal community structure as much as continental scale geographic patterns. FEMS Microbiol Ecol 2021; 97:6430861. [PMID: 34792119 PMCID: PMC8684450 DOI: 10.1093/femsec/fiab148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
A European transect was established, ranging from Sweden to the Azores, to determine the relative influence of geographic factors and agricultural small-scale management on the grassland soil microbiome. Within each of five countries (factor ‘Country’), which maximized a range of geographic factors, two differing growth condition regions (factor ‘GCR’) were selected: a favorable region with conditions allowing for high plant biomass production and a contrasting less favorable region with a markedly lower potential. Within each region, grasslands of contrasting management intensities (factor ‘MI’) were defined: intensive and extensive, from which soil samples were collected. Across the transect, ‘MI’ was a strong differentiator of fungal community structure, having a comparable effect to continental scale geographic factors (‘Country’). ‘MI’ was also a highly significant driver of bacterial community structure, but ‘Country’ was clearly the stronger driver. For both, ‘GCR’ was the weakest driver. Also at the regional level, strong effects of MI occurred on various measures of the soil microbiome (i.e. OTU richness, management-associated indicator OTUs), though the effects were largely regional-specific. Our results illustrate the decisive influence of grassland MI on soil microbial community structure, over both regional and continental scales, and, thus, highlight the importance of preserving rare extensive grasslands.
Collapse
Affiliation(s)
- A Fox
- Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, Zürich, Switzerland.,Molecular Ecology, Agroscope, Reckenholzstrasse 191, Zürich, Switzerland
| | - F Widmer
- Molecular Ecology, Agroscope, Reckenholzstrasse 191, Zürich, Switzerland
| | - A Barreiro
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, P.O. Box 103, SE-230 53 Alnarp, Sweden
| | - M Jongen
- Centro de Ciência e Tecnologia do Ambiente e do Mar (MARETEC), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - M Musyoki
- University of Hohenheim, Hans-Ruthenberg-Institute, Garbenstr. 13, 70599 Stuttgart, Germany
| | - Â Vieira
- InBIO - Research Network in Biodiversity and Evolutionary Biology, Associate Laboratory, CIBIO-Açores, Faculty of Sciences and Technology, University of the Azores, Campus de Ponta Delgada, Rua da Mãe de Deus, 9500-321 Ponta Delgada, Portugal
| | - J Zimmermann
- University of Hohenheim, Hans-Ruthenberg-Institute, Garbenstr. 13, 70599 Stuttgart, Germany
| | - C Cruz
- Centro de Ecologia, Evolução e Alterações Ambientais, (cE3c), FCUL, Campo Grande, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - L-M Dimitrova-Mårtensson
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, P.O. Box 103, SE-230 53 Alnarp, Sweden
| | - F Rasche
- University of Hohenheim, Hans-Ruthenberg-Institute, Garbenstr. 13, 70599 Stuttgart, Germany
| | - L Silva
- InBIO - Research Network in Biodiversity and Evolutionary Biology, Associate Laboratory, CIBIO-Açores, Faculty of Sciences and Technology, University of the Azores, Campus de Ponta Delgada, Rua da Mãe de Deus, 9500-321 Ponta Delgada, Portugal
| | - A Lüscher
- Forage Production and Grassland Systems, Agroscope, Reckenholzstrasse 191, Zürich, Switzerland
| |
Collapse
|
6
|
Kang L, He D, Wang H, Han G, Lv H, Xiao W, Zhang Z, Yan Z, Huang L. "Breeding on Mountains" Resulted in the Reorganization of Endophytic Fungi in Asexually Propagated Plants ( Ligusticum chuanxiong Hort.). FRONTIERS IN PLANT SCIENCE 2021; 12:740456. [PMID: 34858448 PMCID: PMC8631752 DOI: 10.3389/fpls.2021.740456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 05/05/2023]
Abstract
"Breeding on mountains, cultivation in dam areas" is a unique propagation method for the vegetatively propagated plant Ligusticum chuanxiong, including two transplants between the mountain and the dam area. It is well known that the environment can influence the endophytic community structure of plants. However, the change of host endophytic flora caused by transplanting in different places and its influence on asexual reproduction are still poorly understood. We carried out three cycles of cultivation experiments on L. chuanxiong and collected stem nodes (LZ), immature rhizomes (PX), medicinal rhizomes (CX), and rhizosphere. High-throughput sequencing was performed to analyze the endophytic fungi in all samples. We observed that the diversity and richness of endophytic fungi in L. chuanxiong increased as a result of transplanting cultivation from dam areas to mountains. Local transplantation caused minor changes in the endophytic fungus structure of L. chuanxiong, while remote transplantation caused significant changes. Compared with LZ after breeding in the dam area, the LZ after breeding on mountains has more abundant Gibberella, Phoma, Pericona, Paraphoma, and Neocosmospora. The regular pattern of the relative abundance of endophytic fungi is consistent with that of the fungus in the soil, while there are also some cases that the relative abundance of endophytic fungi is the opposite of that of soil fungi. In addition, there is a significant correlation among certain kinds of endophytic fungi whether in the soil or the plants. We have isolated more gibberellin-producing and auxin-producing fungi in the LZ cultivated in the mountains than that in the LZ cultivated in the dam area. The results of pot experiments showed that the three fungi isolated from LZ cultivated in mountainous areas can promote the development of shoots, stem nodes, and internodes of LZ, and increase the activity of plant peroxidase, catalase, phenylalanine ammonia lyase, and other enzymes. We can conclude that transplantation leads to the recombination of the host endophytic fungus, the more significant the difference in the environment is, the greater the reorganization caused by transplanting. Reorganization is determined by the soil environment, hosts, and the interaction of microorganisms. Remote transplantation is a crucial opportunity to reshuffle the micro-ecological structure of the asexual reproduction of plants, and regulate the growth, development, and resistance of plants, and prevent germplasm degradation caused by asexual reproduction.
Collapse
Affiliation(s)
- Lei Kang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongmei He
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory Breeding Base of Dao-di Herbs, Center for Post-doctoral Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guiqi Han
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyang Lv
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanting Xiao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanling Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, Center for Post-doctoral Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
The Spatiotemporal Changes and the Impacts of Climate Factors on Grassland in the Northern Songnen Plain (China). SUSTAINABILITY 2021. [DOI: 10.3390/su13126568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Grassland is an important ecosystem; the spatiotemporal evolution trend of grassland and its impacts on climatic factors play an irreplaceable role in maintaining regional sustainable development and ecological balance. In this paper, based on the remote sensing images of 1990, 2000, 2010, 2020, and 3S technology, we use the methods of dynamic rate and transfer matrix to analyze the spatiotemporal evolution trend of the northern Songnen Plain (China). The method of grey correlation is used to analyze the impact of climate factors on it. The results showed that the grassland changed dramatically and unevenly across the three periods of 1990–2000, 2000–2010, and 2010–2020, with the biggest change in the last period. The internal conversion of grassland mainly occurred between H-grassland (high coverage grassland) and M-grassland (medium coverage grassland), while the transformation rarely occurred in L-grassland (low coverage grassland) due to its small area. There has been a transfer-in from cultivated land, woodland, and unused land to H-grassland and M-grassland. The grassland transfer-out was mainly from H-grassland and M-grassland to cultivated land and unused land. What’s more, the transformation mainly occurred in Daqing City, Suihua City, Qiqihar city, as well as occurring in the west of Harbin and the southwest of Heihe city. Climate change has exacerbated the reduction of grassland areas. In summary, the spatiotemporal change rates of grassland area in the north of Songnen Plain initially showed a mild decrease and were then followed by a rapid decrease. Climate factors were of great significance to the spatiotemporal changes of grassland, and precipitation had a greater impact on the reduction of grassland. The results can provide meaningful information for grassland change, grassland protection, and management in the northern Songnen Plain.
Collapse
|