1
|
Gouthier L, Jacquin L, Lalot B, Giraud J, Descat M, Jézéquel C, Jean S, Hansson SV. Anthropogenic sources and transfer of trace metals from the environment to brown trout (Salmo trutta) in mountainous rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179289. [PMID: 40184996 DOI: 10.1016/j.scitotenv.2025.179289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/15/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Mountainous ecosystems are particularly sensitive to global change and are affected by both historical and current anthropogenic activities. For instance, past and contemporary mining and agriculture are responsible for increasing metal contamination in riverine systems. This study investigated the sources and transfer routes of copper (Cu), zinc (Zn), arsenic (As) and lead (Pb) across soil, biofilm, sediment and fish (Salmo trutta) along a gradient of human activity (mining, agriculture, urbanization) in the French Pyrenees. Drawing on a comprehensive data set obtained from X-Ray Fluorescence probe and TQ-ICP-MS analysis, in combination with a statistical Structural Equation Modelling approach, we found that historical mining activities, although no longer active, were the primary source of Zn and Pb contamination in the soil, as well as Pb contamination in the biofilm, whereas contemporary agricultural activities were the main source of Cu, As and Pb contamination in the biofilm. This underscores the long-lasting impacts of human activities on riverine pollution. Furthermore, we showed that several environmental parameters could modulate metal content in fish. For instance, finer substrate particle size and lower oxygen levels increased Cu and Zn uptake in fish tissue. This study provides new insights into the complex dynamics of trace metals in riverine ecosystems and emphasize the importance of using large-scale, multi-compartment and multi-metal approaches to assess metal contamination of aquatic ecosystems.
Collapse
Affiliation(s)
- Laurine Gouthier
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, Université de Toulouse, CNRS, IRD, Toulouse INP, Toulouse, France.
| | - Lisa Jacquin
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, Université de Toulouse, CNRS, IRD, Toulouse INP, Toulouse, France; Institut Universitaire de France (IUF), Paris, France
| | - Bénédicte Lalot
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, Université de Toulouse, CNRS, IRD, Toulouse INP, Toulouse, France
| | - Jules Giraud
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, Université de Toulouse, CNRS, IRD, Toulouse INP, Toulouse, France
| | - Maxime Descat
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, Université de Toulouse, CNRS, IRD, Toulouse INP, Toulouse, France
| | - Céline Jézéquel
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, Université de Toulouse, CNRS, IRD, Toulouse INP, Toulouse, France
| | - Séverine Jean
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, Université de Toulouse, CNRS, IRD, Toulouse INP, Toulouse, France
| | - Sophia V Hansson
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300, Université de Toulouse, CNRS, IRD, Toulouse INP, Toulouse, France
| |
Collapse
|
2
|
Alves Miranda G, Soares Dos Santos F, Lourenço Pereira Cardoso M, Etterson M, C Amorim C, V M Starling MC. Proposal of novel Predicted No Effect Concentrations (PNEC) for metals in freshwater using Species Sensitivity Distribution for different taxonomic groups. Sci Rep 2025; 15:8180. [PMID: 40065064 PMCID: PMC11894190 DOI: 10.1038/s41598-025-92692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Water pollution by metals and metalloids promotes toxic effects to aquatic biota especially in mining regions. Environmental legislation applied to protect aquatic life from the toxicity of metals relies on the definition of protective values (PVs) for each compound. Among methods used to define PVs, Species Sensitivity Distribution (SSD) curves enable the derivation of the Predicted No Effect concentration (PNEC). In this context, this is one of the first studies to propose the construction of acute and chronic split SSD curves built separately for three groups of freshwater organisms (algae, invertebrates and fish) to derive PNEC values for the 14 metals most commonly observed in iron ore mining tailings. Data used to construct split SSD curves were derived from the USEPA ECOTOX knowledgebase and EnviroTox databases and segregated according to the freshwater organism group and as "acute" or "chronic" toxicity. Then, split SSD curves were built using a minimum of nine species for each group to determine the hazardous concentration to 5% of species (HC5) and PNEC values for each group. Once PNEC were derived, a framework was proposed to calculate the Bioavailabity Factor (BioF) used to adjust values for local bioavailability conditions considering water quality characteristics in different regions. The lowest acute PNEC were observed for algae and invertebrates and corresponded to Silver (Ag). Nearly half of calculated PNEC were below current PVs in practice in Brazil, United States (US), United Kingdom (UK), Canada and European Union (EU). Results reinforce the pertinence of: (i) splitting SSD curves to define PVs for metals; and (ii) taking bioavailability into consideration to correct PNEC for local conditions. In addition, outcomes suggest that it is critical to rethink PVs related to metals for aquatic life protection, mainly in Brazil and Minas Gerais state, a region known for extensive mining activity. Finally, PNEC values obtained in this study may be used for ecological risk assessment studies, especially in areas affected by mining and other activities that result in pollution by metals and metalloids, such as Brazil.
Collapse
Affiliation(s)
- Gisele Alves Miranda
- Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, The Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Fábio Soares Dos Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, 31270-010, Brazil
| | - Marcela Lourenço Pereira Cardoso
- Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, The Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Matthew Etterson
- Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, 55804, USA
| | - Camila C Amorim
- Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, The Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Maria Clara V M Starling
- Research Group on Environmental Applications of Advanced Oxidation Processes, Department of Sanitary and Environmental Engineering, The Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
3
|
Coutaud M, Viers J, Rols JL, Pokrovsky OS. Copper and zinc isotope fractionation during phototrophic biofilm growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178371. [PMID: 39787875 DOI: 10.1016/j.scitotenv.2025.178371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 01/01/2025] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Copper (Cu) and zinc (Zn) are two trace metals that exhibit both limiting and toxic effects on aquatic microorganisms. However, in contrast to good knowledge of these metal interactions with individual microbial cultures, the biofilm, complex natural consortium of microorganisms, remains poorly understood with respect to its control on Cu and Zn in the aquatic environments. Towards constraining the magnitude and mechanisms of Cu and Zn isotope fractionation in the presence of phototrophic biofilms composed of different proportion of diatoms, green algae and cyanobacteria, we studied long-term growth in a rotating annular bioreactor and quantified the uptake of metals and their isotope fractionation at environmentally-relevant Cu and Zn concentrations. An enrichment of the biofilm in heavy Cu isotope at the beginning of growth suggests the dominance of adsorption processes, followed by intracellular uptake leading to progressive enrichment in light isotope and an excretion of heavy isotope, likely linked to Cu(II) reduction. In the case of Zn, we evidenced only weak isotope fractionation which implies the presence of heavier isotope adsorption (notably in the case of cyanobacteria-dominated biofilm) followed by intracellular incorporation of lighter isotopes. The microbial community plays important role in overall magnitude and even direction of fractionation, suggesting sizable complexity of the processes controlling metal isotope fractionation during phototrophic biofilm growth. However, Cu and Zn isotopes during long-term metal accumulation in riverine biofilm can be used for monitoring the source of environmental pollution in aquatic systems, provided that variations within different sources exceed the natural isotopic fractionation between the biofilm and aqueous solution.
Collapse
Affiliation(s)
- Margot Coutaud
- Geosciences and Environment Toulouse, Université de Toulouse, CNRS, Université Toulouse 3 Paul Sabatier (UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France; Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, Toulouse INP, 118 Route de Narbonne, 31062 Toulouse, France
| | - Jérôme Viers
- Geosciences and Environment Toulouse, Université de Toulouse, CNRS, Université Toulouse 3 Paul Sabatier (UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France
| | - Jean-Luc Rols
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, Toulouse INP, 118 Route de Narbonne, 31062 Toulouse, France
| | - Oleg S Pokrovsky
- Geosciences and Environment Toulouse, Université de Toulouse, CNRS, Université Toulouse 3 Paul Sabatier (UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France; BIO-GEO-CLIM Laboratory, Tomsk State University, 36 Lenin Ave, 634050, Tomsk, Russia.
| |
Collapse
|
4
|
Zhu S, Zhang Z, Wen C, Zhu S, Li C, Xu H, Luo X. Transport and transformations of cadmium in water-biofilm-sediment phases as affected by hydrodynamic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120368. [PMID: 38394874 DOI: 10.1016/j.jenvman.2024.120368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Hydrodynamic conditions play a crucial role in governing the fate, transport, and risks of metal elements. However, the contribution of hydrodynamic conditions to the fate and transport of heavy metals among water, sediment, and biofilm phases is poorly understood. In our study, we conducted experiments in controlled hydrodynamic conditions using a total of 6 two-phase and 9 three-phase mesocosms consisting of water, biofilm, and sediment. We also measured Cd (cadmium) specification in different phases to assess how hydrodynamic forces control Cd bioavailability. We found that turbulent flow destroyed the surface morphology of the biofilm and significantly decreased the content of extracellular polymeric substances (p < 0.05). This led to a decrease in the biofilm's adsorption capacity for Cd, with the maximum adsorption capacity (0.124 mg/g) being one-tenth of that under static conditions (1.256 mg/g). The Cd chemical forms in the biofilm and sediment were significantly different, with the highest amount of Cd in the biofilm being acid-exchangeable, accounting for up to 95.1% of the total Cd content. Cd was more easily released in the biofilm due to its weak binding state, while Cd in the sediment existed in more stable chemical forms. Hydrodynamic conditions altered the migration behavior and distribution characteristics of Cd in the system by changing the adsorption capacity of the biofilm and sediment for Cd. Cd mobility increased in laminar flow but decreased in turbulent flow. These results enhance our understanding of the underlying mechanisms that control the mobility and bioavailability of metals in aquatic environments with varying hydrodynamic conditions.
Collapse
Affiliation(s)
- Shijun Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Zixiang Zhang
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
| | - Chen Wen
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Shiqi Zhu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Chunyan Li
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Hansen Xu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China
| | - Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming 650500, China.
| |
Collapse
|
5
|
Leclerc M, Wauthy M, Planas D, Amyot M. How do metals interact with periphytic biofilms? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162838. [PMID: 36924968 DOI: 10.1016/j.scitotenv.2023.162838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Extracellular matrix of periphyton has complex structural and chemical composition regulating metal transfer within biofilms with consequences for metal transfer to aquatic food webs. We investigated which metal species were retained in the loosely (LB) and the tightly bound (TB) fractions of the periphyton matrix from three pristine lakes at different growth stages. We measured the fluorescent dissolved organic matter (FDOM) composition with parallel factor analysis (PARAFAC) and the co-occurrence of essential and non-essential metals with FDOM in the two matrix fractions. The LB and TB fractions of periphyton had distinct fluorescence composition from the water column. The PARAFAC model identified five components, including two (C2 and C4) appearing to be of periphytic origin. The humic-like C2 was almost exclusive to periphyton and the tryptophan-like C4, associated to biofilm phototrophy, represented up to 47.0 ± 7.3 % of total fluorescence in the LB fraction. Most metals had significant positive relationships with four FDOM components in the LB fraction while C2 was the only component in the TB fraction to show such significant relationships. Components in the LB fraction seemed to act as scavengers for metals, preventing them from reaching the cellular fraction, while C2 from the TB fraction was likely promoting the bioavailability of essential metals for microorganisms inside periphyton. This study highlights the contrasting roles of the extracellular matrix on metal mobility beyond the usually proposed protection mechanisms. We suggest an experimental model for the study of metal regulation processes of the periphytic extracellular polymeric substances with a focus on the components produced by microorganisms within periphyton and their distribution in the different matrix fractions.
Collapse
Affiliation(s)
- Maxime Leclerc
- GRIL, Département de Sciences Biologiques, Université de Montréal, 1375 Thérèse-Lavoie-Roux Ave., Montréal, QC H2V 0B3, Canada; GRIL, GEOTOP, Département de Sciences Biologiques, Université du Québec à Montréal, 141 Président-Kennedy Ave., Montréal, QC H2X 1Y4, Canada
| | - Maxime Wauthy
- GRIL, Département de Sciences Biologiques, Université de Montréal, 1375 Thérèse-Lavoie-Roux Ave., Montréal, QC H2V 0B3, Canada
| | - Dolors Planas
- GRIL, GEOTOP, Département de Sciences Biologiques, Université du Québec à Montréal, 141 Président-Kennedy Ave., Montréal, QC H2X 1Y4, Canada
| | - Marc Amyot
- GRIL, Département de Sciences Biologiques, Université de Montréal, 1375 Thérèse-Lavoie-Roux Ave., Montréal, QC H2V 0B3, Canada.
| |
Collapse
|
6
|
Laderriere V, Morin S, Eon M, Fortin C. Vulnerability and tolerance to nickel of periphytic biofilm harvested in summer and winter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120223. [PMID: 36191798 DOI: 10.1016/j.envpol.2022.120223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Metals are naturally present in freshwater ecosystems but anthropogenic activities like mining operations represent a long-standing concern. Metals released into aquatic environments may affect microbial communities such as periphytic biofilm, which plays a key role as a primary producer in stream ecosystems. Using two 28-day microcosm studies involving two different photoperiods (light/dark cycle of 16/8 vs 8/16), the present study assessed the effects of four increasing nickel (Ni) concentrations (0-6 μM) on two natural biofilm communities collected at different seasons (summer and winter). The two communities were characterized by different structural profiles and showed significant differences in Ni accumulated content for each treatment. For instance, the biofilm metal content was four times higher in the case of summer biofilm at the highest Ni treatment and after 28 days of exposure. Biomarkers examined targeted both heterotrophic and autotrophic organisms. For heterotrophs, the β-glucosidase and β-glucosaminidase showed no marked effects of Ni exposure and were globally similar between the two communities suggesting low toxicity. However, the photosynthetic yield confirmed the toxicity of Ni on autotrophs with maximum inhibition of 81 ± 7% and 60 ± 1% respectively for the summer and winter biofilms. Furthermore, biofilms previously exposed to the highest long-term Ni concentration ([Ni2+] = 6 μM) revealed no acute effects in subsequent toxicity based on the PSII yield, suggesting a tolerance acquisition by the phototrophic community. Taken together, the results suggest that the biofilm response to Ni exposure was dependent of the function considered and that descriptors such as biofilm metal content could be seasonally dependent, information of great importance in a context of biomonitoring.
Collapse
Affiliation(s)
- Vincent Laderriere
- INRS - ETE, 490 Rue de la Couronne, Québec, Canada; EcotoQ, 490 Rue de la Couronne, Québec, Canada.
| | - Soizic Morin
- EcotoQ, 490 Rue de la Couronne, Québec, Canada; INRAE, 50 Avenue de Verdun, Cestas, France.
| | | | - Claude Fortin
- INRS - ETE, 490 Rue de la Couronne, Québec, Canada; EcotoQ, 490 Rue de la Couronne, Québec, Canada.
| |
Collapse
|
7
|
Laderriere V, Richard M, Morin S, Le Faucheur S, Fortin C. Temperature and Photoperiod Affect the Sensitivity of Biofilms to Nickel and its Accumulation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1649-1662. [PMID: 35343607 DOI: 10.1002/etc.5335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/25/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Whereas metal impacts on fluvial communities have been extensively investigated, effects of abiotic parameters on community responses to contaminants are poorly documented. Variations in photoperiod and temperature commonly occur over the course of a season and could affect aquatic biofilm communities and their responses to contaminants. Our objective was to characterize the influence of environmental conditions (photoperiod and temperature) on nickel (Ni) bioaccumulation and toxicity using a laboratory-grown biofilm. Environmental parameters were chosen to represent variations that can occur over the summer season. Biofilms were exposed for 7 days to six dissolved Ni treatments (ranging from 6 to 115 µM) at two temperatures (14 and 20 °C) using two photoperiods (16:8 and 12:12-h light:dark cycle). Under these different scenarios, structural (dry weight biomass and chlorophyll-a) and functional biomarkers (photosynthetic yield and Ni content) were analyzed at four sampling dates, allowing us to evaluate Ni sensitivity of biofilms over time. The results highlight the effects of temperature on Ni accumulation and tolerance of biofilms. Indeed, biofilms exposed at 20 °C accumulated 1.6-4.2-fold higher concentrations of Ni and were characterized by a lower median effect concentration value using photosynthetic yield compared with those exposed at 14 °C. In terms of photoperiod, significantly greater rates of Ni accumulation were observed at the highest tested Ni concentration for biofilms exposed to a 12:12-h compared with a 16:8-h light:dark cycle. Our study demonstrates the influence of temperature on biofilm metabolism and illustrates that environmental factors may influence Ni accumulation response and thus Ni responses of phototrophic biofilms. Environ Toxicol Chem 2022;41:1649-1662. © 2022 SETAC.
Collapse
Affiliation(s)
- Vincent Laderriere
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Canada
| | - Maxime Richard
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Canada
| | - Soizic Morin
- Ecosystèmes Aquatiques et Changements Globaux, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Cestas, France
| | | | - Claude Fortin
- Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, Canada
| |
Collapse
|
8
|
Rabadjieva D, Kovacheva A, Tepavitcharova S, Ilieva R, Gergulova R, Vladov I, Karavoltsos S. Modelling of chemical species of Al, Mn, Zn, and Pb in river body waters of industrial areas of West Rhodope Mountain, Bulgaria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:430. [PMID: 34151379 DOI: 10.1007/s10661-021-09193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The assessment of the ecological status of natural surface water, in terms of dominant trace metals, within an area subject to various sources of pollution including a non-ferrous metal ore mining, such as the West Rhodope Mountain, Bulgaria, is significant. The present study estimates the ecological status of river body waters at industrial areas of the West Rhodope Mountain, Bulgaria, simultaneously evaluating the possibility of state forecasting, together with assessing the potential risks, through the study of scenarios focusing on (i) possible variations of physicochemical parameters such as pH, concentration levels of trace metals, sulphates, and dissolved organic carbon (DOC) of surface water and (ii) consideration of potential spontaneous precipitation reactions in the studied waters. The ecological status of river body waters was assessed through a combination of experimental field, laboratory, and computational techniques. Al, Mn, Zn, and Pb were found to be the dominant pollutants with a variety of chemical species and distribution. The most significant difference characterizing the chemical species distribution in light of total spontaneous crystallization in the systems was found for Pb, followed by Zn and Mn, with the differences being more significant at lower trace metal levels. The calculated species were discussed on the basis of HSAB (hard and soft acids and bases) principle.
Collapse
Affiliation(s)
- Diana Rabadjieva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, Bl. 11, 1113, Sofia, Bulgaria.
| | - Antonina Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, Bl. 11, 1113, Sofia, Bulgaria
| | - Stefka Tepavitcharova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, Bl. 11, 1113, Sofia, Bulgaria
| | - Radost Ilieva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, Bl. 11, 1113, Sofia, Bulgaria
| | - Rumiana Gergulova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, Bl. 11, 1113, Sofia, Bulgaria
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology With Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, Bl. 25, 1113, Sofia, Bulgaria
| | - Sotirios Karavoltsos
- Department of Chemistry, Laboratory of Environmental Chemistry, National and Kapodistrian University of Athens, 15784, Panepistimiopolis, Athens, Greece
| |
Collapse
|