1
|
Shang Q, Jian C, Chen Q, Liu Y, Zhang Y, Nie D. Phase reconstruction behavior and mechanism analysis of the electrolytic manganese residue decoupled residue pyrolysis process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124566. [PMID: 39983567 DOI: 10.1016/j.jenvman.2025.124566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Decoupled electrolytic manganese residue (DEMR) is the electrolytic manganese residue (EMR) after the removal of harmful components by double salt oxidation decoupling separation. An important direction for the bulk resource utilization of electrolytic manganese residue involves reconstructing its mineral phase composition, regulating the microstructure of the surface interface, improving the reactivity of the physical phase, and applying it to building materials through calcination. In this study, the thermal reaction behavior and pyrolysis mechanism of DEMR were revealed through thermodynamic and kinetic analysis combined with molecular dynamics (MD) simulations. The results show that the DEMR process can be divided into four stages. Stage 1 involves the first-order chemical reaction of the aqueous mineral phase removing free water, with an average activation energy (ΔG) of 6.85 kJ/mol. Stage 2 consists of stochastic nucleation and growth reactions, involving the decomposition of unstable sulfate, the removal of crystalline water from the aqueous mineral phase, and the decomposition of the carbon-containing organic matter, with an average ΔG of 126.43 kJ/mo1. Stage 3 is characterized by the phase boundary control reaction of heat-absorbing reconstruction of the stable mineral phase, with an ΔG of 255.46 kJ/mol. Stage 4 involves the heat-driven phase‒solid‒phase boundary chemical reaction of unstable minerals, with a ΔG of 205.54 kJ/mol. MD calculations show that there is a certain interaction energy between the oxides and CaSO4 in DEMR, and Al2O3-Fe2O3 and Al2O3-MgO easily form relatively stable compounds. Between other mineral phases, which may adsorb to each other or form unstable complexes. CaSO4-Al2O3, CaSO4-Fe2O3, Al2O3-Fe2O3, and Al2O3-MgO readily form relatively stable compounds through hydrogen bonding or chemical bonding. What's more, Al2O3-SiO2 and Fe2O3-SiO2 form less stable compounds via van der Waals and Coulomb forces.
Collapse
Affiliation(s)
- Qian Shang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Chenglong Jian
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qianlin Chen
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Yunqiu Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Yu Zhang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Dengpan Nie
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
2
|
Chen B, Xie D, Jiang Y, Wang Y, Su C, Yao Z, Cai D, Cao H, Watson I. Co-pyrolysis of corn stalk and high-density polyethylene with emphasis on the fibrous tissue difference on thermal behavior and kinetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177847. [PMID: 39631326 DOI: 10.1016/j.scitotenv.2024.177847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The thermal properties of various corn stalk tissues (including stem, husk, ear, cob, and leaf), high-density polyethylene (HDPE), and their blends were investigated using thermogravimetric analysis under a nitrogen atmosphere. The results indicate that the thermal decomposition process of corn stalk tissue/HDPE mixtures is delayed with an increasing heating rate, regardless of the tissue type. Besides, the structural differences among various corn stalk tissues significantly influence their thermal behavior, product distribution, and co-pyrolysis kinetics with HDPE. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was conducted to analyze the pyrolytic products of the blends with different corn stalk tissues, revealing that corn cob/HDPE blends produce a higher yield of valuable chemicals, such as the furan derivates and aromatic hydrocarbons. Kinetic analysis was further performed using Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods to determine the activation energy for the reactions occurring during co-pyrolysis. The co-pyrolysis of corn cob/HDPE blend requires the least activation energy (149.3 kJ/mol) among five blends, which was ascribed to the high hemicellulose content in corn cob. Moreover, machine learning algorithms, including random forest (RF) and gradient boost regression tree (GBRT), were applied to predict mass loss in the corn fiber/HDPE blends, which showed RF possessed superior accuracy over GBRT. These findings suggest that isolating plant tissues during the feedstock pre-management could enhance the valorization performance of lignocellulose-waste plastic co-pyrolysis.
Collapse
Affiliation(s)
- Bo Chen
- Systems, Power and Energy Research Division, James Watts School of Engineering, College of Science and Engineering, James Watt South, University of Glasgow, Glasgow G128QQ, UK; National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Deyin Xie
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yongjie Jiang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yankun Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhitong Yao
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Hui Cao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Ian Watson
- Systems, Power and Energy Research Division, James Watts School of Engineering, College of Science and Engineering, James Watt South, University of Glasgow, Glasgow G128QQ, UK
| |
Collapse
|
3
|
Wang B, Yao Z, Kumar S, Salama Abdelhady Mohamed M, Mohamed Abdel Sattar A, Ortuño N, Wang X, Qi W. Pyrolysis conversion of multi-layer packaging waste under a CO2 atmosphere: Thermo-kinetic study, evolved products analysis and artificial neural networks modeling. Chem Eng Sci 2024; 300:120584. [DOI: 10.1016/j.ces.2024.120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Ruan J, Liu Z, Gao K, She L, Liu J, Guo Y, Zhang F. New insights into typical biodegradable plastics in rapid pyrolysis: Kinetics, product evolution and transformation mechanism. CHEMOSPHERE 2024; 369:143834. [PMID: 39608650 DOI: 10.1016/j.chemosphere.2024.143834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Biodegradable plastics (BP) have undergone rapid development in the field of replacing traditional packaging plastics. However, their recycling and disposal systems are unclear, and the standards are different, causing new environmental pollution. The rapid and appropriate disposal of BP has become a worthy direction of exploration. Here, rapid pyrolysis technology was used to explore the recycling of BP, and the product evolution and transformation mechanism of typical BP (BP1∼BP4) were analyzed. The results show that the main reaction stages of BP pyrolysis are concentrated at approximately 260∼450 °C. Most of the heat treatment stages of BP conform to the random nucleation and nuclear growth model An (n = 1.5, 2, 2.5. 3). The gaseous products of BP pyrolysis were mainly 1, 3-butadiene. The top four pyrolysis components are the same for the liquid products of BP1, BP2, and BP4, which are mainly benzoic acid (42.54%-44.67%). However, the proportion of polycyclic aromatic substances in the products of the BP3 pyrolysis solution was as high as 63.85%. For the transformation mechanism, BP containing polylactic acid (PLA) and polybutylene terephthalate-adipate (PBAT) is mainly composed of C-O bond fractures at the ester group and intramolecular hydrogen transfer to form a carboxyl group and CC. This study of BP pyrolysis provides an important scientific basis and theoretical reference for its rational and rapid treatment and product recovery and reuse.
Collapse
Affiliation(s)
- Jiuli Ruan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zheng Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kang Gao
- Faculty of Geosciences and Environment Engineering, Southwest Jiaotong University, Chengdu, 610059, China
| | - Lingling She
- Solid Waste and Chemicals Management Center of the Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100029, China
| | - Jingyang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuwen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Feilong Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
5
|
Janković B, Janković M, Mraković A, Krneta Nikolić J, Rajačić M, Vukanac I, Sarap N, Manić N. Thermal Conversion of Coal Bottom Ash and Its Recovery Potential for High-Value Products Generation: Kinetic and Thermodynamic Analysis with Adiabatic TD24 Predictions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5759. [PMID: 39685195 DOI: 10.3390/ma17235759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024]
Abstract
Thermal decomposition (pyrolysis) of coal bottom ash (collected after lignite combustion in coal-fired power plant TEKO-B, Republic of Serbia) was investigated, using the simultaneous TG-DTG techniques in an inert atmosphere, at various heating rates. By using the XRD technique, it was found that the sample (CBA-TB) contains a large amount of anorthite, muscovite, and silica, as well as periclase and hematite, but in a smaller amount. Using a model-free kinetic approach, the complex nature of the process was successfully resolved. Thermodynamic analysis showed that the sample is characterized by dissociation reactions, which are endothermic with positive activation entropy changes, where spontaneity is achieved at high reaction temperatures. The model-based method showed the existence of a complex reaction scheme that includes two consecutive reaction steps and one single-step reaction, described by a variety of reaction models as nucleation/growth phase boundary-controlled, the second/n-th order chemical, and autocatalytic mechanisms. It was established that an anorthite I1 phase breakdown reaction into the incongruent melting product (CaO·Al2O3·2SiO2) represents the rate-controlling step. Autocatalytic behavior is reflected through chromium-incorporated SiO2 catalyst reaction, which leads to the formation of chromium(II) oxo-species. These catalytic centers are important in ethylene polymerization for converting light olefin gases into hydrocarbons. Adiabatic TD24 prediction simulations of the process were also carried out. Based on safety analysis through validated kinetic parameters, it was concluded that the tested sample exhibits high thermal stability. Applied thermal treatment was successful in promoting positive changes in the physicochemical characteristics of starting material, enabling beneficial end-use of final products and reduction of potential environmental risks.
Collapse
Affiliation(s)
- Bojan Janković
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Marija Janković
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Ana Mraković
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Jelena Krneta Nikolić
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Milica Rajačić
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Ivana Vukanac
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Nataša Sarap
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Nebojša Manić
- Faculty of Mechanical Engineering, Fuel and Combustion Laboratory, University of Belgrade, Kraljice Marije 16, P.O. Box 35, 11120 Belgrade, Serbia
| |
Collapse
|
6
|
Nanda S, Mishra A, Priyadarsini A, Barpanda T, Baral AK, Jena S, Jena PK, Mallick B, Dash M, Swain N, Jena NK, Mohanty MK. A comparative thermo-chemical characterization of oilseed, millet and pulse stem biomass for bioethanol production. Heliyon 2024; 10:e36946. [PMID: 39286146 PMCID: PMC11402915 DOI: 10.1016/j.heliyon.2024.e36946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
Various thermochemical and biochemical processes are resorted to transform agri-wastes into diverse green fuels. Current investigation encompassed three different types of biomass viz., gingelly, kodo millet and horse grams, whose desirability as biofuel feedstock have been largely unexplored till date. The existence of significant amount of cellulose (38.07 %), volatiles (75.19 %), calorific value (avg. 16.98 MJ/kg) in the gingelly biomass, demonstrates the effectiveness of the concerned biomass for utilization as feedstock in diverse industrial applications. The mean estimates of Eα were lower for kodo millet (approx. 150 kJ/mole), followed by gingelly (approx. 178 kJ/mole) and horse gram (approx. 180 kJ/mole). The mean estimates of ΔHα were 174.81 (FWO), 170.22 (KAS), 169.17 (S) and 170.40 (T) kJ/mol for the gingelly biomass. The mean estimates of ΔHα were 147.83 (FWO), 148.81 (KAS), 147.93 (S) and 149.04 (T) kJ/mol for kodo millet biomass, while for horse gram biomass, mean estimates of ΔHα were 178.91 (FWO), 169.61 (KAS), 168.56 (S) and 168.81 (T) kJ/mol. The minor difference of 3-4 kJ/mole between Aα and Hα, signifies the viability of the thermal disintegration process. From master plot, it's evident that the experimental curve intersects multiple theoretical curves, highlighting the intricate characteristics of the thermal disintegration process. The overall ethanol recovery was highest in gingelly as compared to both the biomasses. Gingelly biomass yielded an ethanol titer of 24.8 g/L after 24 h, resulting in a volumetric ethanol productivity of 1.03 g/L/h and an ethanol yield of 0.36 g/g.
Collapse
Affiliation(s)
- Spandan Nanda
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Abinash Mishra
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | | | - Tanya Barpanda
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Amiya Kumar Baral
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Supriya Jena
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Pradip Kumar Jena
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | | | - Manasi Dash
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Nandita Swain
- Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | | | | |
Collapse
|
7
|
Saraluck A, Techarang T, Bunyapipat P, Boonchuwong K, Pullaput Y, Mordmuang A. Detection of Microplastics in Human Breast Milk and Its Association with Changes in Human Milk Bacterial Microbiota. J Clin Med 2024; 13:4029. [PMID: 39064070 PMCID: PMC11277308 DOI: 10.3390/jcm13144029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Presently, there is increasing public consciousness regarding the contamination and detection of microplastics (MPs) within the human body, and studies on the detection and characterization of MPs in human breast milk are limited. Objectives: This study aims to investigate the prevalence and characteristics of MPs found in human breast milk and examine the relationship between maternal hygiene practices, complications that may arise during breastfeeding, and the composition of the bacterial microbiota. Methods: Postpartum breast milk was analyzed for MPs using Raman micro-spectroscopy. The relationship between MP detection, maternal hygiene, breastfeeding complications, and bacterial microbiota was examined. In order to identify correlations and differences between groups that had detected and non-detected MPs, statistical analyses were performed, which involved demographic comparisons and correlation network analysis. Results: The mean age of the 59 postpartum women was 28.13 years. We found MPs in 38.98% of breast milk samples (23 of 59), exhibiting diverse morphological and chemical characteristics. Most MP polymers were polypropylene, polyethylene, polystyrene, and polyvinyl chloride. Maternal hygiene and breastfeeding complications differed between the MPs-detected and non-detected groups. Maternal behaviors may influence the presence of microplastics in breast milk, which were associated with these differences. Bacterial microbiota analysis revealed significant taxonomic differences between the MPs-detected and non-detected groups. Staphylococcus and Streptococcus dominated the MPs-detected group, while Enterobacter, Escherichia, Pseudomonas, and Acinetobacter dominated the non-detected group. The MPs-detected group had a more even bacterial distribution, especially Bacteroides. Conclusions: This study found MPs in 38.98% of breast milk samples using Raman micro-spectrometry, with PP, PE, and PVC being the most common. Significant differences in maternal hygiene and breastfeeding complications were found between the groups with and without MPs. Breast milk microbiota may be linked to MP detection. Further study should be conducted to identify the possible maternal-child health.
Collapse
Affiliation(s)
- Apisith Saraluck
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Tachpon Techarang
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Phattarika Bunyapipat
- Walailak University Hospital, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Khununya Boonchuwong
- Walailak University Hospital, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Yupparase Pullaput
- The Center for Scientific and Technological Equipment, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Auemphon Mordmuang
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| |
Collapse
|
8
|
Chen F, Ding L, Zhu Y, Ren G, Man Y, Hong K, Lang L, Ström H, Xiong Q. Comprehensive kinetic modeling and product distribution for pyrolysis of pulp and paper mill sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171665. [PMID: 38490406 DOI: 10.1016/j.scitotenv.2024.171665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Pyrolysis holds immense potential for clean treatment of pulp and paper mill sludge (PPMS), enabling efficient energy and chemical recovery. However, current understanding of PPMS pyrolysis kinetics and product characteristics remains incomplete. This study conducted detailed modeling of pyrolysis kinetics for two typical PPMSs from a wastepaper pulp and paper mill, namely, deinking sludge (PPMS-DS) and sewage sludge (PPMS-SS), and analyzed comprehensively pyrolysis products. The results show that apparent activation energy of PPMS-DS (169.25-226.82 kJ/mol) and PPMS-SS (189.29-411.21 kJ/mol) pyrolysis undergoes significant change, with numerous parallel reactions present. A distributed activation energy model with dual logistic distributions proves to be suitable for modeling thermal decomposition kinetics of both PPMS-DS and PPMS-SS, with coefficient of determination >0.999 and relative root mean square error <1.99 %. High temperature promotes decomposition of solid organic materials in PPMS, and maximum tar yield for both PPMS-DS (53.90 wt%, daf) and PPMS-SS (56.48 wt%, daf) is achieved at around 500 °C. Higher levels of styrene (24.45 % for PPMS-DS and 14.71 % for PPMS-SS) and ethylbenzene (8.61 % for PPMS-DS and 8.33 % for PPMS-SS) are detected in tar and could be used as chemicals. This work shows great potential to propel development of PPMS pyrolysis technology, enabling green and sustainable production in pulp and paper industry.
Collapse
Affiliation(s)
- Fangjun Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lei Ding
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yongfeng Zhu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guanlong Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yi Man
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Kun Hong
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Lin Lang
- Laboratory of Biomass Thermochemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510641, China
| | - Henrik Ström
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Qingang Xiong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
9
|
Cheng Y, Wang J, Fang C, Du Y, Su J, Chen J, Zhang Y. Recent Progresses in Pyrolysis of Plastic Packaging Wastes and Biomass Materials for Conversion of High-Value Carbons: A Review. Polymers (Basel) 2024; 16:1066. [PMID: 38674986 PMCID: PMC11054047 DOI: 10.3390/polym16081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The recycling of plastic packaging wastes helps to alleviate the problems of white pollution and resource shortage. It is very necessary to develop high-value conversion technologies for plastic packaging wastes. To our knowledge, carbon materials with excellent properties have been widely used in energy storage, adsorption, water treatment, aerospace and functional packaging, and so on. Waste plastic packaging and biomass materials are excellent precursor materials of carbon materials due to their rich sources and high carbon content. Thus, the conversion from waste plastic packaging and biomass materials to carbon materials attracts much attention. However, closely related reviews are lacking up to now. In this work, the pyrolysis routes of the pyrolysis of plastic packaging wastes and biomass materials for conversion to high-value carbons and the influence factors were analyzed. Additionally, the applications of these obtained carbons were summarized. Furthermore, the limitations of the current pyrolysis technology are put forward and the research prospects are forecasted. Therefore, this review can provide a useful reference and guide for the research on the pyrolysis of plastic packaging wastes and biomass materials and the conversion to high-value carbon.
Collapse
Affiliation(s)
- Youliang Cheng
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| | - Jinpeng Wang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| | - Changqing Fang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| | - Yanli Du
- Shaanxi Zhonghe Dadi Industrial Limited Company, Xianyang 712099, China;
| | - Jian Su
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| | - Jing Chen
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| | - Yingshuan Zhang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, China; (Y.C.); (J.W.); (J.S.); (J.C.); (Y.Z.)
| |
Collapse
|
10
|
Fardi Z, Shahbeik H, Nosrati M, Motamedian E, Tabatabaei M, Aghbashlo M. Waste-to-energy: Co-pyrolysis of potato peel and macroalgae for biofuels and biochemicals. ENVIRONMENTAL RESEARCH 2024; 242:117614. [PMID: 37996005 DOI: 10.1016/j.envres.2023.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Waste-to-energy conversion presents a pivotal strategy for mitigating the energy crisis and curbing environmental pollution. Pyrolysis is a widely embraced thermochemical approach for transforming waste into valuable energy resources. This study delves into the co-pyrolysis of terrestrial biomass (potato peel) and marine biomass (Sargassum angastifolium) to optimize the quantity and quality of the resultant bio-oil and biochar. Initially, thermogravimetric analysis was conducted at varying heating rates (5, 20, and 50 °C/min) to elucidate the thermal degradation behavior of individual samples. Subsequently, comprehensive analyses employing FTIR, XRD, XRF, BET, FE-SEM, and GC-MS were employed to assess the composition and morphology of pyrolysis products. Results demonstrated an augmented bio-oil yield in mixed samples, with the highest yield of 27.1 wt% attained in a composition comprising 75% potato peel and 25% Sargassum angastifolium. As confirmed by GC-MS analysis, mixed samples exhibited reduced acidity, particularly evident in the bio-oil produced from a 75% Sargassum angastifolium blend, which exhibited approximately half the original acidity. FTIR analysis revealed key functional groups on the biochar surface, including O-H, CO, and C-O moieties. XRD and XRF analyses indicated the presence of alkali and alkaline earth metals in the biochar, while BET analysis showed a surface area ranging from 0.64 to 1.60 m2/g. The favorable characteristics of the products highlight the efficacy and cost-effectiveness of co-pyrolyzing terrestrial and marine biomass for the generation of biofuels and value-added commodities.
Collapse
Affiliation(s)
- Zahra Fardi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O.Box 14115-143, Tehran, Iran
| | - Hossein Shahbeik
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O.Box 14115-143, Tehran, Iran
| | - Mohsen Nosrati
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O.Box 14115-143, Tehran, Iran.
| | - Ehsan Motamedian
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, P.O.Box 14115-143, Tehran, Iran
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
11
|
Li G, Yang T, Xiao W, Yao X, Su M, Pan M, Wang X, Lyu T. Enhanced biofuel production by co-pyrolysis of distiller's grains and waste plastics: A quantitative appraisal of kinetic behaviors and product characteristics. CHEMOSPHERE 2023; 342:140137. [PMID: 37730021 DOI: 10.1016/j.chemosphere.2023.140137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Pyrolysis of biomass feedstocks can produce valuable biofuel, however, the final products may present excessive corrosion and poor stability due to the lack of hydrogen content. Co-pyrolysis with hydrogen-rich substances such as waste plastics may compensate for these shortcomings. In this study, the co-pyrolysis of a common biomass, i.e. distiller's grains (DG), and waste polypropylene plastic (PP) were investigated towards increasing the quantity and quality of the production of biofuel. Results from the thermogravimetric analyses showed that the reaction interval of individual pyrolysis of DG and PP was 124-471 °C and 260-461 °C, respectively. Conversely, an interaction effect between DG and PP was observed during co-pyrolysis, resulting in a slower rate of weight loss, a longer temperature range for the pyrolysis reaction, and an increase in the temperature difference between the evolution of products. Likewise, the Coats-Redfern model showed that the activation energies of DG, PP and an equal mixture of both were 42.90, 130.27 and 47.74 kJ mol-1, respectively. It thus follows that co-pyrolysis of DG and PP can effectively reduce the activation energy of the reaction system and promote the degree of pyrolysis. Synergistic effects essentially promoted the free radical reaction of the PP during co-pyrolysis, thereby reducing the activation energy of the process. Moreover, due to this synergistic effect in the co-pyrolysis of DG and PP, the ratio of elements was effectively optimized, especially the content of oxygen-containing species was reduced, and the hydrocarbon content of products was increased. These results will not only advance our understanding of the characteristics of co-pyrolysis of DG and PP, but will also support further research toward improving an efficient co-pyrolysis reactor system and the pyrolysis process itself.
Collapse
Affiliation(s)
- Gang Li
- School of Artificial Intelligence, Beijing Technology and Business University, Haidian District, Beijing, 10048, China
| | - Tenglun Yang
- School of Artificial Intelligence, Beijing Technology and Business University, Haidian District, Beijing, 10048, China
| | - Wenbo Xiao
- School of Artificial Intelligence, Beijing Technology and Business University, Haidian District, Beijing, 10048, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Haidian District, Beijing, 10048, China
| | - Meng Su
- School of Economics, Beijing Technology and Business University, Fangshan District, Beijing, 10048, China
| | - Minmin Pan
- Department for Solar Materials, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Xiqing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, 441053, China.
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, United Kingdom.
| |
Collapse
|
12
|
He W, Li R, Yang Y, Zhang Y, Nie D. Kinetic and thermodynamic analysis on preparation of belite-calcium sulphoaluminate cement using electrolytic manganese residue and barium slag by TGA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95901-95916. [PMID: 37558917 DOI: 10.1007/s11356-023-29104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Electrolytic manganese residue (EMR) is a solid filter residue obtained from manganese carbonate ore during the production of metal manganese. A potential avenue towards large-scale utilisation of EMR is its use in cement preparation. However, the preparation of cement materials using EMR requires high-temperature calcination. In this study, the thermal properties and pyrolysis kinetics of belite-calcium sulfoaluminate cement raw meal were systematically studied using a multiple-heating-rate method based on thermogravimetric analysis and a kinetic model. The kinetic and thermodynamic parameters was studied using non-isothermal Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), Friedman and Kissinger methods. The results showed that from 30 to 1300°C, the pyrolysis reaction of cement raw meal was mainly divided into four steps: the crystalline water removal from calcium sulphate dihydrate and bauxite, the ammonia nitrogen removal from ammonium salts and the calcium sulphate crystal transformation; the decomposition of calcium carbonate and carbon-containing organic matter; the sulphate and carbonate substance decomposition and the clinker mineral phase formation. The average activation energies calculated when using the non-isothermal FWO, KAS, Friedman and Kissinger methods were 244.49, 240.7, 239.24 and 380.60 kJ/mol and the average pre-exponential factors were 1.75 × 1020, 3.65 × 1020, 7.11 × 1021 and 1.55 × 1013 s-1, respectively. Herein, the pyrolysis kinetics of the cement raw meal was divided into two main stages: In stage 1 (α: 0.15-0.8, 524°C-754°C), the mechanism of P2/3 accelerated nucleation in the Mampel Power rule, and the reaction mechanism function was G(α)=α3/2. In stage 2 (α: 0.80-0.95, 754°C-1165°C), during the local conversion of α = 0.2-0.8, when α was <0.5, the chemical reaction mechanism of the R3 phase boundary was noted and the mechanism function was G(α) = 1 - (1-α)1/3; however, when α was >0.5, a random nucleation and subsequent growth mechanism of A6 was noted and the mechanism function was G(α) = [-ln(1 - α)]2/3.
Collapse
Affiliation(s)
- Weilong He
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
- Office of Academic Affairs, Guizhou University of Engineering Science, Bijie, 551700, Guizhou, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yanping Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Dengpan Nie
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, Guizhou, China
| |
Collapse
|
13
|
Dai C, Hu E, Yang Y, Li M, Li C, Zeng Y. Fast co-pyrolysis behaviors and synergistic effects of corn stover and polyethylene via rapid infrared heating. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:147-156. [PMID: 37442035 DOI: 10.1016/j.wasman.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Rapid infrared heating with fast heating rates and the capacity to load materials on the gram scale help investigate the co-pyrolysis behaviors, minimizing the gap of materials' pyrolysis temperature and volatile release during the co-pyrolysis. This work explored the effects of temperature and heating rate on the co-pyrolysis product s behaviors and synergistic interactions of corn stove and polyethylene. Initial increases in oil yield were followed by decreases when the heating rate rose, and when the temperature increased from 500 °C to 600 °C, the oil yield rose from 17.91 wt% to 20.58 wt% before falling to 14.75 wt% at 800 °C. High heating rate promoted the oil generation, and the maximum oil yield was at 25 °C/s with varying heating rates from 15 °C/s to 35 °C/s. The pyrolysis gas produced at 25 °C/s exhibited the highest LHV (Low heating value) and lowest CO2 yield, which were 17.23 MJ/nm3 and 39.29 vol%, respectively. The suitability of heating rate and temperature may improve the interaction between H-radicals of PE and oxygenated groups of CS to generate stable macromolecular compound and enhance oil production. GC-MS studies of the oil products demonstrated that oxygenated compounds such as furans, phenols and acids from lignocellulosic depolymerization had been converted to high molecular weight long chain alcohols (mostly C26, C20 and C14 alcohols) via stronger interactions during fast infrared-heated co-pyrolysis. The alcohols increased from 32.29 % to 65.06 % as temperatures rose from 500 °C to 800 °C. Few furan heterocycles, acids and phenols were detected, suggesting that the oil presented higher quality and stronger synergistic effects. Rapid infrared heating accelerated the synergistic effects between volatile-volatile interactions during co-pyrolysis of corn stover and polyethylene, and the increases in temperature and heating rates further enhanced the release of many volatile substances and the formation of fine pores. Raman results showed char of 600 °C deposited more pure aromatic structures, the influence of temperature on aromatization was stronger than that of heating rate.
Collapse
Affiliation(s)
- Chongyang Dai
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Erfeng Hu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| | - Yang Yang
- Bioenergy Research Group, EBRI, Aston University, Birmingham B4 7ET, UK
| | - Moshan Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Chenhao Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Yongfu Zeng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| |
Collapse
|
14
|
Tagade A, Sawarkar AN. Valorization of millet agro-residues for bioenergy production through pyrolysis: Recent inroads, technological bottlenecks, possible remedies, and future directions. BIORESOURCE TECHNOLOGY 2023:129335. [PMID: 37343798 DOI: 10.1016/j.biortech.2023.129335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Millets are receiving increasing attention, lately, in view of their preeminent agronomic traits, nutritional significance, and renewed emphasis on highlighting their health benefits through national and international programs. As a consequence, a variety of millets are being cultivated in different parts of the world resulting in significant amount of millet agro-residues. Present study comprehends critical analysis of reported investigations on pyrolysis of different millet agro-residues encompassing (i) physico-chemical characterization (ii) kinetics and thermodynamic parameters (iii) reactors employed and (iv) relationship between the reaction conditions and characteristics of millets-derived biochar and its prospective applications. Based on the analysis of reported investigations, specific research gaps have been figured out. Finally, future directions for leveraging the energy potential of millet agro-residues are also discussed. The analysis elucidated is expected to be useful for the researchers for making further inroads pertaining to sustainable utilization of millet agro-residues in tandem with other commonly employed agro-residues.
Collapse
Affiliation(s)
- Ankita Tagade
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Ashish N Sawarkar
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
15
|
Kadac-Czapska K, Knez E, Gierszewska M, Olewnik-Kruszkowska E, Grembecka M. Microplastics Derived from Food Packaging Waste-Their Origin and Health Risks. MATERIALS (BASEL, SWITZERLAND) 2023; 16:674. [PMID: 36676406 PMCID: PMC9866676 DOI: 10.3390/ma16020674] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plastics are commonly used for packaging in the food industry. The most popular thermoplastic materials that have found such applications are polyethylene (PE), polypropylene (PP), poly(ethylene terephthalate) (PET), and polystyrene (PS). Unfortunately, most plastic packaging is disposable. As a consequence, significant amounts of waste are generated, entering the environment, and undergoing degradation processes. They can occur under the influence of mechanical forces, temperature, light, chemical, and biological factors. These factors can present synergistic or antagonistic effects. As a result of their action, microplastics are formed, which can undergo further fragmentation and decomposition into small-molecule compounds. During the degradation process, various additives used at the plastics' processing stage can also be released. Both microplastics and additives can negatively affect human and animal health. Determination of the negative consequences of microplastics on the environment and health is not possible without knowing the course of degradation processes of packaging waste and their products. In this article, we present the sources of microplastics, the causes and places of their formation, the transport of such particles, the degradation of plastics most often used in the production of packaging for food storage, the factors affecting the said process, and its effects.
Collapse
Affiliation(s)
- Kornelia Kadac-Czapska
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Eliza Knez
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Magdalena Gierszewska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| |
Collapse
|
16
|
Dubdub I. Kinetics Study of Polypropylene Pyrolysis by Non-Isothermal Thermogravimetric Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:584. [PMID: 36676321 PMCID: PMC9863370 DOI: 10.3390/ma16020584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Polypropylene (PP) is considered as one of six polymers representative of plastic wastes. This paper attempts to obtain information on PP polymer pyrolysis kinetics with the help of thermogravimetric analysis (TGA). TGA is used to measure the weight of the sample with temperature increases at different heating rates-5, 10, 20, 30, and 40 K min-1-in inert nitrogen. The pyrolytic kinetics have been analyzed by four model-free methods-Friedman (FR), Flynn-Wall-Qzawa (FWO), Kissinger-Akahira-Sunose (KAS) and Starnik (STK)-and by two model-fitting methods-Coats-Redfern (CR) and Criado methods. The values of activation energies of PP polymer pyrolysis at different conversions are in good agreement with the average of (141, 112, 106, 108 kJ mol-1) for FR, FWO, KAS and STK, respectively. Criado methods have been implemented with the CR method to obtain the reaction mechanism model. As per Criado's method, the most controlling reaction mechanism has been identified as the geometrical contraction models-cylinder model.
Collapse
Affiliation(s)
- Ibrahim Dubdub
- Department of Chemical Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
17
|
Mishra A, Nanda S, Ranjan Parida M, Jena PK, Dwibedi SK, Manjari Samantaray S, Samantaray D, Mohanty MK, Dash M. A comparative study on pyrolysis kinetics and thermodynamic parameters of little millet and sunflower stems biomass using thermogravimetric analysis. BIORESOURCE TECHNOLOGY 2023; 367:128231. [PMID: 36332863 DOI: 10.1016/j.biortech.2022.128231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Several biochemical and thermochemical routes including pyrolysis, liquefaction, combustion and gasification are used to convert biomass to several bioproducts and green fuels. The current investigation included two important biomass namely, little millet stem (LMS) and sunflower stem (SS), whose potentiality as useful feedstocks is largely unexplored. The presence of considerable level of cellulose accumulation (approx. 30 %), volatiles (approx. 67 %) and high heating value (approx. 14 MJ/kg) in both the biomass, inferred their potentiality to be used as feedstocks in the pyrolysis process. The estimate of activation energy for LMS was reported as 191.14 kJ/mol (FWO), 191.46 kJ/mol (KAS) whereas for SS, the activation energy was estimated as 166.52 kJ/mol (FWO) and 162.68 kJ/mol (KAS). The difference between change in enthalpy and activation energy was small (5 to 6 kJ/mol) for both the biomasses, indicating the feasibility of combustion process. From Z(α) analyses, the experimental curve was seen passing through different theoretical curves, indicating complex nature of pyrolysis process for both the biomass.
Collapse
Affiliation(s)
- Abinash Mishra
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Spandan Nanda
- College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manas Ranjan Parida
- College of Agricultural Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Pradip Kumar Jena
- College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Sanat Kumar Dwibedi
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Saubhagya Manjari Samantaray
- College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Debiprasad Samantaray
- College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mahendra Kumar Mohanty
- College of Agricultural Engineering and Technology, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
18
|
Zuhara S, Mackey HR, Al-Ansari T, McKay G. A review of prospects and current scenarios of biomass co-pyrolysis for water treatment. BIOMASS CONVERSION AND BIOREFINERY 2022:1-30. [PMID: 35855911 PMCID: PMC9277991 DOI: 10.1007/s13399-022-03011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
With ever-growing population comes an increase in waste and wastewater generated. There is ongoing research to not only reduce the waste but also to increase its value commercially. One method is pyrolysis, a process that converts wastes, at temperatures usually above 300 °C in a pyrolysis unit, to carbon-rich biochars among with other useful products. These chars are known to be beneficial as they can be used for water treatment applications; certain studies also reveal improvements in the biochar quality especially on the surface area and pore volume by imparting thermal and chemical activation methods, which eventually improves the uptake of pollutants during the removal of inorganic and organic contaminants in water. Research based on single waste valorisation into biochar applications for water treatment has been extended and applied to the pyrolysis of two or more feedstocks, termed co-pyrolysis, and its implementation for water treatment. The co-pyrolysis research mainly covers activation, applications, predictive calculations, and modelling studies, including isotherm, kinetic, and thermodynamic adsorption analyses. This paper focuses on the copyrolysis biochar production studies for activated adsorbents, adsorption mechanisms, pollutant removal capacities, regeneration, and real water treatment studies to understand the implementation of these co-pyrolyzed chars in water treatment applications. Finally, some prospects to identify the future progress and opportunities in this area of research are also described. This review provides a way to manage solid waste in a sustainable manner, while developing materials that can be utilized for water treatment, providing a double target approach to pollution management.
Collapse
Affiliation(s)
- Shifa Zuhara
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hamish R. Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Tareq Al-Ansari
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Engineering Management and Decision Sciences, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
19
|
Singh S, Tagade A, Verma A, Sharma A, Tekade SP, Sawarkar AN. Insights into kinetic and thermodynamic analyses of co-pyrolysis of wheat straw and plastic waste via thermogravimetric analysis. BIORESOURCE TECHNOLOGY 2022; 356:127332. [PMID: 35589042 DOI: 10.1016/j.biortech.2022.127332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
This work studied the co-pyrolysis of wheat straw (WS) and polyethylene (PE) via thermogravimetric experiments from room temperature to 1000 °C at various heating rates (10, 20, and 30 °C/min). Thermal behavior revealed that the maximum decomposition of WS, PE, and their blend occurred in three temperature ranges, viz. 250 - 496, 200 - 486, and 200 - 501 °C. Kinetic parameters were determined using model-free isoconversional methods. Activation energy from KAS (163.56, 220.26 and 196.78 kJ/mol for WS, PE, and blend), FWO (165.97, 222.05, 198.86 kJ/mol for WS, PE, and blend), and Starink (163.45, 220.05, 196.46 kJ/mol for WS, PE, and blend) method was estimated. From among various solid-state kinetic models, first-order reaction kinetics and one and two-dimensional diffusion models dominated co-pyrolysis of WS and PE. Thermodynamic parameters confirmed the feasibility of co-pyrolysis of WS and PE while differential thermal analysis signified that endothermic and exothermic reactions occur simultaneously.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Ankita Tagade
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Ashish Verma
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Ajay Sharma
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shyam P Tekade
- Department of Chemical Engineering, Gharda Institute of Technology, Lavel 415708, Maharashtra, India
| | - Ashish N Sawarkar
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
20
|
Co-pyrolysis of Hardwood Combined with Industrial Pressed Oil Cake and Agricultural Residues for Enhanced Bio-Oil Production. J CHEM-NY 2022. [DOI: 10.1155/2022/9884766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lignocellulosic biomass is the potential raw material for the production of biofuels through pyrolysis. It is an effective technique for converting biomass to biofuels. However, biofuel from agricultural residues and woody-based feedstocks shows poor fuel properties due to higher oxygen content. Co-pyrolysis is a promising process to produce high-quality bio-oil by two or more different materials. Forestry, industrial, and agricultural outcomes are the ideal co-feedstocks for improved bio-oil quality. In this study, individual and co-pyrolysis of hardwood, pressed mustard oil cake and corncob were conducted at a temperature of 500°C. Before conducting pyrolysis experiments, thermogravimetric analysis was conducted to evaluate thermal degradation behavior. Through individual pyrolysis, corncob yielded a maximum bio-oil of 43.9 wt%. On the other hand co-pyrolysis on binary blends of hardwood and corncob produced maximum bio-oil of 46.2 wt%. Compared to individual pyrolysis, the binary blend produced more bio-oil, suggesting a synergistic effect between hardwood and corncob. The decreased bio-oil yield of 40.1 wt% during co-pyrolysis of ternary blends suggests negative synergistic effects prejudiced by the volatiles available in the biomass mixture. The improved quantitative synergistic results in the co-pyrolysis process give crucial information for the development of feed-flexible, higher bio-oil production and clean operating systems. The characterization studies on bio-oil by Fourier transform-infrared spectroscopy (FTIR), gas chromatography–mass spectrometry (GC-MS), and 1H NMR spectroscopy have shown that the bio-oil is a combination of aliphatic and oxygenated compounds. The analysis of the heating value shows that the bio-oil can be utilized as a fuel for heating applications.
Collapse
|
21
|
Kirti N, Tekade SP, Tagade A, Sawarkar AN. Pyrolysis of pigeon pea (Cajanus cajan) stalk: Kinetics and thermodynamic analysis of degradation stages via isoconversional and master plot methods. BIORESOURCE TECHNOLOGY 2022; 347:126440. [PMID: 34852283 DOI: 10.1016/j.biortech.2021.126440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Detailed analysis of thermo-kinetics, reaction mechanism, and estimation of thermodynamic parameters are imperative for the design of reactor systems in thermochemical conversion processes. Present investigation was aimed at exploring the pyrolysis potential of pigeon pea stalk (PPS) by thermogravimetric experiments at 10, 20, and 30 °C/min heating rates. Maximum devolatilization of PPS was found to take place below 480 °C. The average activation energy for PPS pyrolysis was found to be 95.97, 100.74, 96.24, and 96.64 kJ/mol by Kissinger-Akahira-Sunose, Flynn-Wall-Ozawa, Starink, and Friedman method, respectively. Statistical analysis by one way analysis of variance method by employing Tukey test revealed that the difference in activation energy estimated from different methods was insignificant. Thermodynamic parameters (ΔH, ΔS, and ΔG) together with reaction mechanisms were also evaluated. Difference in the activation energy and enthalpy was found to be less than 5 kJ/mol. R2 and R3 models were found best fitted with experimental PPS pyrolysis data.
Collapse
Affiliation(s)
- Nikhil Kirti
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj - 211004, Uttar Pradesh, India
| | - Shyam P Tekade
- Department of Chemical Engineering, Gharda Institute of Technology, Lavel-415708, Maharashtra, India
| | - Ankita Tagade
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj - 211004, Uttar Pradesh, India
| | - Ashish N Sawarkar
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj - 211004, Uttar Pradesh, India.
| |
Collapse
|
22
|
Wan Mahari WA, Awang S, Zahariman NAZ, Peng W, Man M, Park YK, Lee J, Sonne C, Lam SS. Microwave co-pyrolysis for simultaneous disposal of environmentally hazardous hospital plastic waste, lignocellulosic, and triglyceride biowaste. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127096. [PMID: 34523477 DOI: 10.1016/j.jhazmat.2021.127096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Microwave co-pyrolysis was examined as an approach for simultaneous reduction and treatment of environmentally hazardous hospital plastic waste (HPW), lignocellulosic (palm kernel shell, PKS) and triglycerides (waste vegetable oil, WVO) biowaste as co-feedstock. The co-pyrolysis demonstrated faster heating rate (16-43 °C/min) compared to microwave pyrolysis of single feedstock (9-17 °C/min). Microwave co-pyrolysis of HPW/WVO performed at 1:1 ratio produced a higher yield (80.5 wt%) of hydrocarbon liquid fuel compared to HPW/PKS (78.2 wt%). The liquid oil possessed a low nitrogen content (< 4 wt%) and free of sulfur that could reduce the release of hazardous pollutants during its use as fuel in combustion. In particular, the liquid oil obtained from co-pyrolysis of HPW/WVO has low oxygenated compounds (< 16%) leading to reduction in generation of potentially hazardous sludge or problematic acidic tar during oil storage. Insignificant amount of benzene derivatives (< 1%) was also found in the liquid oil, indicating the desirable feature of this pyrolysis approach to suppress the formation of toxic polycyclic aromatic hydrocarbons (PAHs). Microwave co-pyrolysis of HPW/WVO improved the yield and properties of liquid oil for potential use as a cleaner fuel, whereas the liquid oil from co-pyrolysis of HPW/PKS is applicable in the synthesis of phenolic resin.
Collapse
Affiliation(s)
- Wan Adibah Wan Mahari
- Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan 450002, China; Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Syafikah Awang
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nur Alifah Zakirah Zahariman
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Mustafa Man
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Jechan Lee
- Department of Environmental and Safety Engineering & Department of Energy Systems Research, Ajou University, 206 World cup-ro, Suwon 16499, Republic of Korea
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan 450002, China; Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
23
|
Ni Z, Bi H, Jiang C, Tian J, Sun H, Zhou W, Lin Q. Research on the co-pyrolysis of coal gangue and coffee industry residue based on machine language: Interaction, kinetics, and thermodynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150217. [PMID: 34520910 DOI: 10.1016/j.scitotenv.2021.150217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Co-pyrolysis technology of urban solid waste and biomass has broad application prospects in alleviating energy crisis and environmental pollution. In this study, thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) was used to study the co-pyrolysis characteristics of coal gangue (CG) and coffee industry residue (CIR). CG and CIR were uniformly mixed according to the mass ratios of 1: 0, 7:3, 5:5, 3:7, and 0:1. Then the samples were heated and pyrolyzed in an atmosphere with a nitrogen flow rate of 60 mL/min. As the proportion of CG increased, the comprehensive pyrolysis index (CPI) showed an exponential decrease. FTIR detected that the gas produced by pyrolysis of CG-CIR contained hydroxyl compounds, hydrocarbons, CO2, CO, Phenols, and NH3. CG-CIR co-pyrolysis had obvious interaction. By using Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods, the relationship between activation energy (Eα) and kinetic parameters and conversion degree was studied. Principal component analysis (PCA) was used to determine the principal reaction of CG-CIR pyrolysis. ANN 21 was the best model for predicting the pyrolysis of CG-CIR.
Collapse
Affiliation(s)
- Zhanshi Ni
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| | - Haobo Bi
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| | - Chunlong Jiang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| | - Junjian Tian
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| | - Hao Sun
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| | - Wenliang Zhou
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| | - Qizhao Lin
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China.
| |
Collapse
|
24
|
Singh RK, Patil T, Pandey D, Tekade SP, Sawarkar AN. Co-pyrolysis of petroleum coke and banana leaves biomass: Kinetics, reaction mechanism, and thermodynamic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113854. [PMID: 34607141 DOI: 10.1016/j.jenvman.2021.113854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Insights into thermal degradation behaviour, kinetics, reaction mechanism, possible synergism, and thermodynamic analysis of co-pyrolysis of carbonaceous materials are crucial for efficient design of co-pyrolysis reactor systems. Present study deals with comprehensive kinetics and thermodynamic investigation of co-pyrolysis of petroleum coke (PC) and banana leaves biomass (BLB) for realizing the co-pyrolysis potential. Thermogravimetric non-isothermal studies have been performed at 10, 20, and 30 °C/min heating rates. Synergistic effect between PC and BLB was determined by Devolatilization index (Di) and mass loss method. Kinetic parameters were estimated using seven model-free methods. Standard activation energy for PC + BLB blend from FWO, KAS, Starink, and Vyazovkin methods was ≈165 kJ/mol and that from Friedman and Vyazovkin advanced isoconversional methods was ≈171 kJ/mol. The frequency factor calculated for the blend from Kissinger method was found to be in the range of 106-1016s-1. Devolatilization index (Di) showed synergistic effect of blending. The data pertaining to co-pyrolysis was found to fit well with R2 (second order) and D3 (three dimensional) from Z(α) master plot. Thermodynamic parameters, viz. ΔH ≈ 163 kJ/mol and ΔG ≈ 151 kJ/mol were calculated to determine the feasibility and reactivity of the co-pyrolysis process. The results are expected to be useful in the design of petcoke and banana leaves biomass co-pyrolysis systems.
Collapse
Affiliation(s)
- Rajnish Kumar Singh
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Trilok Patil
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Deeksha Pandey
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Shyam P Tekade
- Department of Chemical Engineering, Gharda Institute of Technology, Lavel, 415708, Maharashtra, India
| | - Ashish N Sawarkar
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
25
|
Ding Z, Liu J, Chen H, Huang S, Evrendilek F, He Y, Zheng L. Co-pyrolysis performances, synergistic mechanisms, and products of textile dyeing sludge and medical plastic wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149397. [PMID: 34371397 DOI: 10.1016/j.scitotenv.2021.149397] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to quantify the co-pyrolysis of textile dyeing sludge (TDS) and the two medical plastic wastes of syringes (SY) and medical bottles (MB) in terms of their performances, synergistic mechanisms, and products. The pyrolysis of polyolefin plastics with its high calorific value and low ash content can offset the poor mono-pyrolytic performance of TDS. The synergistic mechanisms occurred mainly in the range of 400-550 °C. The addition of 10% SY or MB achieved the best co-pyrolysis performance with the lowest activation energy. The co-pyrolysis increased the contents of CH4 and CH but reduced CO2 emission. The co-pyrolysis released more fatty hydrocarbons, alcohols, and cyclic hydrocarbon during but reduced the yields of ethers and furans, through the synergistic mechanisms. The addition of the polyolefin plastics made the micro surface particles of chars smaller and looser. Our results can benefit energy utilization, pollution control, and optimal operational conditions for the industrial thermochemical conversions of hazardous wastes.
Collapse
Affiliation(s)
- Ziyi Ding
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingyong Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Huashan Chen
- Guoke (Foshan) Testing and Certification Co., Ltd., Foshan 528000, China
| | - Shengzheng Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fatih Evrendilek
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, Bolu 14052, Turkey
| | - Yao He
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
26
|
Chu Z, Gong Z, Zhang H, Wang Z, Liu L, Wang Z, Wu J, Wang J, Li X, Guo Y, Zhang J, Li G. Pyrolysis characteristics and kinetics analysis of oil sludge with CaO additive. ENVIRONMENTAL TECHNOLOGY 2021; 43:1-11. [PMID: 34236009 DOI: 10.1080/09593330.2021.1954095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In the process of exploitation, transportation and refining of high-sulfur crude oil, a large number of oil sludge (OS) with high sulfur content is produced. Pyrolysis has been proved to be an effective method for OS disposal, but for solid waste with high sulfur content, lots of sulfur-containing gases will be released during thermal disposal. The addition of calcium oxide in pyrolysis process is an economical and effective way to capture sulfur-containing gases. In order to understand the pyrolysis process of OS with CaO, a thermogravimetric analyser was used to conduct pyrolysis experiments of OS with different Ca/S molar ratios (0, 1, 2 and 3) at different heating rates (10°C/min, 20°C/min, 30°C/min and 40°C/min). The results showed that with the increase of CaO addition the derivative thermogravimetric curves showed a gentle trend. In addition, new weight loss peaks were occurred at 700-900°C and after 1100°C, which were the decomposition of calcium carbonate and calcium sulfate, respectively. The kinetic parameters were solved by Friedman, FWO, and Starink methods, and the results were similar, with an average activation energies (E) value of 214 kJ/mol. The change trend of the activation energy was followed by an increase and then a decrease corresponding to the change of energy demand for the reaction. The calculated average values of ΔH, ΔG and ΔS were about 207, 447 and -0.3250 kJ/mol, respectively. When the conversion rate was 0.5, the thermodynamic parameters reached their maximum values.
Collapse
Affiliation(s)
- Zhiwei Chu
- College of New Energy, China University of Petroleum (East China), Qingdao, People's Republic of China
| | - Zhiqiang Gong
- State Grid Shandong Electric Power Research Institute, Jinan, People's Republic of China
| | - Haoteng Zhang
- College of New Energy, China University of Petroleum (East China), Qingdao, People's Republic of China
| | - Zhenbo Wang
- College of New Energy, China University of Petroleum (East China), Qingdao, People's Republic of China
| | - Lei Liu
- College of New Energy, China University of Petroleum (East China), Qingdao, People's Republic of China
| | - Ziyi Wang
- College of New Energy, China University of Petroleum (East China), Qingdao, People's Republic of China
| | - Jinhui Wu
- College of New Energy, China University of Petroleum (East China), Qingdao, People's Republic of China
| | - Jianzhu Wang
- College of New Energy, China University of Petroleum (East China), Qingdao, People's Republic of China
| | - Xiaoyu Li
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, People's Republic of China
| | - Yizhi Guo
- Dalian Yishunlvse Technology Co., Ltd., Dalian, People's Republic of China
| | - Jianqiang Zhang
- Dalian Yishunlvse Technology Co., Ltd., Dalian, People's Republic of China
| | - Guoen Li
- Dalian Yishunlvse Technology Co., Ltd., Dalian, People's Republic of China
| |
Collapse
|