1
|
Suarez P, Vallejos-Almirall A, Fernández I, Gonzalez-Chavarria I, Alonso J, Vidal G. Identification of Cryptosporidium parvum and Blastocystis hominis subtype ST3 in Cholga mussel and treated sewage: Preliminary evidence of fecal contamination in harvesting area. Food Waterborne Parasitol 2024; 34:e00214. [PMID: 38188968 PMCID: PMC10770711 DOI: 10.1016/j.fawpar.2023.e00214] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024] Open
Abstract
Cryptosporidium parvum and Blastocystis hominis are foodborne parasites known for causing diarrhea. They accumulate in mussels grown on contaminated water bodies, due to the discharge of treated sewage from sewage treatment plants (STP). Despite this, some countries like Chile do not include these parasites in the control or monitoring of sewage water. The objective of this research was to evaluate the contamination of C. parvum. and B. hominis from treated sewage (disinfected by chlorination) and Cholga mussels in a touristic rural cove from the bay of Concepción. Cholga mussels from commercial stores and a treated sewage sample were analyzed. Cryptosporidium spp. was identified by Ziehl-Neelsen-Staining (ZNS) and C. parvum by direct-immunofluorescence assay (IFA) from ZNS-positive samples. Blastocystis hominis was identified by PCR using locus SSU rDNA. C. parvum and B. hominis subtype ST3 were found in 40% and 45% of Cholga mussel samples, respectively, and both parasites were identified in the treated sewage. Blastocystis hominis SSU rDNA gene alignment from Cholga mussels and treated sewage showed 89% of similarity, indicating that could be the same parasite in both samples. We describe the first evidence of possible contamination with these parasites from treated sewage to Cholga mussel suggesting an environmental contamination with high human risk. Based on these results, further studies will consider all the rural coves and STP from the bay to prevent possible contamination of these parasites.
Collapse
Affiliation(s)
- P. Suarez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción, Chile
- Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - A. Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - I. Fernández
- Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - I. Gonzalez-Chavarria
- Laboratorio de Lipoproteínas y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - J.L. Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Valencia, Spain
| | - G. Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty & EULA-CHILE Center, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción, Chile
| |
Collapse
|
2
|
Yalin D, Craddock HA, Assouline S, Ben Mordechay E, Ben-Gal A, Bernstein N, Chaudhry RM, Chefetz B, Fatta-Kassinos D, Gawlik BM, Hamilton KA, Khalifa L, Kisekka I, Klapp I, Korach-Rechtman H, Kurtzman D, Levy GJ, Maffettone R, Malato S, Manaia CM, Manoli K, Moshe OF, Rimelman A, Rizzo L, Sedlak DL, Shnit-Orland M, Shtull-Trauring E, Tarchitzky J, Welch-White V, Williams C, McLain J, Cytryn E. Mitigating risks and maximizing sustainability of treated wastewater reuse for irrigation. WATER RESEARCH X 2023; 21:100203. [PMID: 38098886 PMCID: PMC10719582 DOI: 10.1016/j.wroa.2023.100203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/17/2023]
Abstract
Scarcity of freshwater for agriculture has led to increased utilization of treated wastewater (TWW), establishing it as a significant and reliable source of irrigation water. However, years of research indicate that if not managed adequately, TWW may deleteriously affect soil functioning and plant productivity, and pose a hazard to human and environmental health. This review leverages the experience of researchers, stakeholders, and policymakers from Israel, the United-States, and Europe to present a holistic, multidisciplinary perspective on maximizing the benefits from municipal TWW use for irrigation. We specifically draw on the extensive knowledge gained in Israel, a world leader in agricultural TWW implementation. The first two sections of the work set the foundation for understanding current challenges involved with the use of TWW, detailing known and emerging agronomic and environmental issues (such as salinity and phytotoxicity) and public health risks (such as contaminants of emerging concern and pathogens). The work then presents solutions to address these challenges, including technological and agronomic management-based solutions as well as source control policies. The concluding section presents suggestions for the path forward, emphasizing the importance of improving links between research and policy, and better outreach to the public and agricultural practitioners. We use this platform as a call for action, to form a global harmonized data system that will centralize scientific findings on agronomic, environmental and public health effects of TWW irrigation. Insights from such global collaboration will help to mitigate risks, and facilitate more sustainable use of TWW for food production in the future.
Collapse
Affiliation(s)
- David Yalin
- A Department of Earth and Planetary Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hillary A. Craddock
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Shmuel Assouline
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Evyatar Ben Mordechay
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Ben-Gal
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization (ARO) – The Volcani Institute, Gilat Reseach Center, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | | | - Benny Chefetz
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, NIREAS-International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - Bernd M. Gawlik
- Ocean and Water Unit, Joint Research Centre, European Commission, Ispra, Italy
| | - Kerry A. Hamilton
- The School of Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Leron Khalifa
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Isaya Kisekka
- Department of Land Air and Water Resources, University of California, Davis, California, USA
| | - Iftach Klapp
- Institute of Agricultural engineering, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | | | - Daniel Kurtzman
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Guy J. Levy
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Roberta Maffettone
- Ocean and Water Unit, Joint Research Centre, European Commission, Ispra, Italy
| | - Sixto Malato
- CIEMAT-Plataforma Solar de Almería, Ctra. Sen´es km 4, 04200 Tabernas, Almería, Spain
| | - Célia M. Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Kyriakos Manoli
- NIREAS-International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - Orah F. Moshe
- Department of Soil Conservation, Soil Erosion Research Center, Ministry of Agriculture, Rishon LeZion, Israel
| | - Andrew Rimelman
- PG Environmental. 1113 Washington Avenue, Suite 200. Golden, CO 80401, USA
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - David L. Sedlak
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Maya Shnit-Orland
- Extension Service, Ministry of Agriculture and Rural Development, Israel
| | - Eliav Shtull-Trauring
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Jorge Tarchitzky
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Clinton Williams
- US Arid-Land Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Maricopa, AZ, USA
| | - Jean McLain
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
3
|
Huynh TT, Jarvis L, Henderson W, Bradford-Hartke Z, Leask S, Gajo K, Tickell J, Wall K, Byleveld P. Supporting the implementation of drinking water management systems in New South Wales, Australia. JOURNAL OF WATER AND HEALTH 2023; 21:1098-1109. [PMID: 37632384 PMCID: wh_2023_125 DOI: 10.2166/wh.2023.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Since 2010, New South Wales (NSW) Health has assisted local water utilities to develop and implement risk-based drinking water management systems based on the Australian Drinking Water Guidelines Framework for Management of Drinking Water Quality. This support has benefited regional communities, and especially smaller utilities, by helping to identify and control risks. NSW Health's support projects have resulted in statistically significant improvements across many elements of drinking water management system implementation. Through this program of support, NSW Health has identified possible infrastructure and operational needs and assessed implementation of drinking water management systems. In parallel, NSW Health has worked to assess the risk from Cryptosporidium in drinking water supplies and to develop a formal audit program. Findings from the NSW Health support program informed the development of two NSW Government programs and the commitment of more than $1 billion to help local water utilities address public health and other critical needs. The introduction of risk-based drinking water management systems has driven incremental improvement in drinking water quality management across the state of NSW.
Collapse
Affiliation(s)
- Tran T Huynh
- Water Unit, Environmental Health Branch, NSW Health, 1 Reserve Road, St Leonards, NSW 2065, Australia E-mail:
| | - Leslie Jarvis
- Water Unit, Environmental Health Branch, NSW Health, 1 Reserve Road, St Leonards, NSW 2065, Australia
| | - Wendy Henderson
- Water Unit, Environmental Health Branch, NSW Health, 1 Reserve Road, St Leonards, NSW 2065, Australia
| | - Zenah Bradford-Hartke
- Water Unit, Environmental Health Branch, NSW Health, 1 Reserve Road, St Leonards, NSW 2065, Australia
| | - Sandy Leask
- Water Unit, Environmental Health Branch, NSW Health, 1 Reserve Road, St Leonards, NSW 2065, Australia
| | - Katherine Gajo
- Water Unit, Environmental Health Branch, NSW Health, 1 Reserve Road, St Leonards, NSW 2065, Australia
| | - Joshua Tickell
- Local Water Utilities Branch, NSW Department of Planning and Environment, 12 Darcy St, Parramatta, NSW 2124, Australia
| | - Katrina Wall
- Water Unit, Environmental Health Branch, NSW Health, 1 Reserve Road, St Leonards, NSW 2065, Australia
| | - Paul Byleveld
- Water Unit, Environmental Health Branch, NSW Health, 1 Reserve Road, St Leonards, NSW 2065, Australia
| |
Collapse
|
4
|
Bhatt A, Dada AC, Prajapati SK, Arora P. Integrating life cycle assessment with quantitative microbial risk assessment for a holistic evaluation of sewage treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160842. [PMID: 36509266 DOI: 10.1016/j.scitotenv.2022.160842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
An integrated approach was employed in the present study to combine life cycle assessment (LCA) with quantitative microbial risk assessment (QMRA) to assess an existing sewage treatment plant (STP) at Roorkee, India. The midpoint LCA modeling revealed that high electricity consumption (≈ 576 kWh.day-1) contributed to the maximum environmental burdens. The LCA endpoint result of 0.01 disability-adjusted life years per person per year (DALYs pppy) was obtained in terms of the impacts on human health. Further, a QMRA model was developed based on representative sewage pathogens, including E. coli O157:H7, Giardia sp., adenovirus, norovirus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The public health risk associated with intake of pathogen-laden aerosols during treated water reuse in sprinkler irrigation was determined. A cumulative health risk of 0.07 DALYs pppy was obtained, where QMRA risks contributed 86 % of the total health impacts. The annual probability of illness per person was highest for adenovirus and norovirus, followed by SARS-CoV-2, E. coli O157:H7 and Giardia sp. Overall, the study provides a methodological framework for an integrated LCA-QMRA assessment which can be applied across any treatment process to identify the hotspots contributing maximum environmental burdens and microbial health risks. Furthermore, the integrated LCA-QMRA approach could support stakeholders in the water industry to select the most suitable wastewater treatment system and establish regulations regarding the safe reuse of treated water.
Collapse
Affiliation(s)
- Ankita Bhatt
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | | | - Sanjeev Kumar Prajapati
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
5
|
Pasalari H, Akbari H, Ataei-Pirkooh A, Adibzadeh A, Akbari H. Assessment of rotavirus and norovirus emitted from water spray park: QMRA, diseases burden and sensitivity analysis. Heliyon 2022; 8:e10957. [PMID: 36254289 PMCID: PMC9568861 DOI: 10.1016/j.heliyon.2022.e10957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
A quantitative model on exposure to pathogenic viruses in air of recreational area and their corresponding health effects is necessary to provide mitigation actions in content of emergency response plans (ERP). Here, the health risk associated with exposure to two pathogenic viruses of concern: Rotavirus (RoV) and Norovirus (NoV) in air of water spray park were estimated using a quantitative microbial risk assessment (QMRA) model. To this end, real-time Reverse Transcriptase polymerase chain reaction (real-time RT-PCR) was employed to measure the concentration levels of RoV and NoV over a twelve-month period. The probability of infection, illness and diseases burden of gastrointestinal illness (GI) caused by RoV and NoV for both workers and visitors were estimated using QMRA and Monto-Carlo simulation technique. The annual mean concentration for RoV and NoV in sampling air of water spray park were 20and 1754, respectively. The %95 confidence interval (CI) calculated annual DALY indicator for RoV (Workers: 2.62 × 10-4-2.62 × 10-1, Visitors: 1.50 × 10-5-2.42 × 10-1) and NoV (Workers: 5.54 × 10-3-2.53 × 10-1; Visitors: 5.18 × 10-4-2.54 × 10-1) were significantly higher the recommended values by WHO and US EPA (10-6-10-4 DALY pppy). According to sensitivity analysis, exposure dose and disease burden per case (DBPC) were found as the most influencing factors on disease burden as a consequences of exposure to RoV and NoV, respectively. The comprehensive information on DALY and QMRA can aid authorities involved in risk assessment and recreational actions to adopt proper approach and mitigation actions to minimize the health risk.
Collapse
Affiliation(s)
- Hasan Pasalari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Hesam Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Angila Ataei-Pirkooh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Adibzadeh
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|