1
|
Staniscia F, Kanduč M. Curvature-dependent adsorption of surfactants in water nanodroplets and nanobubbles. J Colloid Interface Sci 2025; 698:137928. [PMID: 40449170 DOI: 10.1016/j.jcis.2025.137928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 06/03/2025]
Abstract
HYPOTHESIS Surfactants, molecules that readily adsorb to liquid interfaces and reduce surface tension, are paramount to numerous natural and technological processes: from cloud formation and climate modeling to the stability and reactivity of nanodroplets and nanobubbles. While surfactant adsorption at planar interfaces has been well-studied, their behavior at curved interfaces remains much less understood. Since curvature modifies interfacial thermodynamic properties, we hypothesize that it will also affect surfactant adsorption. SIMULATIONS To test this hypothesis, we perform molecular dynamics simulations of short-chain surfactants at water-vapor interfaces with varying curvature, examining droplets, bubbles, and planar interfaces. FINDINGS The outcomes reveal a systematic dependence of adsorption on curvature, which is enhanced at droplet interfaces and reduced at bubble interfaces, with the effect becoming more pronounced for surfactants with longer alkyl tails. We attribute this curvature-dependent behavior to two key mechanisms: Laplace pressure and curvature-dependent surface tension. The breakdown of these contributions allows us to obtain a quantitative understanding and to predict the influence of curvature on adsorption.
Collapse
Affiliation(s)
- Fabio Staniscia
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia.
| | - Matej Kanduč
- Department of Theoretical Physics, Jožef Stefan Institute, Jamova 39, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
2
|
Nguyen DA, Jeon Y, Nguyen KAT, Jang A. Sustainable urea treatment by environmental-friendly and highly hydrophilic vesicle-like iron phosphate-based carbon. CHEMOSPHERE 2024; 365:143351. [PMID: 39293682 DOI: 10.1016/j.chemosphere.2024.143351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Despite the versatile potential applications of urea, its unfavorable characteristics for conventional treatment methods hinder its utilization. Therefore, this study developed vesicle-like iron phosphate-based carbon (IP@C400) as a breakthrough urea removal and recovery material for a wide range of urea-containing sources. IP@C400 rapidly exhibited an exceptional capacity (2242 mg/g in 1 h) across a wide range of pH, even in synthetic hemodialysis wastewater with high urea concentrations and diverse co-existing components, compared with the 60 prominent adsorbents. The adsorption process followed dual Pseudo-kinetic, Langmuir-isotherm models with the involvement of primary robust physical (i.e., H-bonding and electrostatic interaction) and chemical mechanisms (i.e., hydrolysis). Remarkably, IP@C400 can maintain high urea removal (90 %) or recovery efficiency (95 %) even after 10 cycles with minimal leakages of Fe and P (far below WHO and EUWFD standards)-a significant improvement over disposable options. IP@C400 could also perform efficiently on batch and a new approach integrating with a naturally accessible material based on the fixed-bed column using low-range urea realistic samples, achieving 65.2 L water over 10 cycles with undetected urea, neutral pH, and well-aligned water safety standards with a minimal adsorbent dose (0.1 g.L-1) and economical cost ($0.05 L-1). Lastly, its environmentally friendly nature, which contains essential nutrients for plant growth, further enhances its recyclability after release. Thus, IP@C400 offers a solution to environmental sustainability and the urgent ultrapure water issue that industries are facing.
Collapse
Affiliation(s)
- Duc Anh Nguyen
- Department of Global Smart City, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Yujae Jeon
- Department of Semiconductor Display Engineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Kim Anh Thi Nguyen
- Department of Global Smart City, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
3
|
Li F, Bai X, Ji Y, Kang M. Understanding microplastic aging driven by photosensitization of algal extracellular polymeric substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133949. [PMID: 38452677 DOI: 10.1016/j.jhazmat.2024.133949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
The aging of microplastics (MPs) is extremely influenced by photochemically-produced reactive intermediates (PPRIs), which are mediated by natural photosensitive substances. Algal extracellular polymeric substances (EPS) can produce PPRIs when exposed to sunlight. Nonetheless, the specific role of EPS in the aging process of MPs remains unclear. This work systematically explored the aging process of polystyrene (PS) MPs in the EPS secreted by Chlorella vulgaris under simulated sunlight irradiation. The results revealed that the existence of EPS accelerated the degradation of PS MPs into particles with sizes less than 1 µm, while also facilitating the formation of hydroxy groups on the surface. The release rate of dissolved organic matter (DOM) from PS MPs was elevated from 0.120 mg·L-1·day-1 to 0.577 mg·L-1·day-1. The primary factor contributing to the elevated levels of DOM was humic acid-like compounds generated through the breakdown of PS. EPS accelerated the aging process of PS MPs by primarily mediating the formation of triplet excited states (3EPS*), singlet oxygen (1O2), and superoxide radicals (O2∙-), resulting in indirect degradation. 3EPS* was found to have the most substantial impact. This study makes a significant contribution to advance understanding of the environmental fate of MPs in aquatic environments impacted by algal blooms.
Collapse
Affiliation(s)
- Fengjie Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China.
| | - Yetong Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
4
|
Kim C, Yoo H, Lee G, Hong HJ. Powdered activated carbon (PAC)-assisted peroxymonosulfate activation for efficient urea elimination in ultrapure water production from reclaimed water. Sci Rep 2024; 14:4597. [PMID: 38409464 PMCID: PMC10897149 DOI: 10.1038/s41598-024-55414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Urea is a problematic pollutant in reclaimed water for ultrapure water (UPW) production. The sulfate radical-based advanced oxidation process (SR-AOP) has been recognized as an effective method for urea degradation. However, conventional metal-based catalysts for peroxymonosulfate (PMS) activation are unsuitable for UPW production due to issues related to metal ion leaching. In this study, the use of powdered activated carbon (PAC) was investigated for the removal of urea from reclaimed water. The PAC exhibited a high degree of defects (ID/IG = 1.709) and various surface oxygen functional groups (C-OH, C=O, and C-O), which greatly enhanced its catalytic capability. The PAC significantly facilitated PMS activation in the PMS + PAC system, leading to the complete urea decomposition. The PMS + PAC system demonstrated excellent urea removal efficiency within a wide pH range, except for pH < 3. Among the various anions present, the CO32- and PO43- inhibited urea degradation, while the coexistence of Cl- promoted urea removal. Furthermore, the feasibility test was evaluated using actual reclaimed water. The quenching test revealed that SO4-·, ·OH, and O2-· played crucial roles in the degradation of urea in the PAC-assisted SR-AOP. The oxygen functional groups (C-OH and O-C=O) and defect sites of PAC clearly contributed to PMS activation.
Collapse
Affiliation(s)
- Chaelin Kim
- Department of Environmental Engineering, Chungbuk National University, Chungdaero 1, Chungbuk, SeowonGu, Cheongju, 28644, Republic of Korea
| | - Heeji Yoo
- Department of Environmental Engineering, Chungbuk National University, Chungdaero 1, Chungbuk, SeowonGu, Cheongju, 28644, Republic of Korea
| | - Gyubin Lee
- Department of Environmental Engineering, Chungbuk National University, Chungdaero 1, Chungbuk, SeowonGu, Cheongju, 28644, Republic of Korea
| | - Hye-Jin Hong
- Department of Environmental Engineering, Chungbuk National University, Chungdaero 1, Chungbuk, SeowonGu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
5
|
Choi SJ, Crane L, Kang S, Boyer TH, Perreault F. Removal of urea in ultrapure water system by urease-coated reverse osmosis membrane. WATER RESEARCH X 2024; 22:100211. [PMID: 38298331 PMCID: PMC10825517 DOI: 10.1016/j.wroa.2024.100211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Among the various substances found in the feed source for the production of ultrapure water (UPW), urea is challenging to remove because it is a small molecular weight molecule that is not easily oxidized and does not carry a charge under neutral pH conditions. Urease enzyme, found in various organisms such as plants and bacteria, catalyze the hydrolysis of urea into carbon dioxide and ammonia. In this study, urease was immobilized on the polyamide layer of a reverse osmosis (RO) membrane to remove urea in UPW systems. The removal efficiency of urea by urease-coated RO membrane showed up to 27.9 % higher urea removal efficiency compared to the pristine membrane. This increase in urea removal can be attributed to both physical and biological effects from the urease coating on the membrane. Firstly, urease on the membrane surface can act as an additional physical barrier for urea to pass through. Secondly, urea can be hydrolyzed by the enzyme when it passes through the urease-coated RO membrane. In a two-pass RO system typical for UPW production, the removal of urea by a urease-coated membrane would be enhanced by twofold. This overall method can significantly increase the removal efficiency of urea in UPW systems, especially when considering the compounded removal by the urease coating, rejection by RO, and additional reactions by other treatment processes. Moreover, urea in UPW systems can be removed without the installment of additional processes by simply coating urease on the existing RO membranes.
Collapse
Affiliation(s)
- Seung-Ju Choi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Lucas Crane
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Treavor H. Boyer
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
- Department of Chemistry, University of Quebec in Montreal, CP 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
6
|
Kocijan M, Ćurković L, Vengust D, Radošević T, Shvalya V, Gonçalves G, Podlogar M. Synergistic Remediation of Organic Dye by Titanium Dioxide/Reduced Graphene Oxide Nanocomposite. Molecules 2023; 28:7326. [PMID: 37959746 PMCID: PMC10647384 DOI: 10.3390/molecules28217326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In this work, nanocomposites based on titanium dioxide and reduced graphene oxide (TiO2@rGO) with different weight percentages of rGO (4, 8, and 16 wt%) were prepared by the hydrothermal/solvothermal synthesis method and thermally treated at 300 °C. The prepared nanocomposites were explored for the removal of methylene blue dye (MB) in the presence of simulated solar illumination as well as natural sunlight. The structural, morphological, chemical, and optical properties of the as-synthesized TiO2@rGO nanocomposites were characterized. The obtained results of the graphene-based nanocomposite materials indicated the existence of interactions between TiO2 and rGO, i.e., the Ti-O-C bond, which confirmed the successful integration of both components to form the TiO2@rGO nanocomposites. The addition of rGO increased the specific surface area, decreased the band gap energy, and increased the photocatalytic degradation efficiency of MB from water compared to TiO2 nanoparticles. The results of photocatalytic activity indicated that the amount of rGO in the prepared TiO2@rGO nanocomposites played a significant role in the application of different photocatalytic parameters, including the initial dye concentration, catalyst concentration, water environment, and illumination source. Our studies show that the reinforcement of the nanocomposite with 8 wt% of rGO allowed us to obtain the maximum photocatalytic decomposition performance of MB (10 mg·L-1) with a removal percentage of 99.20 after 2 h. Additionally, the obtained results show that the prepared TiO2@rGO_8 wt% nanocomposite can be used in three consecutive cycles while maintaining photocatalytic activity over 90%.
Collapse
Affiliation(s)
- Martina Kocijan
- Department of Materials, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| | - Lidija Ćurković
- Department of Materials, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| | - Damjan Vengust
- Advanced Materials Department, Jožef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia;
| | - Tina Radošević
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia; (T.R.); (M.P.)
| | - Vasyl Shvalya
- Department of Gaseous Electronics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
| | - Gil Gonçalves
- Centre for Mechanical Technology and Automation (TEMA), Mechanical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal;
- Intelligent Systems Associate Laboratory (LASI), 4800-058 Guimarães, Portugal
| | - Matejka Podlogar
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia; (T.R.); (M.P.)
| |
Collapse
|
7
|
Cai HY, Wu QY, Ouyang WY, Hu HY, Wang WL. Efficient removal of electroneutral carbonyls by combined vacuum-UV oxidation and anion-exchange resin adsorption: mechanism, model simulation, and optimization. WATER RESEARCH 2023; 243:120435. [PMID: 37536248 DOI: 10.1016/j.watres.2023.120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Electroneutral carbonyls (ENCs) with low molecular weights (e.g., aldehydes and ketones) are recalcitrant to single water treatment process to achieve ultralow concentration. Residual ENCs are present in reverse osmosis permeate and pose risks to human health during potable use or industrial application in manufacturing processes. Herein, a combined vacuum-UV (VUV) oxidation and anion-exchange resin (AER) adsorption method was developed to treat the ENCs and reduce total organic carbon (TOC) to an ultralow concentration (< 5 μg/L) with high efficiency and at low cost. VUV-AER was 2.1-2.4 times more efficient than VUV alone for the removal of TOC. VUV oxidized the ENCs to electronegative carboxylic acids, which were adsorbed by the AER through electrostatic interactions and hydrogen bonding. When the VUV fluence was lower than 643 mJ cm-2, the AER could not achieve ultralow TOC removal of ENCs. The treat capacity of 1500-2900 valid bed volume (BVs) was achieved after increasing the VUV fluence to 1929 mJ cm-2. The AER could more efficiently adsorb carboxylic acids that contained more carboxylic groups or shorter carbon chain. Acetate was identified as the primary breakthrough product at relatively low VUV fluence, and oxalate was the main byproduct at relatively high VUV fluence. A mathematical model to predict TOC breakthrough was developed considering the VUV-oxidation kinetics and the AER breakthrough curve. The model was used to optimize the method to maximize TOC removal and minimize energy consumption. These results imply that VUV-AER is technically feasible and economically applicable to eliminate recalcitrant ENCs to ultralow concentration for the production of water requires high quality (e.g., potable water or electronic-grade ultrapure water).
Collapse
Affiliation(s)
- Han-Ying Cai
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Shenzhen 518055, China
| | - Wan-Yue Ouyang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Shenzhen 518055, China
| | - Hong-Ying Hu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Institute of Environment and Ecology, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
8
|
Yoon SI, Han M, Chaudhuri H, Yun YS. High-capacity/high-rate hybrid column for high-performance ion exchange. ENVIRONMENTAL RESEARCH 2023; 228:115882. [PMID: 37060991 DOI: 10.1016/j.envres.2023.115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023]
Abstract
Herein, a fixed-bed high-capacity/high-rate (HC/HR) hybrid column was developed using commercial ion-exchange beads (IEBs) and ion-exchange fibers (IEFs). The as-fabricated HC/HR hybrid column exhibited excellent breakthrough bed volume (BV) and utilization efficiency of capacity (UEC) at a high service flow rate (SFR) for the adsorption of Cd(II). The IEBs displayed a high adsorption capacity of 235.2 ± 9.8 mg g-1 and slow adsorption kinetics (k2 = 0.0001 g mg-1 min-1) for the sorption of Cd(II); meanwhile, the IEFs showed a maximum adsorption capacity of only 146.3 ± 7.5 mg g-1, which is lower than that of the IEBs, but fast kinetics (k2 = 0.0130 g mg-1 min-1). At an SFR of 104.23 BV h-1, the HC/HR hybrid column showed excellent performance for the sorption of Cd(II), having a high breakthrough BV of 1009.11 and a UEC of 92.86%; these values are much higher than those of the IEB-packed column. Furthermore, at an increased SFR (318.47 BV h-1), the HC/HR hybrid column maintained its high performance, demonstrating a breakthrough BV of 568.80 and UEC of 83.90%. The regeneration experiment indicates that 97% of the initial capacity was retained. Thus, the HC/HR hybrid column could easily be applied to existing column systems and shows promising performance in ion-exchange processes.
Collapse
Affiliation(s)
- Sung Il Yoon
- School of Chemical Engineering, Jeonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Minhee Han
- School of Chemical Engineering, Jeonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Haribandhu Chaudhuri
- School of Chemical Engineering, Jeonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk, 54896, Republic of Korea.
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Jeonbuk National University, 567 Beakje-dearo, Deokjin-gu, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
9
|
Chen X, Huang N, Wang W, Wang Q, Hu HY. Enrichment and analysis methods for trace dissolved organic carbon in reverse osmosis effluent: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161393. [PMID: 36621505 DOI: 10.1016/j.scitotenv.2023.161393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Reverse osmosis (RO) is an essential unit for producing high-quality ultrapure water. The increasingly severe water shortage and water quality deterioration result in reclaimed water as an alternative source for ultrapure water production. However, when using reclaimed water as water sources, the dissolved organic carbon (DOC) in RO permeate exhibits higher concentration and more sophisticated components than when using clean water sources, thus affecting the effluent quality of ultrapure water and the effectiveness of subsequent treatment processes. To optimize the treatment processes, it is crucial to analyze the components of DOC. This review summarizes the enrichment and analysis methods of trace organic matter, and provides recommendations for the analysis and characterization of DOC in RO permeate. The study summarizes the operating conditions and enrichment properties of different enrichment methods, including solid-phase extraction, liquid-liquid extraction, purge-and-trap, lyophilization and rotary evaporation for low-concentration organic compounds, compares the applicability and limitations of different enrichment methods, and proposes the principles for the selection of enrichment methods. In this review, we discuss the application of mass spectrometry (including Fourier transform ion cyclotron resonance mass spectrometry) in the analysis of DOC components, and focus on data processing as the key procedure in analysis of DOC in RO permeate. Despite the advantages of mass spectrometry, an applicable workflow and open-source database are required to improve the reliability of the analysis. The treatability properties of DOC are suggested to be determined by analyzing the component characteristics or in combination with common removal techniques. This study provides theoretical support for a comprehensive analysis of DOC in RO permeates to improve the removal effect.
Collapse
Affiliation(s)
- Xiaowen Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Nan Huang
- Department of Environmental Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China.
| | - Wenlong Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Qi Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| |
Collapse
|
10
|
Wang T, Kumar A, Wang X, Zhang D, Zheng Y, Wang G, Cui Q, Cai J, Zheng J. Construction of activated biochar/Bi 2WO 6 and /Bi 2MoO 6 composites to enhance adsorption and photocatalysis performance for efficient application in the removal of pollutants and disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30493-30513. [PMID: 36434458 DOI: 10.1007/s11356-022-24049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
To synergistically enhance the adsorption and photocatalytic performance of Bi2WO6 and Bi2MoO6, using activated biochar (ACB) as substrate, ACB-Bi2WO6 and ACB-Bi2MoO6 composites were facilely prepared by hydrothermal synthesis. Their adsorption-photocatalytic degradation effects on rhodamine B (RhB), tetracycline (TC), and norfloxacin (NOR) were comparatively investigated. Additionally, the effects of environmental factors, wastewater treatment tests, and disinfection were systematically studied, and the enhancement mechanisms and reasons for the degradation differences were highlighted. The results showed that ACB-Bi2WO6 and ACB-Bi2MoO6 were confirmed to form intimately contacted heterojunctions by various advanced characterization techniques. The introduction of ACB narrowed the band-gap energy of Bi2WO6 and Bi2MoO6, and improved the visible light absorption range and specific surface area. The optimal loading ratios of ACB-Bi2WO6 and ACB-Bi2MoO6 were 1:1.06 and 1:0.58, respectively. The removal rate of ACB-Bi2WO6 for high concentrations of RhB (200 mg·L-1), TC and NOR (50 mg·L-1) were 89.15%, 87.27%, and 72.17%, respectively, which were higher than those of ACB-Bi2MoO6 and significantly stronger than those of Bi2WO6 and Bi2MoO6. This was attributed to the more effective inhibition of photogenerated carrier recombination, higher absorbance, and uniform morphology via ACB-Bi2WO6. ·OH and holes were dominant active species in photocatalysis, and the possible photogenerated carrier transfer path is type II heterojunction. Furthermore, ACB-Bi2WO6 possessed good reusability, and the removal of RhB and TC from the actual wastewater exceeded 80.63% and 58.54%, respectively. The sterilization rates of ACB-Bi2WO6 reached 99% and 95% for E. coli and S. aureus within 24 h, respectively. Therefore, ACB-Bi2WO6 was more recommended for environmental applications.
Collapse
Affiliation(s)
- Tongtong Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Amit Kumar
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, People's Republic of China
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173229, India
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Di Zhang
- College of Plant Sciences, Tarim University, Alar, 843300, People's Republic of China
| | - Yi Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Guogang Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jinjun Cai
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A & F University, Yangling, 712100, People's Republic of China.
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|
11
|
Ouyang WY, Wang WL, Zhang YL, Cai HY, Wu QY. VUV/UV oxidation performance for the elimination of recalcitrant aldehydes in water and its variation along the light-path. WATER RESEARCH 2023; 228:119390. [PMID: 36423547 DOI: 10.1016/j.watres.2022.119390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Vacuum ultraviolet/ultraviolet (VUV/UV) oxidation using a low-pressure mercury lamp emitting dual wavelengths (185 nm (VUV) and 254 nm (UV)) significantly varies in performance along the light-path (lP), which has not been fully characterized. Therefore, VUV/UV oxidation in solution was investigated at various lP in terms of the degradation kinetics and mineralization pathway of representative aldehydes with various alkyl-chain lengths. Oxidative degradation of parent aldehydes with shorter alkyl chains was less efficient, specifically the pseudo-zero-order rate constant (kobs) of formaldehyde was only 51% of that of propionaldehyde (kobs = 0.078 μM s-1). In contrast, the mineralization of aldehydes with longer alkyl chains was less efficient because these aldehydes underwent mineralization into more refractory carboxylic byproducts, e.g., oxalic acid. VUV was mainly absorbed by superficial water (lP < 0.55 cm), which resulted in highly heterogeneous oxidation in homogeneous water. Thus, kobs of acetaldehyde dramatically decreased from 0.13 to 0.033 μM s-1 as the total lP of solution increased from 1.0 to 3.0 cm. On the basis of mineralization pathways proposed above, an iterative kinetic model was developed to characterize the degradation of parent aldehydes and the formation of carboxylic acids along lP. This model predicted the VUV/UV oxidaton for the first time by considering the fast diffusion of pollutants by limited diffusion of transient radical species. Thus, it realized the prediction of •OH concentration at specific water solution and byproduct evolution within specific water solution in turbulent flow regime, wherein •OH was predominantly formed in superficial water-layers wherein •OH in water-layers of lP <0.16 cm and <0.81 cm contributed to 50% and 90% of the total oxidation performance, respectively. This result would help to improve the VUV-UV-reactor design in terms of optimizing the thickness of water-layer and turbulence of water-flow.
Collapse
Affiliation(s)
- Wan-Yue Ouyang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wen-Long Wang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Yi-Lin Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Han-Ying Cai
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Qian-Yuan Wu
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
12
|
Fabre V, Carcenac F, Laborde A, Doucet JB, Vieu C, Louarn P, Trevisiol E. Hierarchical Superhydrophobic Device to Concentrate and Precisely Localize Water-Soluble Analytes: A Route to Environmental Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14249-14260. [PMID: 36368024 DOI: 10.1021/acs.langmuir.2c01690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An efficient superhydrophobic concentrator is developed using a hierarchical superhydrophobic surface on which the evaporation of a sessile droplet (6 μL) drives the nonvolatile elements it contains on a predefined micrometric analytical surface (pedestal of 80 μm diameter). This hierarchical silicon surface exhibits a surface texture made of etched nanopillars and consists of micropillars and guiding lines, arranged in radial symmetry around the central pedestal. The guiding lines ensure the overall convergence of the sessile droplet toward the central pedestal during evaporation. The nanopillar texturing induced a delay in the Cassie-Baxter to Wenzel regime transition, until the edge of the droplet reaches the periphery of the pedestal. Experiments performed with polymer microparticles suspended in ultrapure water or with DNA molecules solubilized in ultrapure water at sub-fM concentrations demonstrated that the totality of the nonvolatile elements in the liquid microvolume is delivered on or close to the pedestal area, in a very reproducible manner. The very high concentration capacity of the device enabled the discrimination of the degree of purity of ultrapure water samples from different origins. The concentrator also turned out to be functional for raw water samples, opening possible applications to environmental analysis.
Collapse
Affiliation(s)
- Victor Fabre
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France
| | - Franck Carcenac
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
| | - Adrian Laborde
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
| | | | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, 31400 Toulouse, France
| | - Philippe Louarn
- IRAP, CNRS, Université de Toulouse, CNES, 31400 Toulouse, France
| | | |
Collapse
|
13
|
Simple control of carbon mass loading in capacitive deionization for efficient deionized water production. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Comparative study of enhanced adsorption-photodegradation activity using activated biochar composited with Ag3PO4 or Ag6Si2O7 in wastewater treatment and disinfection: Effects and mechanisms. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Habib S, Weinman ST. Modification of polyamide reverse osmosis membranes for the separation of urea. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Wang Q, Luo L, Huang N, Wang W, Rong Y, Wang Z, Yuan Y, Xu A, Xiong J, Wu Q, Hu H. Evolution of low molecular weight organic compounds during ultrapure water production process: A pilot-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154713. [PMID: 35337873 DOI: 10.1016/j.scitotenv.2022.154713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the evolution of low molecular weight organic compounds in ultrapure water (UPW) production using a pilot-scale UPW production system and an ultrafiltration-reverse osmosis (UF-RO) system. During UPW production, a dissolved organic carbon (DOC) removal efficiency of 99.4% was achieved with a feedwater DOC level of 1.42 mg/L. The pretreatment, make-up, and polishing stages accounted for 85.3%, 13.7%, and 0.4% of DOC removal, respectively. Urea, trichloromethane, and dibromochloromethane persisted throughout UPW production process, contributing 24.7%, 9.2%, and 22.6%, respectively, to the final effluent DOC level of 8.1 μg/L. The pretreatment and make-up stages of the UPW production process could remove N-nitrosodimethylamine, chloral hydrate, dichloroacetonitrile, and tribromomethane. The UF-RO system could remove approximately 90% of DOC. However, the proportion of halogenated disinfection by-products (DBPs) in the DOC increased by 1.4-4.5 times in the RO effluents. RO could completely reject haloacetaldehydes. However, RO could not completely remove trichloromethane, tribromomethane, bromodichloromethane, and dibromoacetonitrile, which remained the main halogenated DBPs in the RO effluents.
Collapse
Affiliation(s)
- Qi Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Liwei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Nan Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China.
| | - Wenlong Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen 518055, China
| | - Yuzhou Rong
- China Electronics System Engineering NO. 2 Construction Co., Ltd., Jiangsu, Wuxi 214135, China
| | - Zhiwei Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen 518055, China
| | - Yi Yuan
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen 518055, China
| | - Ao Xu
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou 215163, China
| | - Jianglei Xiong
- China Electronics System Engineering NO. 2 Construction Co., Ltd., Jiangsu, Wuxi 214135, China
| | - Qianyuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen 518055, China
| | - Hongying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China
| |
Collapse
|
17
|
Zhang X, Yang Y, Hao Ngo H, Guo W, Long T, Wang X, Zhang J, Sun F. Enhancement of urea removal from reclaimed water using thermally modified spent coffee ground biochar activated by adding peroxymonosulfate for ultrapure water production. BIORESOURCE TECHNOLOGY 2022; 349:126850. [PMID: 35167903 DOI: 10.1016/j.biortech.2022.126850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
To enhance the degradation of urea in reclaimed water for producing ultrapure water (UPW), thermally modified biochar (TBC) was prepared by secondary pyrolysis using spent coffee biochar with the function as an activator of peroxymonosulfate (PMS). Results showed that 94.4% of urea can be degraded effectively by the TBC-PMS system at the dosage of 0.4 g/L TBC and 2 g/L PMS under neutral and weak acid conditions. Moreover, urea removal mainly depended on the free radical pathway (SO4• - and OH•), especially OH•. The inorganic anions of TBC increased via secondary pyrolysis, especially carbonate and phosphate, resulting in higher electrical conductance (EC) value than the original biochar. It was conducive to activating PMS. As well, C-O, -OH worked as an active site in the TBC-PMS system, providing electrons and activating PMS. This work provides a novel strategy for UPW production using TBC-PMS system.
Collapse
Affiliation(s)
- Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanying Yang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Tianwei Long
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiao Wang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing 100000, China
| | - Jianqing Zhang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing 100000, China
| | - Fengxia Sun
- College of Resources and Environment, Shandong Agricultural University, Taian 271000, China
| |
Collapse
|
18
|
Yang Y, Zhang X, Ngo HH, Guo W, Li Z, Wang X, Zhang J, Long T. A new spent coffee grounds based biochar - Persulfate catalytic system for enhancement of urea removal in reclaimed water for ultrapure water production. CHEMOSPHERE 2022; 288:132459. [PMID: 34619254 DOI: 10.1016/j.chemosphere.2021.132459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The demand for ultrapure water (UPW) in the semiconductor industry has increased in recent years, while the idea to use reclaimed water instead of tap water for UPW production has also attracted more attention. However, since urea concentration in reclaimed water is higher than that in tap water, UPW production has not been efficient. To resolve this problem, this study aims to develop a new spent coffee grounds based biochar (SCG-BC)/persulfate catalytic system as a pretreatment unit. The objective is to enhance urea removal from reclaimed water so that UPW production is more effective. In this study, the biochar used was prepared from spent coffee grounds with detailed characterization. Results strongly suggested that the urea removed by SCG-BC/persulfate catalytic system was very encouraging (up to 73%). The best possible dosages for SCG-BC and persulfate for urea removal were 0.2 and 2.0 g L-1, respectively. Furthermore, this system could remove urea effectively in a wide range of pH (3-10). Moreover, the characterizations of SCG-BC (graphite C, defective edges and functional groups, i.e. -OH, CO, carboxyl C-O) helped to activate persulfate in the catalytic process. OH• and SO4• - were all involved in this process, while the SO4• - was the main radical for urea degradation.
Collapse
Affiliation(s)
- Yuanying Yang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China.
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Zening Li
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Xiao Wang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing, 100000, China
| | - Jianqing Zhang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing, 100000, China
| | - Tianwei Long
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| |
Collapse
|
19
|
Zhang X, Yang Y, Hao Ngo H, Guo W, Sun F, Wang X, Zhang J, Long T. Urea removal in reclaimed water used for ultrapure water production by spent coffee biochar/granular activated carbon activating peroxymonosulfate and peroxydisulfate. BIORESOURCE TECHNOLOGY 2022; 343:126062. [PMID: 34601025 DOI: 10.1016/j.biortech.2021.126062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the performance of spent coffee biochar (SCBC)/granular activated carbon (GAC) activating peroxymonosulfate (PMS) and peroxydisulfate (PDS) for urea degradation in reclaimed water used for ultrapure water production. Results showed that catalyst and oxidant wielded a great influence on urea removal. Of them, the GAC-PMS system could completely remove urea at the least oxidant (1 g/L) and catalyst dosage (0.2 g/L). GAC activating PMS mainly depended on graphite C structure and minor oxygen functional groups. However, the amounts of urea removed by 600BC-PMS and 900BC-PMS were 57% and 70%, respectively. In the PDS system, the urea removal through GAC-PDS could reach 90%, which mainly depends on the graphite C structure of GAC. Using the same conditions, the urea removal of 900BC-PDS was similar to GAC-PDS, so it has some potential as an alternative to commercial GAC.
Collapse
Affiliation(s)
- Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Yuanying Yang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Huu Hao Ngo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Fengxia Sun
- College of Resources and Environment, Shandong Agricultural University, Taian 271000, China
| | - Xiao Wang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing 100000, China
| | - Jianqing Zhang
- TG Hilyte Environment Technology (Beijing) Co., LTD., Beijing 100000, China
| | - Tianwei Long
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| |
Collapse
|
20
|
Sewerin T, Elshof MG, Matencio S, Boerrigter M, Yu J, de Grooth J. Advances and Applications of Hollow Fiber Nanofiltration Membranes: A Review. MEMBRANES 2021; 11:890. [PMID: 34832119 PMCID: PMC8625000 DOI: 10.3390/membranes11110890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Hollow fiber nanofiltration (NF) membranes have gained increased attention in recent years, partly driven by the availability of alternatives to polyamide-based dense separation layers. Moreover, the global market for NF has been growing steadily in recent years and is expected to grow even faster. Compared to the traditional spiral-wound configuration, the hollow fiber geometry provides advantages such as low fouling tendencies and effective hydraulic cleaning possibilities. The alternatives to polyamide layers are typically chemically more stable and thus allow operation and cleaning at more extreme conditions. Therefore, these new NF membranes are of interest for use in a variety of applications. In this review, we provide an overview of the applications and emerging opportunities for these membranes. Next to municipal wastewater and drinking water processes, we have put special focus on industrial applications where hollow fiber NF membranes are employed under more strenuous conditions or used to recover specific resources or solutes.
Collapse
Affiliation(s)
- Tim Sewerin
- NX Filtration, Josink Esweg 44, 7545 PN Enschede, The Netherlands; (T.S.); (M.G.E.)
| | - Maria G. Elshof
- NX Filtration, Josink Esweg 44, 7545 PN Enschede, The Netherlands; (T.S.); (M.G.E.)
| | - Sonia Matencio
- LEITAT Technological Center, C/Pallars, 179-185, 08005 Barcelona, Spain; (S.M.); (M.B.)
| | - Marcel Boerrigter
- LEITAT Technological Center, C/Pallars, 179-185, 08005 Barcelona, Spain; (S.M.); (M.B.)
| | - Jimmy Yu
- Pepsi Co., Inc., Global R & D, 350 Columbus Ave, Valhalla, NY 10595, USA;
| | - Joris de Grooth
- NX Filtration, Josink Esweg 44, 7545 PN Enschede, The Netherlands; (T.S.); (M.G.E.)
- Membrane Science & Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|