1
|
Ding X, Du Q, Gao F, Chen L, Wang T, Chen F, Zeng Z, Wang Y, Cui H, Cui B. Multiresponsive Zein Nanospheres for Avermectin B 2 Delivery: Enhancing Root-Knot Nematode Control and Safety to Nontarget Organisms. ACS NANO 2025. [PMID: 40228096 DOI: 10.1021/acsnano.4c18103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Root-knot nematodes are globally prevalent plant-parasitic pests, distinguished by their widespread distribution, extensive host range, and challenging control measures. Avermectin B2, one of the few effective nematicides available, faces limitations in efficacy and poses environmental concerns due to its eco-unfriendly composition and poor utilization in traditional emulsifiable concentrate (EC) formulations. In this study, we developed core-shell structured Ave B2-BS@Zein@SC nanospheres, incorporating zein as the carrier, sodium caseinate as the stabilizer, and butyl stearate as the temperature "switch". These nanospheres demonstrated multiresponsive characteristics to temperature, pH, and enzymatic conditions, facilitating rapid pesticide release under elevated temperatures, mildly acidic or alkaline conditions, and in the presence of protease. These controlled-release properties effectively responded to both environmental factors during nematode outbreaks and the intestinal conditions of the nematodes, enhancing pesticide targeting and utilization efficiency. The engineered nanospheres improved the mobility and stability of avermectin B2 in soil, enabling more comprehensive control of nematodes across broader and deeper soil layers. Additionally, the penetration capability of Ave B2-BS@Zein@SC into plant roots effectively eliminated nematodes that had already invaded the root system, thereby strengthening crop protection. Crucially, Ave B2-BS@Zein@SC demonstrated enhanced safety for nontarget organisms. This environmentally conscious, and multiresponsive pesticide nanodelivery system presents a promising strategy for sustainable subterranean pest management.
Collapse
Affiliation(s)
- Xiquan Ding
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Qian Du
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Fei Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Long Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Tingyu Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Fangyuan Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Zhanghua Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Bo Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
2
|
Zhang X, Xiao J, Huang Y, Liu Y, Hu G, Yan W, Yan G, Guo Q, Shi J, Han R, Li J, Tang G, Cao Y. Sustainable pest management using plant secondary metabolites regulated azadirachtin nano-assemblies. Nat Commun 2025; 16:1721. [PMID: 39966497 PMCID: PMC11836458 DOI: 10.1038/s41467-025-57028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Biopesticides have emerged as a global trend to minimize the risks associated with synthetic agrochemicals. However, their stability and efficacies remain challenges for widespread application. Herein, co-assembled nanoparticles (AT NPs or AP NPs) based on azadirachtin (AZA) and tannic acid (TA) or phenylalanine (PA) are constructed in aqueous solution through self-assembly technology. The small particle size, low PDI, high ζ-potential, and related other physicochemical characteristics of nanoparticles can improve wettability, adhesiveness, rain erosion resistance, and photostability compared to the commercial AZA formulation. Importantly, co-assemblies with bidirectional pH-responsive disassembly in acidic or alkaline solutions, allow them to respond to microenvironmental stimuli of targets and enable controlled release of AZA. The nanosystems demonstrated remarkable in vitro and in vivo insecticidal activities against Ostrinia furnacalis and Aphis gossypii. This study illustrates a distinctive perspective for developing eco-friendly nanosystems, highlighting a water-based treatment method for biopesticides with improved physicochemical properties and utilization efficiency.
Collapse
Affiliation(s)
- Xiaohong Zhang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianhua Xiao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Gaohua Hu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Weiyao Yan
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Qing Guo
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Jiawei Shi
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Ruyue Han
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Jianqiang Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, Beijing, China.
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Hou C, Wei N, Liang Q, Tan Y, Li X, Feng J. Nano-pesticide delivery system based on UiO-66 with pH sensitivity for precise control of Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2025; 81:798-808. [PMID: 39422189 DOI: 10.1002/ps.8483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Metal-organic frameworks have the advantages of easy synthesis, high loading capacity and good biocompatibility, making them essential materials for constructing pesticide nano-delivery systems. In this study, a pH-responsive nano-controlled-release formulation Chl@UiO-66 was prepared using UiO-66 as the nano-scale carrier for adsorbing chlorantraniliprole (Chl). RESULTS The appearance, pesticide loading, release behaviour, insecticidal activity, long-term control efficacy and safety of Chl@UiO-66 for non-target organisms were extensively evaluated. The results showed that the prepared Chl@UiO-66 was a regular octahedron with a uniform particle size of 230 nm and pesticide loading of 15.62%. The release of pesticides under alkaline conditions was superior to that under acidic and neutral conditions, which showed pH-responsive performance. Chl@UiO-66 had an excellent ability to protect pesticides from ultraviolet degradation. Compared with chlorantraniliprole suspension concentrate, Chl@UiO-66 had a better control effect against Spodoptera frugiperda and long-term control efficacy. The prepared nano-controlled-release formulation had low toxicity to zebrafish, earthworms and human BEAS-2B cells. CONCLUSION Chl@UiO-66 is a new pesticide formulation with high efficacy and low toxicity that provides a smart controlled-release solution. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chaoqun Hou
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Nuo Wei
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Qianwei Liang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yifei Tan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiang Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Li D, Li J, Li H, Bai Z, Ma C, Bai H, Luo D, Li Z, Bai L. Design of highly leaf-adhesive and anti-UV herbicide nanoformulation for enhanced herbicidal activity. J Adv Res 2024:S2090-1232(24)00612-X. [PMID: 39719159 DOI: 10.1016/j.jare.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024] Open
Abstract
INTRODUCTION Conventional pesticide formulations have been widely used to boost agricultural productivity, but their weak foliar adhesion and instability under UV light during spraying lead to low utilization rates and potential environmental and health hazards. To counter these challenges, the development of nanoformulations represents a pivotal strategy. These advanced formulations are designed to enhance the efficacy of active ingredients (AIs) and reduce ecological impacts, thereby addressing the need for sustainable agricultural development. OBJECTIVES The study aims to fabricate a highly leaf-adhesive and anti-UV herbicide nanoformulation, designed to enhance the herbicidal activity and utilization rates of AIs. METHODS Herein, the herbicide nanoformulations (Called CB@MSNs-TA-Fe) are synthesized by incorporating cyhalofop-butyl into tannic acid-Fe (III) ions-coated functionalized mesoporous silica. The foliar retention performance of the samples was assessed integrating SEM observation and HPLC analysis. RESULTS The CB@MSNs-TA-Fe with rough outer surface displays typical core-shell structure featuring an average diameter of about 118 nm. After amino modification, the CB@MSNs-TA-Fe shows enhanced loading rate for CB (14.4 ± 0.2 %) and superior thermal stability. The release rate of CB within CB@MSNs-TA-Fe under acidic conditions is higher compared to that under alkaline and neutral conditions. Upon UV irradiation, the half-life of CB within CB@MSNs-TA-Fe nanoparticles is 12.4 times higher than that of CB technical (CB TC). Enhanced foliar adhesion of CB@MSNs-TA-Fe on hydrophobic leaf surfaces is observed, which can effectively mitigate the risk of wash-off by rainfall. The CB@MSNs-TA-Fe displays enhanced herbicidal efficacies against barnyard grass under UV irradiation or simulated rainwater scouring, compared with CB TC and CB oil dispersion. Furthermore, the TA-Fe-coated MSNs-NH2 nano-carrier (MSNs-TA-Fe) reveals excellent biosafety on rice, zebrafish, and earthworms. CONCLUSION The developed TA-Fe-functionalized herbicide nanoformulations, with high foliar adhesion and anti-UV properties, effectively improve the utilization efficiency of AIs, thus offering innovative solutions for the development of efficient pesticide formulations.
Collapse
Affiliation(s)
- Dongdong Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Yuelushan Laboratory, Changsha 410082, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jianan Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| | - Hao Li
- Yuelushan Laboratory, Changsha 410082, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhendong Bai
- Yuelushan Laboratory, Changsha 410082, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chujian Ma
- Yuelushan Laboratory, Changsha 410082, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haodong Bai
- Yuelushan Laboratory, Changsha 410082, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dingfeng Luo
- Yuelushan Laboratory, Changsha 410082, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zuren Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Yuelushan Laboratory, Changsha 410082, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Lianyang Bai
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Yuelushan Laboratory, Changsha 410082, China; Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
5
|
Yang S, Lü F, Wang L, Liu S, Wu Z, Cheng Y, Liu F. pH-Responsive Metal-Organic Framework for Targeted Delivery of Fungicide, Release Behavior, and Sustainable Plant Protection. Molecules 2024; 29:5330. [PMID: 39598719 PMCID: PMC11596698 DOI: 10.3390/molecules29225330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
A smart and environmentally friendly pesticide system was developed that could respond to environmental stimuli while mitigating environmental risks. In this study, thiabendazole (Thi), an effective fungicide, was loaded onto zeolitic imidazolate framework-8 (ZIF-8) using the impregnation method to fabricate a pH-responsive nano hybrid delivery system (Thi@ZIF-8). The results demonstrated that Thi@ZIF-8 had a rhombic dodecahedral morphology and a loading capacity of approximately 25%. Notably, the amount of Thi released from Thi@ZIF-8 at a pH of 5.0 reached 79.54%, which was higher than that at pH 7.0 and 9.0, for 251 h. Such pH-responsive release characteristics of Thi@ZIF-8 were probably related to the pH-dependent structure stability of ZIF-8. The release mechanism of Thi@ZIF-8 conformed to non-Fickian diffusion. Additionally, Thi@ZIF-8 showed a higher control efficacy against B. cinerea compared with Thi alone. Importantly, the ZIF-8 carrier could effectively reduce the leaching loss of Thi in soil and showed no negative effects on the three varieties of tomato seedlings, implying good biocompatibility. This work provides a novel and eco-friendly approach to control B. cinerea effectively that has great potential in modern sustainable agriculture.
Collapse
Affiliation(s)
- Shuzhen Yang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Hu J, Gong C, Jia Y, Feng H, Chen J, Qin G, Liang A, Peng A, Huang Y, Sun M, Rao H, Wang X. Preparation of pH-Responsive Kas@ZnO Quantum Dots for Synergistic Control of Rice Blast and Enhanced Disease Resistance in Rice. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60842-60855. [PMID: 39447151 DOI: 10.1021/acsami.4c12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The construction of controlled-release formulations improves the sustained-release performance and utilization efficiency of pesticides, which are important aspects in plant protection and environmental chemistry. The current study employs kasugamycin (Kas), which is widely used to control Magnaporthe oryzae, conjugated with carboxyl-functionalized ZnO quantum dots via amide linkages to yield a pH-responsive pesticide delivery system (Kas@ZnO). Physicochemical characterizations indicated the successful preparation of the Kas@ZnO nanoparticles. In vitro drug release assessments indicated that Kas@ZnO exhibited a loading capacity of 21.05% and could effect the controlled release of Kas in an acidic environment, which is beneficial given the unique acidic microenvironment of M. oryzae. Bioactivity assays demonstrated that Kas@ZnO could simultaneously inhibit mycelial growth and spore germination. Additionally, bioactivity tests showed that the control efficacy of Kas@ZnO against rice blast reached 67.43% after 14 days of in vivo spray inoculation, which was higher than that obtained with Kas (55.50%), suggesting improved beneficial effects of Kas@ZnO application over a prolonged duration. Moreover, Kas@ZnO enhanced the activity of defense-related enzymes in rice and upregulated the expression of defense-related genes, such as OsPR2, OsPR3, OsPR5, OsWRKY45, OsLYP6, and OsNAC4. Ultimately, the biosafety assessments revealed that Kas@ZnO did not exert any harmful effects on rice and demonstrated slight toxicity toward zebrafish. These findings indicate that Kas@ZnO can function as a pH-sensitive pesticide delivery system, allowing for targeted release of the pesticide within plant tissues. This technology demonstrates significant potential for eco-friendly plant disease management.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Changwei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Jia
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinfeng Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ge Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ao Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuegui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Salahshoori I, Yazdanbakhsh A, Namayandeh Jorabchi M, Kazemabadi FZ, Khonakdar HA, Mohammadi AH. Recent advances and applications of stimuli-responsive nanomaterials for water treatment: A comprehensive review. Adv Colloid Interface Sci 2024; 333:103304. [PMID: 39357211 DOI: 10.1016/j.cis.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
The development of stimuli-responsive nanomaterials holds immense promise for enhancing the efficiency and effectiveness of water treatment processes. These smart materials exhibit a remarkable ability to respond to specific external stimuli, such as light, pH, or magnetic fields, and trigger the controlled release of encapsulated pollutants. By precisely regulating the release kinetics, these nanomaterials can effectively target and eliminate contaminants without compromising the integrity of the water system. This review article provides a comprehensive overview of the advancements in light-activated and pH-sensitive nanomaterials for controlled pollutant release in water treatment. It delves into the fundamental principles underlying these materials' stimuli-responsive behaviour, exploring the design strategies and applications in various water treatment scenarios. In particular, the article indicates how integrating stimuli-responsive nanomaterials into existing water treatment technologies can significantly enhance their performance, leading to more sustainable and cost-effective solutions. The synergy between these advanced materials and traditional treatment methods could pave the way for innovative approaches to water purification, offering enhanced selectivity and efficiency. Furthermore, the review highlights the critical challenges and future directions in this rapidly evolving field, emphasizing the need for further research and development to fully realize the potential of these materials in addressing the pressing challenges of water purification.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Fatemeh Zare Kazemabadi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Amir H Mohammadi
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| |
Collapse
|
8
|
Li Y, Li M, Shakoor N, Wang Q, Zhu G, Jiang Y, Wang Q, Azeem I, Sun Y, Zhao W, Gao L, Zhang P, Rui Y. Metal-Organic Frameworks for Sustainable Crop Disease Management: Current Applications, Mechanistic Insights, and Future Challenges. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22985-23007. [PMID: 39380155 DOI: 10.1021/acs.jafc.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Efficient management of crop diseases and yield enhancement are essential for addressing the increasing food demands due to global population growth. Metal-organic frameworks (MOFs), which have rapidly evolved throughout the 21st century, are notable for their vast surface area, porosity, and adaptability, establishing them as highly effective vehicles for controlled drug delivery. This review methodically categorizes common MOFs employed in crop disease management and details their effectiveness against various pathogens. Additionally, by critically evaluating existing research, it outlines strategic approaches for the design of drug-delivery MOFs and explains the mechanisms through which MOFs enhance disease resistance. Finally, this paper identifies the current challenges in MOF research for crop disease management and suggests directions for future research. Through this in-depth review, the paper seeks to enrich the understanding of MOFs applications in crop disease management and offers valuable insights for researchers and practitioners.
Collapse
Affiliation(s)
- Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Li Gao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences Institute of Plant Protection, Beijing 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan 063305, China
- China Agricultural University Professor Workstation of Wuqiang County, Hengshui 053000, China
| |
Collapse
|
9
|
Wan M, Li H, Zhao Y, Sun L. Carboxymethyl cellulose-coated iron-doped hollow silica carriers with erythrocyte-like structure for improved foliar adhesion and responsive pesticide delivery. Int J Biol Macromol 2024; 280:135945. [PMID: 39322134 DOI: 10.1016/j.ijbiomac.2024.135945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The development of nanopestcide carriers with high foliage adhesion remains a challenging task. Erythrocytes are double concave disc structure with thinner center and thicker rim and erythrocyte-like carriers would present enhanced foliar affinity. In this study, we fabricated novel rough-surfaced erythrocyte-like carriers for pesticide delivery. Firstly, erythrocyte-like silica (ES) nanoparticles were prepared by sol-gel method. Subsequently, the ES nanoparticles were further hydrothermal treated to obtain rough-surfaced iron-doped hollow ES (Fe-EHS) nanocarriers. The Fe-EHS nanocarriers could increase contact area and form a topological effect between the pesticide carriers and the micro/nanostructures on plant foliage, effectively enhancing the retention and rain fastness on foliage. Fe-EHS nanocarriers presented a loading capacity of 38.1 % for imidacloprid (IMI). After loading IMI, carboxymethyl cellulose (CMC) was encapsulated to generate nanopesticide delivery system (IMI@Fe-EHS-CMC). The obtained IMI@Fe-EHS-CMC exhibited good foliar adhesion, biosafety, and excellent UV shielding. Additionally, the IMI@Fe-EHS-CMC system possessed pH/cellulase responsive release behavior and could be bidirectionally transported through vascular bundles in tobacco plants. Furthermore, the IMI@Fe-EHS-CMC system showed potent insecticidal activity. This work offers valuable insights for enhancing the effective utilization of pesticides.
Collapse
Affiliation(s)
- Menghui Wan
- Institute of Nanoscience & Engineering, Henan University, Kaifeng 475004, China
| | - Hui Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Yanbao Zhao
- Institute of Nanoscience & Engineering, Henan University, Kaifeng 475004, China.
| | - Lei Sun
- Institute of Nanoscience & Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
10
|
Zhou Z, Tang G, Liu Y, Huang Y, Zhang X, Yan G, Hu G, Yan W, Li J, Cao Y. Carrier-free self-assembled nanoparticles based on prochloraz and fenhexamid for reducing toxicity to aquatic organism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173821. [PMID: 38866165 DOI: 10.1016/j.scitotenv.2024.173821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Nanoformulations of pesticides are an effective way to increase utilization efficiency and alleviate the adverse impacts on the environments caused by conventional pesticide formulations. However, the complex preparation process, high cost, and potential environmental risk of nanocarriers severely restricted practical applications of carrier-based pesticide nanoformulations in agriculture. Herein, carrier-free self-assembled nanoparticles (FHA-PRO NPs) based on fenhexamid (FHA) and prochloraz (PRO) were developed by a facile co-assembly strategy to improve utilization efficiency and reduce toxicity to aquatic organism of pesticides. The results showed that noncovalent interactions between negatively charged FHA and positively charged PRO led to core-shell structured nanoparticles arranged in an orderly manner dispersing in aqueous solution with a diameter of 256 nm. The prepared FHA-PRO NPs showed a typical pH-responsive release profile and exhibited excellent physicochemical properties including low surface tension and high max retention. The photostability of FHA-PRO NPs was improved 2.4 times compared with free PRO. The FHA-PRO NPs displayed superior fungicidal activity against Sclerotinia sclerotiorum and Botrytis cinerea and longer duration against Sclerotinia sclerotiorum on potted rapeseed plants. Additionally, the FHA-PRO NPs reduced the acute toxicity of PRO to zebrafish significantly. Therefore, this work provided a promising strategy to develop nanoformulations of pesticides with stimuli-responsive controlled release characteristics for precise pesticide delivery.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Xiaohong Zhang
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Gaohua Hu
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Weiyao Yan
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Jianqiang Li
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, NO.2 Yuanmingyuan West Road, 100193, Beijing, China.
| |
Collapse
|
11
|
Xu P, Liu J, Yi Y, Cai Z, Yin Y, Cai W, Zhang J, Gong Z, Xiao Y. A dew-responsive pectin-based herbicide for enhanced photodynamic inactivation. Carbohydr Polym 2024; 336:122114. [PMID: 38670775 DOI: 10.1016/j.carbpol.2024.122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
5-aminolevulinic acid (5-ALA) has been fully demonstrated as a biodegradable, without resistance, and pollution-free pesticide. However, the lack of targeting and the poor adhesion result in a low utilization rate, limiting its practical application. Herein, a dew-responsive polymer pro-pesticide Pec-hyd-ALA was successfully synthesized by grafting 5-ALA onto the pectin (PEC) backbone via acid-sensitive acylhydrazone bonds. When the pro-pesticide is exposed to acid dew on plant surfaces at night, 5-ALA is released and subsequently converted to photosensitize (Protoporphyrin IX, PpIX)in plant cells, leading to its accumulation and promoting photodynamic inactivation (PDI). An inverted fluorescence microscope has verified the accumulation of tetrapyrrole in plant cells. In addition, the highly bio-adhesive PEC backbone effectively improved the wetting and retention of 5-ALA on leaves. The pot experiment also demonstrated the system's control effect on barnyard grass. This work provides a promising approach to improving the herbicidal efficacy of 5-ALA.
Collapse
Affiliation(s)
- Peiyu Xu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Wuhan University of Technology Weihai Research Institute, Weihai 264300, Shandong, PR China
| | - Jing Liu
- Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Ying Yi
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Wuhan University of Technology Weihai Research Institute, Weihai 264300, Shandong, PR China
| | - Zhi Cai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Yihua Yin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Wuhan University of Technology Weihai Research Institute, Weihai 264300, Shandong, PR China.
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jingli Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhixia Gong
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Wuhan University of Technology Weihai Research Institute, Weihai 264300, Shandong, PR China
| | - Yaqi Xiao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Wuhan University of Technology Weihai Research Institute, Weihai 264300, Shandong, PR China
| |
Collapse
|
12
|
Lv N, Zhang X, Li R, Liu X, Liang P. Mesoporous silica nanospheres-mediated insecticide and antibiotics co-delivery system for synergizing insecticidal toxicity and reducing environmental risk of insecticide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171984. [PMID: 38547983 DOI: 10.1016/j.scitotenv.2024.171984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) are efficient carriers of drugs, and are promising in developing novel pesticide formulations. The cotton aphids Aphis gossypii Glover is a world devastating insect pest. It has evolved high level resistance to various insecticides thus resulted in the application of higher doses of insecticides, which raised environmental risk. In this study, the MSNs based pesticide/antibiotic delivery system was constructed for co-delivery of ampicillin (Amp) and imidacloprid (IMI). The IMI@Amp@MSNs complexes have improved toxicity against cotton aphids, and reduced acute toxicity to zebrafish. From the 16S rDNA sequencing results, Amp@MSNs, prepared by loading ampicillin to the mesoporous of MSNs, greatly disturbed the gut community of cotton aphids. Then, the relative expression of at least 25 cytochrome P450 genes of A. gossypii was significantly suppressed, including CYP6CY19 and CYP6CY22, which were found to be associated with imidacloprid resistance by RNAi. The bioassay results indicated that the synergy ratio of ampicillin to imidacloprid was 1.6, while Amp@MSNs improved the toxicity of imidacloprid by 2.4-fold. In addition, IMI@Amp@MSNs significantly improved the penetration of imidacloprid, and contributed to the amount of imidacloprid delivered to A. gossypii increased 1.4-fold. Thus, through inhibiting the relative expression of cytochrome P450 genes and improving penetration of imidacloprid, the toxicity of IMI@Amp@MSNs was 6.0-fold higher than that of imidacloprid. The greenhouse experiments further demonstrated the enhanced insecticidal activity of IMI@Amp@MSNs to A. gossypii. Meanwhile, the LC50 of IMI@Amp@MSNs to zebrafish was 3.9-fold higher than that of IMI, and the EC50 for malformation was 2.8-fold higher than IMI, respectively, which indicated that the IMI@Amp@MSNs complexes significantly reduced the environmental risk of imidacloprid. These findings encouraged the development of pesticide/antibiotic co-delivery nanoparticles, which would benefit pesticide reduction and environmental safety.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xudong Zhang
- Analytical & Testing Center, Beihang University, Beijing 100191, China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Lin C, Chen L, He Y, Xiang W, Nie Y, Cai B, Guo Z. Injectable, self-healing and degradable dynamic hydrogels with tunable mechanical properties and stability by thermal-induced micellization. RSC Adv 2024; 14:16207-16217. [PMID: 38769971 PMCID: PMC11103349 DOI: 10.1039/d4ra02480j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Dynamic hydrogels possessing injectable, degradable and self-healing abilities have attracted considerable attention in the biomedical field in recent years, but it is difficult to tune the mechanical properties and stability of conventional dynamic hydrogels. In this work, we synthesized ABA-triblock copolymers via RAFT polymerization, where the A block consisted of thermo-sensitive poly(N-isopropylacrylamide-co-diacetone acrylamide) and the B block was hydrophilic poly(acrylamide). Subsequently, dynamic hydrogels were obtained based on the acylhydrazone bonds between the triblock copolymers and adipic acid dihydrazide (ADH). The obtained hydrogels exhibited injectable and self-healable abilities. In response to the thermal-induced micellization of their temperature-responsive blocks, the mechanical strength of the hydrogels not only increased, but also they exhibited high stability even at pH 2.0. Moreover, the hydrogel in the stable state could be degraded by the fracture of its trithiocarbonate groups. In addition, the hydrogels exhibited good cytocompatibility and controlled release behavior for doxorubicin (DOX). Considering these attractive tunable properties, these dynamic hydrogels show various potential applications in the biomedical field, such as drug carriers and cell or tissue engineering scaffolds.
Collapse
Affiliation(s)
- Chunqing Lin
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| | - Leniu Chen
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| | - Yuan He
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| | - Wenlong Xiang
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| | - Yujing Nie
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| | - Baixue Cai
- Chongqing Academy of Metrology and Quality Inspection Chongqing 401120 PR China
| | - Zanru Guo
- College of Chemistry, Chemical Engineering and Environmental Science, Minnan Normal University Zhangzhou 363000 PR China
| |
Collapse
|
14
|
Zhu Y, Wang N, Ling J, Yang L, Omer AM, Ouyang XK, Yang G. In situ generation of copper(Ⅱ)/diethyldithiocarbamate complex through tannic acid/copper(Ⅱ) network coated hollow mesoporous silica for enhanced cancer chemodynamic therapy. J Colloid Interface Sci 2024; 660:637-646. [PMID: 38266345 DOI: 10.1016/j.jcis.2024.01.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
The Cu2+ complex formed by the coordination of disulfiram (DSF) metabolite diethyldithiocarbamate (DTC), Cu(DTC)2, can effectively inhibit tumor growth. However, insufficient Cu2+ levels in the tumor microenvironment can impact tumor-suppressive effects of DTC. In this study, we proposed a Cu2+ and DSF tumor microenvironment-targeted delivery system. This system utilizes hollow mesoporous silica (HMSN) as a carrier, after loading with DSF, encases it using a complex of tannic acid (TA) and Cu2+ on the outer layer. In the slightly acidic tumor microenvironment, TA/Cu undergoes hydrolysis, releasing Cu2+ and DSF, which further form Cu(DTC)2 to inhibit tumor growth. Additionally, Cu2+ can engage in a Fenton-like reaction with H2O2 in the tumor microenvironment to form OH, therefore, chemodynamic therapy (CDT) and Cu(DTC)2 are used in combination for tumor therapy. In vivo tumor treatment results demonstrated that AHD@TA/Cu could accumulate at the tumor site, achieving a tumor inhibition rate of up to 77.6 %. This study offers a novel approach, circumventing the use of traditional chemotherapy drugs, and provides valuable insights into the development of in situ tumor drug therapies.
Collapse
Affiliation(s)
- Yanfei Zhu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Lianlian Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - A M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P. O. Box: 21934, Alexandria, Egypt
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Guocai Yang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316000, PR China.
| |
Collapse
|
15
|
Han X, Gu S, Xu R, Kong Y, Lou Y, Wang Q, Gao Y, Shang S, Song Z, Song J, Li J. Efficient Control of Rhizoctonia solani Using Environmentally Friendly pH-Responsive Tannic Acid-Rosin Nano-Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597955 DOI: 10.1021/acsami.4c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
A nanomicrocapsule system was constructed through the polymerization of tannic acid (TA) and emulsifier OP-10 (OP-10), followed by the chelation of iron ions, to develop a safe and effective method for controlling Rhizoctonia solani in agriculture. The encapsulated active component is a rosin-based triazole derivative (RTD) previously synthesized by our research group (RTD@OP10-TA-Fe). The encapsulation efficiency of the nanomicrocapsules is 82.39%, with an effective compound loading capacity of 96.49%. Through the encapsulation of the RTD via nanomicrocapsules, we improved its water solubility, optimized its stability, and increased its adhesion to the leaf surface. Under acidic conditions (pH = 5.0), the release rate of nanomicrocapsules at 96 h is 96.31 ± 0.8%, which is 2.04 times higher than the release rate under normal conditions (pH = 7.0). Additionally, the results of in vitro and in vivo antifungal assays indicate that compared with the original compound, the nanomicrocapsules exhibit superior antifungal activity (EC50 values of RTD and RTD@OP10-TA-Fe are 1.237 and 0.860 mg/L, respectively). The results of field efficacy trials indicate that compared with RTD, RTD@OP10-TA-Fe exhibits a more prolonged period of effectiveness. Even after 3 weeks, the antifungal rate of RTD@OP10-TA-Fe remains at 40%, whereas RTD, owing to degradation, shows an antifungal rate of 11.11% during the same period. Furthermore, safety assessment results indicate that compared with the control, RTD@OP10-TA-Fe has almost no impact on the growth of rice seedlings and exhibits low toxicity to zebrafish. This study provides valuable insights into controlling R. solani and enhancing the compound performance.
Collapse
Affiliation(s)
- Xu Han
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shihao Gu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Renle Xu
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yue Kong
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuhang Lou
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Qifan Wang
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, People's Republic of China
| | - Jie Song
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan 48502, United States
| | - Jian Li
- Jiangsu Province Key Laboratory of Biomass Energy and Materials, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
16
|
Liang Q, Hou C, Tan Y, Wei N, Sun S, Zhang S, Feng J. Construction and biological effects of a redox-enzyme dual-responsive lufenuron nano-controlled release formulation. PEST MANAGEMENT SCIENCE 2024; 80:1314-1324. [PMID: 37903714 DOI: 10.1002/ps.7862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Pesticide formulations based on nanotechnology can effectively improve the efficiency of pesticide utilization and reduce pesticide residues in the environment. In this study, mesoporous silica nanoparticles containing disulfide bonds were synthesized by the sol-gel method, carboxylated and adsorbed with lufenuron, and grafted with cellulose to obtain a lufenuron-loaded nano-controlled release formulation (Luf@MSNs-ss-cellulose). RESULTS The structure and properties of Luf@MSNs-ss-cellulose were characterized. The results showed that Luf@MSNs-ss-cellulose exhibits a regular spherical shape with 12.41% pesticide loading. The highest cumulative release rate (73.46%) of this pesticide-loaded nanoparticle was observed at 7 days in the environment of glutathione and cellulase, which shows redox-enzyme dual-responsive performance. As a result of cellulose grafting, Luf@MSNs-ss-cellulose had a small contact angle and high adhesion work on corn leaves, indicating good wetting and adhesion properties. After 14 days of spraying with 20 mg L-1 formulations in the long-term control efficacy experiment, the mortality of Luf@MSNs-ss-cellulose against Ostrinia furnacalis larvae (56.67%) was significantly higher than that of commercial Luf@EW (36.67%). Luf@MSNs-ss-cellulose is safer for earthworms and L02 cells. CONCLUSION The nano-controlled release formulation obtained in this study achieved intelligent pesticide delivery in time and space under the environmental stimulation of glutathione and cellulase, providing an effective method for the development of novel pesticide delivery systems. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianwei Liang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Chaoqun Hou
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yifei Tan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Nuo Wei
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shaoyang Sun
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shengfu Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Fang Y, Xie Z, Zhang H, Xiong Q, Yu B, Cheng J, Shang W, Zhao J. Near-infrared-responsive CuS@Cu-MOF nanocomposite with high foliar retention and extended persistence for controlling strawberry anthracnose. J Control Release 2024; 367:837-847. [PMID: 38346502 DOI: 10.1016/j.jconrel.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Strawberry anthracnose (Colletotrichum gloeosporioides) exhibits a high pathogenicity, capable of directly infecting leaves through natural openings, resulting in devastating impacts on strawberries. Here, nanocomposite (CuS@Cu-MOF) was prepared with a high photothermal conversion efficiency of 35.3% and a strong response to near-infrared light (NIR) by locally growing CuS nanoparticles on the surface of a copper-based metal-organic framework (Cu-MOF) through in situ sulfurization. The porosity of Cu-MOF facilitated efficient encapsulation of the pesticide difenoconazole within CuS@Cu-MOF (DIF/CuS@Cu-MOF), achieving a loading potential of 19.18 ± 1.07%. Under NIR light irradiation, DIF/CuS@Cu-MOF showed an explosive release of DIF, which was 2.7 times higher than that under dark conditions. DIF/CuS@Cu-MOF exhibited a 43.9% increase in efficacy against C. gloeosporioides compared to difenoconazole microemulsion (DIF ME), demonstrating prolonged effectiveness. The EC50 values for DIF and DIF/CuS@Cu-MOF were 0.219 and 0.189 μg/mL, respectively. Confocal laser scanning microscopy demonstrated that the fluorescently labeled CuS@Cu-MOF acted as a penetrative carrier for the uptake of hyphae. Furthermore, DIF/CuS@Cu-MOF exhibited more substantial resistance to rainwater wash-off than DIF ME, with retention levels on the surfaces of cucumber leaves (hydrophilicity) and peanut leaves (hydrophobicity) increasing by 36.5-fold and 9.4-fold, respectively. These findings underscore the potential of nanocomposite to enhance pesticide utilization efficiency and leaf retention.
Collapse
Affiliation(s)
- Yun Fang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengang Xie
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Haonan Zhang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Qiuyu Xiong
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Bin Yu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Jingli Cheng
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Wenxuan Shang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Jinhao Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
18
|
Lin H, Ma N, He L, Xu P, Wang F, You C. High deposition and precise stimulus-response release performance of lignin-coated dendritic mesoporous organosilica nanoparticles for efficient pesticide utilization. Int J Biol Macromol 2024; 259:129163. [PMID: 38181906 DOI: 10.1016/j.ijbiomac.2023.129163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
The inefficient and improper use of conventional pesticides has prompted the development of targeted and cost-effective pesticide delivery systems, which aim to optimize the efficient utilization of pesticides while minimizing environmental pollution in surrounding areas. In this paper, a dual-stimuli-responsive pesticide slow-release nanopesticide system (NES@DMONs@LGN) was designed in this study, utilizing mesoporous silica (DMONs) as a nanocarrier and lignin (LGN) as a capping agent to encapsulate the pesticide molecules within DMONs. This system enables intelligent release of pesticide molecules while preventing environmental pollution caused by leakage. Additionally, NES@DMONs@LGN exhibit excellent specific loading efficiency. The abundant hydrophilic functional groups in the lignin layer on the surface of NES@DMONs@LGN can establish hydrogen bonds with advanced fatty acids and fatty alcohols present in the waxy epidermis of plants, thereby significantly enhancing carrier wettability and adhesion. Typically, phytophagous lepidopteran pests have an alkaline midgut and possess lignin-degrading enzymes. The NES@DMONs@LGN developed in this study are capable of rapid release under high temperature and alkaline conditions. Therefore, the precise release of pesticide molecules in the target pests can be achieved, thus increasing the actual utilization rate of pesticides. The experimental results demonstrated that NES@DMONs@LGN effectively prevented photodegradation of the active ingredient after 48 h of UV irradiation, resulting in a 3.7-fold improvement in photostability and providing robust UV protection. By encapsulating pesticide molecules with nanocarriers, the release of pesticides in non-targeted environments can be prevented, thereby significantly reducing toxicity to zebrafish. Thus, this study provides a promising solution for sustainable greening of agriculture.
Collapse
Affiliation(s)
- Hanchen Lin
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ning Ma
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lingxiao He
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Xu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Fei Wang
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chaoqun You
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
19
|
Wang C, Qiao K, Ding Y, Liu Y, Niu J, Cao H. Enhanced control efficacy of spinosad on corn borer using polylactic acid encapsulated mesoporous silica nanoparticles as a smart delivery system. Int J Biol Macromol 2023; 253:126425. [PMID: 37607654 DOI: 10.1016/j.ijbiomac.2023.126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Asion corn borer (Ostrinia furnacalis (Guenee)) is one of the most important factors affecting the normal growth and yield of corn. However, chemical control methods currently in use cause severe pollution. In the present study, aminated mesoporous silica nanoparticles (MSNs-NH2) and polylactic acid (PLA) were used as the carrier and capping agent respectively to construct an insect gut microenvironment nano-response system that loaded spinosad, a biopesticide used to control O. furnacalis. The resulting spinosad@MSNs-PLA demonstrated high loading capacity (38.6 %) and improved photostability of spinosad. Moreover, this delivery system could intelligently respond to the intestinal microenvironment of the corn borer's gut and achieve the smart release of spinosad. Compared with the conventional pesticide, spinosad@MSNs-PLA exhibited superior efficacy in controlling the O. furnacalis and could uptake and transport in maize plants without adverse effects on their growth. Furthermore, the toxicity of spinosad@MSNs-PLA on zebrafish was reduced by over 50 times. The prepared spinosad@MSNs-PLA has great potential and could be widely applied in agricultural production in the future. This approach could improve the utilization of pesticide and reduce environmental pollution. In addition, MSNs-PLA nano vectors provide new ideas for the control of other borer pests.
Collapse
Affiliation(s)
- Chao Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ke Qiao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yi Ding
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ying Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Junfan Niu
- School of Plant Protection, Anhui Agricultural University, Hefei, China.
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
20
|
Huang X, Luo J, Cao H, Wang A, Zhou F, Liu F, Li B, Mu W, Zhang Y. A multidimensional optimization strategy of pyraclostrobin-loaded microcapsules to improve the selectivity between toxicological risk in zebrafish and efficacy in controlling rice blast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166587. [PMID: 37659543 DOI: 10.1016/j.scitotenv.2023.166587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Developing microcapsules (MCs) delivery systems can effectively mitigate toxicological risk of highly active/toxic pesticides; whereas the controlled release functions also limiting their practical effectiveness. Therefore, designing a precise regulating strategy to balance the toxicity and bioactivity of MCs is urgently needed. Here, we prepared a series of pyraclostrobin-loaded MCs with different wall materials, particle sizes, core density and shell compactness using interfacial polymerization. The results showed that the MCs released more slowly in water with increasing particle sizes and capsule compactness, and they sunk more quickly with the increasing particle sizes and core density. Additionally, MCs with slower release speed was always accompanied with lower acute toxicity levels to zebrafish. When the release dynamics slowed down to the threshold dose on demand for disease control, facilitating settlement of MCs can further reduce toxicity within spatial and temporal dimensions. The poor accumulation of MCs with larger particle sizes or dense shell in gills was closely related to their efficient detoxification. Importantly, seven of the MCs samples possessed superior selectivity between bio-performance in controlling rice blast and toxicological hazard to fish compared to commercial formulations. The results provide a comprehensive guidance for developing an efficient and safe pesticide delivery system.
Collapse
Affiliation(s)
- Xueping Huang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230001, PR China; College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jian Luo
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Haichao Cao
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Aiping Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fengyan Zhou
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230001, PR China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Beixing Li
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Yong Zhang
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230001, PR China.
| |
Collapse
|
21
|
Gao T, Zhang B, Wu Z, Zhang Q, Shi X, Zhou C, Liu X, Liu P, Liu X. Fabrication of ROS-responsive nanoparticles by modifying the interior pore-wall of mesoporous silica for smart delivery of azoxystrobin. J Mater Chem B 2023; 11:11496-11504. [PMID: 37990572 DOI: 10.1039/d3tb01954c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The suboptimal efficiency in pesticide utilization may elevate residues, posing safety risks to human food and non-target organisms. To address this challenge, delivery systems, such as pathogen infection stimuli-responsive carriers, can be employed to augment the efficiency of fungicide utilization. The bursting of reactive oxygen species (ROS) is a common defense response of host plants to pathogenic infections. In this study, ROS-responsive mesoporous silica nanoparticles (MSN) modified with phenyl sulfide (PHS) as azoxystrobin (AZOX) carrier (MSN-PHS-AZOX) were fabricated. Results demonstrated that MSN-PHS-AZOX exhibited fungicide release kinetics dependent on ROS. In vitro inhibition experiments confirmed the fungicidal effect of MSN-PHS-AZOX on Botrytis cinerea, relying on external ROS. In vivo leaf experiments showcased the superior persistence of MSN-PHS-AZOX in compared to AZOX SC. Furthermore, MSN-PHS-AZOX exhibits favorable biosafety and lower toxicity to aquatic zebrafish compared to AZOX SC, with no adverse impact on cucumber leaf growth. These findings suggest the potential application of this ROS-responsive nano fungicide in managing plant disease in agricultural fields.
Collapse
Affiliation(s)
- Tuqiang Gao
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Borui Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Zhaochen Wu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Qizhen Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Xin Shi
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Congying Zhou
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Xiaofang Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Pengfei Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Xili Liu
- College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
22
|
Wei N, Lv Z, Meng X, Liang Q, Jiang T, Sun S, Li Y, Feng J. Sodium alginate-carboxymethyl chitosan hydrogels loaded with difenoconazole for pH-responsive release to control wheat crown rot. Int J Biol Macromol 2023; 252:126396. [PMID: 37625754 DOI: 10.1016/j.ijbiomac.2023.126396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Increasing concern about environmental pollution has driven the development of controlled release formulations for agrochemicals. Due to the advantages of degradability and responsiveness to environmental stimuli, polysaccharide-based hydrogel is an ideal carrier for agrochemicals controlled release. In this study, a method-easy polysaccharide hydrogel for controlled release of difenoconazole (DZ) was prepared with sodium alginate (SA) and carboxymethyl chitosan (CMCS). Due to its three-dimensional crosslinked mesh structure, the prepared hydrogels (CSDZ) showed an agrochemical load capacity of 9.03 % and an encapsulation efficiency of 68.64 %. The release rate is faster in alkaline solution, followed by neutral solution, and slowest in an acid environment, which is consistent with the swelling behavior. Furthermore, leaching studies showed that CSDZ hydrogels have excellent protective properties for encapsulated agrochemicals. Compared with technical DZ, the results of in vitro and pot antifungal testing showed that CSDZ had a better control effect against wheat crown rot (Fusarium pseudograminearum). Safety assessment studies indicated that CSDZ hydrogels exhibit good biocompatibility on nontargeted organisms (Daphnia magna, zebrafish and Eisenia fetida) and wheat. This study aims to provide a potentially promising approach for the preparation and application of biocompatible polysaccharide-based hydrogels for agrochemical-controlled release in sustainable disease management.
Collapse
Affiliation(s)
- Nuo Wei
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Ze Lv
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaohan Meng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qianwei Liang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Tianzhen Jiang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shaoyang Sun
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yan Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
23
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|
24
|
Tang J, Tong X, Chen Y, Wu Y, Zheng Z, Kayitmazer AB, Ahmad A, Ramzan N, Yang J, Huang Q, Xu Y. Deposition and water repelling of temperature-responsive nanopesticides on leaves. Nat Commun 2023; 14:6401. [PMID: 37828020 PMCID: PMC10570302 DOI: 10.1038/s41467-023-41878-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Pesticides are widely used to increase agricultural productivity, however, weak adhesion and deposition lead to low efficient utilization. Herein, we prepare a nanopesticide formulation (tebuconazole nanopesticides) which is leaf-adhesive, and water-dispersed via a rapid nanoparticle precipitation method, flash nanoprecipitation, using temperature-responsive copolymers poly-(2-(dimethylamino)ethylmethylacrylate)-b-poly(ε-caprolactone) as the carrier. Compared with commercial suspensions, the encapsulation by the polymer improves the deposition of TEB, and the contact angle on foliage is lowered by 40.0°. Due to the small size and strong van der Waals interactions, the anti-washing efficiency of TEB NPs is increased by 37% in contrast to commercial ones. Finally, the acute toxicity of TEB NPs to zebrafish shows a more than 25-fold reduction as compared to commercial formulation indicating good biocompatibility of the nanopesticides. This work is expected to enhance pesticide droplet deposition and adhesion, maximize the use of pesticides, tackling one of the application challenges of pesticides.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaojing Tong
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongjun Chen
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yue Wu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiyuan Zheng
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | | | - Ayyaz Ahmad
- Department of Chemical Engineering, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, Pakistan
| | - Naveed Ramzan
- Faculty of Chemical, Metallurgical, and Polymer Engineering, University of Engineering & Technology, Lahore, Pakistan
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qingchun Huang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| |
Collapse
|
25
|
Li X, Zhou Z, Huang Y, Tang G, Liu Y, Chen X, Yan G, Wang H, Zhang X, Wang J, Cao Y. A high adhesion co-assembly based on myclobutanil and tannic acid for sustainable plant disease management. PEST MANAGEMENT SCIENCE 2023; 79:3796-3807. [PMID: 37209275 DOI: 10.1002/ps.7564] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/27/2023] [Accepted: 05/20/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pesticides are irreplaceable inputs for protecting crops from pests and improving crop yield and quality. Self-assembly nanotechnology is a promising strategy by which to develop novel nano-formulations for pesticides. Nano-formulations improve the effective utilization of pesticides and reduce risks to the environment because of their eco-friendly preparation, high drug loading, and desirable physicochemical properties. Here, to enhance the utilization efficiency of myclobutanil (MYC) and develop a novel nano-formulation, carrier-free co-assembled nanoparticles (MT NPs) based on MYC and tannic acid (TA) were prepared by noncovalent molecular interactions using a green preparation process without any additives. RESULTS The results showed that the prepared spherical nanoparticles had good stability in neutral and acidic aqueous solutions, low surface tension (40.53 mN m-1 ), high rainfastness, and good maximum retention values on plant leaves. Release of active ingredients from MT NPs could be regulated by altering the molar ratio of subassemblies in the co-assembly and the pH of the environment. Antifungal experiments demonstrated that MT NPs had better activities against Alternaria alternata and Fusarium graminearum [half-maximal effective concentration (EC50 ) = 6.40 and 77.08 mg/L] compared with free MYC (EC50 = 11.46 and 124.82 mg/L), TA (EC50 = 251.19 and 503.81 mg/L), and an MYC + TA mixture (EC50 = 9.62 and 136.21 mg/L). These results suggested that MYC and TA incorporated in the co-assembled nanoparticles had a synergistic antifungal activity. The results of a genotoxicity assessment indicated that MT NPs could reduce the genotoxicity of MYC to plant cells. CONCLUSION Co-assembled MT NPs with synergistic antifungal activity have outstanding potential for the management of plant diseases. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuan Li
- College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Xi Chen
- College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Huachen Wang
- College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Xiaohong Zhang
- College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Jialu Wang
- College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, China
- Sanya Institute of China Agricultural University, Sanya, China
| |
Collapse
|
26
|
Yao J, Zhi H, Shi Q, Zhang Y, Feng J, Liu J, Huang H, Xie X. Tannic Acid Interfacial Modification of Prochloraz Ethyl Cellulose Nanoparticles for Enhancing the Antimicrobial Effect and Biosafety of Fungicides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41324-41336. [PMID: 37602737 DOI: 10.1021/acsami.3c07761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
With the poorly soluble and intrinsically unstable feature, prochloraz (Pro) was confronted with lower bioavailability in the crop defense against fungal erosion. Therefore, it was a challenging project to explore the innovative antifungal compound delivery system for improving bioavailability. The superior adhesive fungicide formulation was supposed to be an efficient pathway to enhance transmembrane permeability and biological activity. According to abundant phenolic hydroxyl groups, tannic acid (TA) was an ideal modified adhesive biomaterial to improve interfacial interactions. The fundamental purpose of this research was focused on the synergistic mechanism of TA-interfacial-modified Pro-ethyl cellulose (EC) nanoparticles for improving bioavailability and biosafety. In the stability test, TA-modified Pro-EC nanoparticles had the capacity to reduce Pro initial release burst, extending a persistent validity and improving anti-photodegradation property. The toxicity index of Pro-EC and Pro-EC-TA was approximately 2.93-fold and 4.96-fold that of Pro technical against Fusarium graminearum (F. graminearum), respectively. Compared with nonmodified EC nanoparticles, TA-modified EC nanoparticles obtained eminent transmembrane permeability and superior adherence ability to F. graminearum, for hydroxyl and carboxyl groups of TA to enhance interaction with target cell membranes. The contents of cellular reactive oxygen species induced by Pro-EC and Pro-EC-TA nanoparticles were about 2.31 times and 3.00 times that of the control check (CK), respectively. Compared to the CK group, the membrane potential and ergosterol values of F. graminearum treated with Pro-EC-TA nanoparticles were drastically reduced by 74.91 and 56.20%, respectively. In the biosafety assay, the maximum half-lethal concentration value of the TA-modified Pro-EC nanoparticles indicated that the acute toxicity of the Pro-EC-TA nanoparticles to adult zebrafish was approximately 8.34-fold reduced compared to that of the Pro technical. These findings demonstrated that the successful interfacial modification of Pro-EC nanoparticles with TA was a highly efficient, environmentally safe, and promising alternative for sustainable agricultural application, thus making the fungicide formulation process more simplified, easier fabrication, and lower cost.
Collapse
Affiliation(s)
- Junwei Yao
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Heng Zhi
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qingshan Shi
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jin Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Jingxia Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Hui Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
| |
Collapse
|
27
|
Zhang X, Tang G, Zhou Z, Wang H, Li X, Yan G, Liu Y, Huang Y, Wang J, Cao Y. Fabrication of Enzyme-Responsive Prodrug Self-Assembly Based on Fluazinam for Reducing Toxicity to Aquatic Organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12678-12687. [PMID: 37595273 DOI: 10.1021/acs.jafc.3c03762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Prodrug-based nanodrug delivery systems were drug formulations by covalently conjugating drugs with inversely polar groups via a cleavable bond to self-assemble into nanoparticles for efficient drug delivery. To improve the utilization efficiency of fluazinam (FZN), enzyme-responsive prodrugs were prepared by conjugating FZN with different alkyl aliphatic acids through a nucleophilic substitution reaction and subsequently self-assembled into nanoparticles (FZNP NPs) without using any harmful adjuvant. The obtained FZNP NPs exhibited excellent efficacies against Sclerotinia sclerotiorum as a result of improved physicochemical properties, including low surface tension, high retention, and enhanced photostability. The LC50 values of FZNP NPs toward zebrafish were 3-8 times that of FZN, which illustrated that the FZNP NPs reduced the detriments of FZN to the aquatic organisms while retaining good biological activity. Therefore, prodrug self-assembly technology would offer a potential method for improving the utilization efficiency of pesticides and lowering the risks to the ecological environment.
Collapse
Affiliation(s)
- Xiaohong Zhang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Gang Tang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Huachen Wang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Xuan Li
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Guangyao Yan
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yulu Liu
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yuqi Huang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Jialu Wang
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| |
Collapse
|
28
|
Li Y, Cai Z, Yin Y, Yi Y, Cai W, Tao S, Du M, Zhang J, Cao R, Luo Y, Xu W. A pectin-based photoactivated bactericide nanosystem for achieving an improved utilization rate, photostability and targeted delivery of hematoporphyrin. J Mater Chem B 2023. [PMID: 37326434 DOI: 10.1039/d3tb00300k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photoactivated pesticides have many advantages, such as high activity, low toxicity, and no drug resistance. However, poor photostability and a low utilization rate limit their practical application. Herein, the photosensitizer hematoporphyrin (HP) was used as a photoactivated pesticide, covalently linked with pectin (PEC) via ester bonds, to prepare an amphiphilic polymer pro-bactericide, and subsequently self-assembled in aqueous solutions to obtain an esterase-triggered nanobactericide delivery system. The fluorescence quenching effect due to the aggregation of HP in nanoparticles (NPs) enabled the inhibition of photodegradation of HP in this system. Esterase stimulation could trigger HP release and increase its photodynamic activity. Antibacterial assays have shown that the NPs had potent antibacterial capacity, almost completely inactivating bacteria after 60 min of exposure to light. The NPs had good adherence to the leaves. Safety assessment indicated that the NPs have no obvious toxic effects on plants. Antibacterial studies on plants have shown that the NPs have excellent antibacterial effects on infected plants. These results provide a new strategy for obtaining a photoactivated bactericide nanosystem with a high utilization rate and good photostability and targeting ability.
Collapse
Affiliation(s)
- Yun Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Rizhao Biomedicine and New Materials Research Institute Of Wuhan University of Technology, 276826, P. R. China
| | - Zhi Cai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yihua Yin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Rizhao Biomedicine and New Materials Research Institute Of Wuhan University of Technology, 276826, P. R. China
| | - Ying Yi
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Rizhao Biomedicine and New Materials Research Institute Of Wuhan University of Technology, 276826, P. R. China
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shengxiang Tao
- Department of Orthopaedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Mengting Du
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Rizhao Biomedicine and New Materials Research Institute Of Wuhan University of Technology, 276826, P. R. China
| | - Jingli Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Ruyu Cao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Yijing Luo
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Wenjin Xu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
| |
Collapse
|
29
|
Li L, Cen J, Huang L, Luo L, Jiang G. Fabrication of a dual pH-responsive and photothermal microcapsule pesticide delivery system for controlled release of pesticides. PEST MANAGEMENT SCIENCE 2023; 79:969-979. [PMID: 36309964 DOI: 10.1002/ps.7265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/15/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The development of stimulus-responsive and photothermally controlled-release microcapsule pesticide delivery systems is a promising solution to enhance the effective utilization and minimize the excessive use of pesticides in agriculture. RESULTS In this study, an AVM@CS@TA-Fe microcapsule pesticide delivery system was developed using avermectin as the model drug, chitosan and tannic acid as the wall materials, and tannic acid-Fe complex layer as the photothermal agent. The optical microscope, scanning electron microscope, transmission electron microscope, and Fourier-transform infrared spectroscope were used to characterize the prepared microcapsule. The slow-release, UV-shielding, photothermal performance, and nematicidal activity of the microcapsule were systematically investigated. The results showed that the system exhibited excellent pH-responsive and photothermal-sensitive performances. In addition, the UV-shielding performance of the delivery system was improved. The photothermal conversion efficiency (η) of the system under the irradiation of near-infrared (NIR) light was determined to be 14.18%. Moreover, the nematicidal activities of the system against pine wood nematode and Aphelenchoides besseyi were greatly increased under the irradiation of light-emitting diode (LED) simulated sunlight. CONCLUSION The release of the pesticide-active substances in such a pesticide delivery system could be effectively regulated with the irradiation of NIR light or LED-simulated sunlight. Thus, the developed pesticide delivery system may have broad application prospects in modern agriculture fields. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linhuai Li
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Jun Cen
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Lingling Huang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Ling Luo
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| | - Guangqi Jiang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
30
|
Zhang J, Kothalawala S, Yu C. Engineered silica nanomaterials in pesticide delivery: Challenges and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121045. [PMID: 36639042 DOI: 10.1016/j.envpol.2023.121045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/04/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Over the past decade, nanopesticide has been developed rapidly for exploring effective and safe alternatives to conventional pesticides with significant drawbacks and risks. Many nanotechnologies, including pesticide nanoemulsions, polymer-based nanopesticides, and metal/metal oxide nanoparticle-based pesticides have emerged and are extensively reviewed. Engineered silica nanomaterials (ESNs) have also shown promising potential as carriers in nanopesticides for modern agriculture. However, there are limited reviews specifically on ESN-based nanopesticides. Herein, we provide a comprehensive review on the recent progress of ESN-based nanopesticide technologies. An introduction of synthetic technology, formation mechanism, and surface engineering technology is firstly presented. Then, the advantages of ESN-based pesticide formulation and their structure-function-relationship are illustrated in detail. Finally, our perspectives on challenges and future research in ESN-based nanopesticide development are discussed.
Collapse
Affiliation(s)
- Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sukitha Kothalawala
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
31
|
Hou R, Zhou J, Song Z, Zhang N, Huang S, Kaziem AE, Zhao C, Zhang Z. pH-responsive λ-cyhalothrin nanopesticides for effective pest control and reduced toxicity to Harmonia axyridis. Carbohydr Polym 2023; 302:120373. [PMID: 36604051 DOI: 10.1016/j.carbpol.2022.120373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
In this study, pH-responsive LC@O-CMCS/PU nanoparticles were prepared by encapsulating λ-cyhalothrin (LC) with O-carboxymethyl chitosan (O-CMCS) to form LC/O-CMCS and then covering it with polyurethane (PU). Characterization and performance test results demonstrate that LC@O-CMCS/PU had good alkaline release properties and pesticide loading performance. Compared to commercial formulations containing large amounts of emulsifiers (e.g., emulsifiable concentrate, EC), LC@O-CMCS/PU showed better leaf-surface adhesion. On the dried pesticide-applied surfaces, the acute contact toxicity of LC@O-CMCS/PU to Harmonia axyridis (H. axyridis) was nearly 20 times lower than that of LC EC. Due to the slow-releasing property of LC@O-CMCS/PU, only 16.38 % of LC was released at 48 h in dew and effectively reduced the toxicity of dew. On the pesticide-applied leaves with dew, exposure to the LC (EC) caused 86.66 % mortality of H. axyridis larvae significantly higher than the LC@O-CMCS/PU, which was only 16.66 % lethality. Additionally, quantitative analysis demonstrated 11.33 mg/kg of λ-cyhalothrin in the dew on LC@O-CMCS/PU lower than LC (EC) with 4.54 mg/kg. In summary, LC@O-CMCS/PU effectively improves the safety of λ-cyhalothrin to H. axyridis and has great potential to be used in pest control combining natural enemies and chemical pesticides.
Collapse
Key Words
- H. axyridis
- Low toxicity
- PubChem CID: 14030006, castor oil
- PubChem CID: 14798, sodium hydroxide
- PubChem CID: 16682738, dibutyltin dilaurate
- PubChem CID: 169132, isophorone diisocyanate
- PubChem CID: 300, chloroacetic acid
- PubChem CID: 3776, isopropyl alcohol
- PubChem CID: 442424, genipin
- PubChem CID: 443046, λ-cyhalothrin
- PubChem CID: 6569, methyl ethyl ketone
- PubChem CID: 7767, N-methyl diethanolamine
- pH-controlled release
- λ-Cyhalothrin
Collapse
Affiliation(s)
- Ruiquan Hou
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jingtong Zhou
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zixia Song
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Ning Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Suqing Huang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Amir E Kaziem
- Department of Environmental Agricultural Sciences, Institute of Environmental Studies and Research, Ain Shams University, Cairo 11566, Egypt
| | - Chen Zhao
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| | - Zhixiang Zhang
- Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
32
|
Zhou J, Liu G, Guo Z, Wang M, Qi C, Chen G, Huang X, Yan S, Xu D. Stimuli-responsive pesticide carriers based on porous nanomaterials: A review. CHEMICAL ENGINEERING JOURNAL 2023; 455:140167. [DOI: 10.1016/j.cej.2022.140167] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
|
33
|
Xiao D, Wu H, Zhang Y, Kang J, Dong A, Liang W. Advances in stimuli-responsive systems for pesticides delivery: Recent efforts and future outlook. J Control Release 2022; 352:288-312. [PMID: 36273530 DOI: 10.1016/j.jconrel.2022.10.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Effective pest management for enhanced crop output is one of the primary goals of establishing sustainable agricultural practices in the world. Pesticides are critical in preventing biological disasters, ensuring crop productivity, and fostering sustainable agricultural production growth. Studies showed that crops are unable to properly utilize pesticides because of several limiting factors, such as leaching and bioconversion, thereby damaging ecosystems and human health. In recent years, stimuli-responsive systems for pesticides delivery (SRSP) by nanotechnology demonstrated excellent promise in enhancing the effectiveness and safety of pesticides. SRSP are being developed with the goal of delivering precise amounts of active substances in response to biological needs and environmental factors. An in-depth analysis of carrier materials, design fundamentals, and classification of SRSP were provided. The adhesion of SRSP to crop tissue, absorption, translocation in and within plants, mobility in the soil, and toxicity were also discussed. The problems and shortcomings that need be resolved to accelerate the actual deployment of SRSP were highlighted in this review.
Collapse
Affiliation(s)
- Douxin Xiao
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenlong Liang
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
34
|
Liang Y, Wang S, Yao Y, Yu S, Li A, Wang Y, Song J, Huo Z. Degradable Self-Destructive Redox-Responsive System Based on Mesoporous Organosilica Nano-Vehicles for Smart Delivery of Fungicide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234249. [PMID: 36500872 PMCID: PMC9741037 DOI: 10.3390/nano12234249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/01/2023]
Abstract
The development of stimuli-responsive controlled release formulations is a potential method of improving pesticide utilization efficiency and alleviating current pesticide-related environmental pollution. In this study, a self-destruction redox-responsive pesticide delivery system using biodegradable disulfide-bond-bridged mesoporous organosilica (DMON) nanoparticles as the porous carriers and coordination complexes of gallic acid (GA) and Fe(III) ions as the capping agents were established for controlling prochloraz (PRO) release. The GA-Fe(III) complexes deposited onto the surface of DMON nanoparticles could effectively improve the light stability of prochloraz. Due to the decomposition of GA-Fe(III) complexes, the nano-vehicles had excellent redox-responsive performance under the reducing environments generated by the fungus. The spreadability of PRO@DMON-GA-Fe(III) nanoparticles on the rice leaves was increased due to the hydrogen bonds between GA and rice leaves. Compared with prochloraz emulsifiable concentrate, PRO@DMON-GA-Fe(III) nanoparticles showed better fungicidal activity against Magnaporthe oryzae with a longer duration under the same concentration of prochloraz. More importantly, DMON-GA-Fe(III) nanocarriers did not observe obvious toxicity to the growth of rice seedlings. Considering non-toxic organic solvents and excellent antifungal activity, redox-responsive pesticide controlled release systems with self-destruction properties have great application prospects in the field of plant disease management.
Collapse
|
35
|
Dong H, He Y, Fan C, Zhu Z, Zhang C, Liu X, Qian K, Tang T. Encapsulation of Imazalil in HKUST-1 with Versatile Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3879. [PMID: 36364655 PMCID: PMC9657569 DOI: 10.3390/nano12213879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Based on high surface areas, adjustable porosity and microbicide activity, metal-organic frameworks (MOFs) HKUST-1 are widely used as drug release carriers for their slow degradation characteristics under slightly acidic conditions. In this work, porous HKUST-1 was reacted rapidly by cholinium salt (as the deprotonation agent and template) in an aqueous solution at room temperature. A novel antimicrobial system based on an imazalil encapsulated metal organic framework (imazalil IL-3@HKUST-1) was established. Imazalil IL-3@HKUST-1 could achieve synergism in inhibiting pathogenic fungi and bacteria. Moreover, six days after treatment, the slow and constant release of imazalil from imazalil IL@HKUST-1 exhibited better sustainability and microbicidal activity than imazalil. We believe that the method may provide a new strategy for related plant diseases caused by bacteria or fungi.
Collapse
Affiliation(s)
- Hongqiang Dong
- College of Agriculture, Tarim University, Alaer 843300, China
| | - Yuke He
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Chen Fan
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| | - Zhongqiang Zhu
- College of Agriculture, Tarim University, Alaer 843300, China
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
36
|
Liang Y, Wang S, Jia H, Yao Y, Song J, Dong H, Cao Y, Zhu F, Huo Z. Pectin functionalized metal-organic frameworks as dual-stimuli-responsive carriers to improve the pesticide targeting and reduce environmental risks. Colloids Surf B Biointerfaces 2022; 219:112796. [PMID: 36063717 DOI: 10.1016/j.colsurfb.2022.112796] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 01/21/2023]
Abstract
Encapsulation of active ingredients into intelligent response controlled release carriers has been recognized as a promising approach to enhance the utilization efficiency and reduce the environmental risks of pesticides. In this work, an intelligent redox and pectinase dual stimuli-responsive pesticide delivery system was constructed by bonding pectin with metal-organic frameworks (FeMOF nanoparticles) which were loaded with pyraclostrobin (PYR@FeMOF-pectin nanoparticles). The successful fabrication of PYR@FeMOF-pectin nanoparticles was proved by a series of physicochemical characterizations. The results indicated that the loading capacity of PYR@FeMOF-pectin nanoparticles for pyraclostrobin was approximately 20.6%. The pectin covered on the surface of PYR@FeMOF nanoparticles could protect pyraclostrobin from photolysis and improve their spreadability on rice blades effectively. Different biological stimuli associated with Magnaporthe oryzae could trigger the release of pyraclostrobin from the pesticide-loaded core-shell nanoparticles, resulting in the death of pathogens. The bioactivity survey determined that PYR@FeMOF-pectin nanoparticles had a superior fungicidal activity and a longer duration against Magnaporthe oryzae than pyraclostrobin suspension concentrate. In addition, the FeMOF-pectin nanocarriers showed no obvious phytotoxicity and could enhance the shoot length and root length of rice plants. More importantly, PYR@FeMOF-pectin nanoparticles had an 8-fold reduction in acute toxicity to zebrafish than that of pyraclostrobin suspension concentrate. Therefore, the dual-responsive FeMOF-pectin nanocarriers have great potential for realizing site-specific pesticide delivery and promoting plant growth.
Collapse
Affiliation(s)
- You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China; Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, China
| | - Sijin Wang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Huijuan Jia
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Yijia Yao
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Jiehui Song
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China
| | - Hongqiang Dong
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Feng Zhu
- Plant Protection and Plant Quarantine Station of Jiangsu Province, Nanjing, China
| | - Zhongyang Huo
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
37
|
Bommakanti V, Banerjee M, Shah D, Manisha K, Sri K, Banerjee S. An overview of synthesis, characterization, applications and associated adverse effects of bioactive nanoparticles. ENVIRONMENTAL RESEARCH 2022; 214:113919. [PMID: 35863448 DOI: 10.1016/j.envres.2022.113919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
A particle with a diameter ranging from 1 to 100 nm is considered a nanoparticle (NP). Owing to their small size and high surface area, NPs possess unique physical, chemical and biological properties as compared to their bulkier counterparts. This paper describes various physico-chemical as well as green methods that can be used to synthesize different types of NPs including carbon-based, ceramic, metal, semiconductor, polymeric and lipid-based NPs. These methods can be categorized into either top-down or bottom-up approaches. Electron microscopy, atomic force microscopy, dynamic light scattering, X-ray diffraction, zeta-potential instrument, liquid chromatography-mass spectrometry, fourier transform infrared spectroscopy and thermogravimetric analysis are the techniques discussed in the characterization of NPs. This review provides an insight into the extraordinary properties of NPs that have opened the doors for endless biomedical applications like drug delivery, photo-ablation therapy, biosensors, bio-imaging and hyperthermia. In addition, NPs are also involved in improving crop growth, making protective clothing, cosmetics and energy reserves. This review also specifies adverse health effects associated with NPs such as hepatotoxicity, genotoxicity, neurotoxicity, etc., and inhibitory effects on plant growth and aquatic life. Further, in-vitro toxicity assessment assays for cell proliferation, apoptosis, necrosis and oxidative stress, as well as in-vivo toxicity assessment like biodistribution, clearance, hematological, serological and histological studies, are discussed here. Lastly, the authors have mentioned various measures that can be adopted to minimize the toxicity associated with NPs such as green synthesis, use of stabilizers, gene gun, polymer shell, microneedle capsule, etc.
Collapse
Affiliation(s)
- Vaishnavi Bommakanti
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Madhura Banerjee
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Divik Shah
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Kowdi Manisha
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Kavya Sri
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
38
|
Wan M, Zhao Y, Li H, Zou X, Sun L. pH and NIR responsive polydopamine-doped dendritic silica carriers for pesticide delivery. J Colloid Interface Sci 2022; 632:19-34. [DOI: 10.1016/j.jcis.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
|
39
|
Shi L, Liang Q, Zang Q, Lv Z, Meng X, Feng J. Construction of Prochloraz-Loaded Hollow Mesoporous Silica Nanoparticles Coated with Metal-Phenolic Networks for Precise Release and Improved Biosafety of Pesticides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162885. [PMID: 36014750 PMCID: PMC9414849 DOI: 10.3390/nano12162885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 05/03/2023]
Abstract
Currently, environmental-responsive pesticide delivery systems have become an essential way to improve the effective utilization of pesticides. In this paper, by using hollow mesoporous silica (HMS) as a nanocarrier and TA-Cu metal-phenolic networks as a capping agent, a pH-responsive controlled release nano-formulation loaded with prochloraz (Pro@HMS-TA-Cu) was constructed. The structure and properties of Pro@HMS-TA-Cu were adequately characterised and analysed. The results showed that the loading content of Pro@HMS-TA-Cu nanoparticles was about 17.7% and the Pro@HMS-TA-Cu nanoparticles exhibited significant pH-responsive properties. After a coating of the TA-Cu metal-phenolic network, the contact angle and adhesion work of Pro@HMS-TA-Cu nanoparticles on the surface of oilseed rape leaves after 360 s were 59.6° and 107.2 mJ·m-2, respectively, indicating that the prepared nanoparticles possessed excellent adhesion. In addition, the Pro@HMS-TA-Cu nanoparticles demonstrated better antifungal activity against Sclerotinia sclerotiorum and lower toxicity to zebrafish compared to prochloraz technical. Hence, the pH-responsive nanoparticles prepared with a TA-Cu metal-phenolic network as a capping agent are highly efficient and environmentally friendly, providing a new approach for the development of new pesticide delivery systems.
Collapse
|
40
|
Liu B, Chen C, Teng G, Tian G, Zhang G, Gao Y, Zhang L, Wu Z, Zhang J. Chitosan-based organic/inorganic composite engineered for UV light-controlled smart pH-responsive pesticide through in situ photo-induced generation of acid. PEST MANAGEMENT SCIENCE 2022; 78:2299-2308. [PMID: 35233948 DOI: 10.1002/ps.6854] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Confined by the volatile property, pesticides are overused and lost significantly during and after spraying, weakening the ecological microbalance among different species of lives. Acid-responsive pesticide is a type of smartly engineered pesticides that contribute to the improvement of utilization efficiency of pesticidal active ingredients in acid-controlled manner, whilst the implementation of acidic solutions may disturb the balance of microenvironment surrounding targeted plants or cause secondary pollution, underscoring the input of acid in a more precise strategy. RESULTS Chitosan was chemically modified with a photoacid generator (2-nitrobenzaldehyde) serving as a light-maneuvered acid self-supplier, based on which a smart pesticide was formulated by the integration of attapulgite and organophosphate insecticide chlorpyrifos. Under the irradiation of UV light (365 nm), the modified chitosan would undergo a photolytic reaction to generate an acid and pristine chitosan, which seized the labile protons and facilitated the release of chlorpyrifos based on its inherent pH-responsive flexibility. According to the pesticide release performance, the release rate of chlorpyrifos under UV light (27.2 mW/cm2 ) reached 78%, significantly higher than those under sunlight (22%, 4.2 mW/cm2 ) and in the dark (20%) within the same time, consistent with the pH reduction to 5.3 under UV light and no obvious pH change for the two other situations, exhibiting an attractive UV light-controlled, acid-propelled release behavior. CONCLUSION Compared to direct acid spray approach, the proposed in situ photo-induced generation of acid locally on the spots of applied pesticide circumvents the problem of acid contamination to nontargets, demonstrating higher efficiency and biocompatibility for the controlled delivery of acid-responsive pesticides and pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- University of Science and Technology of China, Hefei, People's Republic of China
| | - Chaowen Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province and Engineering Laboratory of Environmentally Friendly and High Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Guopeng Teng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- University of Science and Technology of China, Hefei, People's Republic of China
| | - Geng Tian
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, People's Republic of China
| | - Guilong Zhang
- School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, People's Republic of China
| | - Yujie Gao
- Hefei Institute of Technology Innovation Engineering, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Lihong Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei, People's Republic of China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province and Engineering Laboratory of Environmentally Friendly and High Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province and Engineering Laboratory of Environmentally Friendly and High Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, People's Republic of China
| |
Collapse
|
41
|
pH and Redox Dual-Responsive Mesoporous Silica Nanoparticle as Nanovehicle for Improving Fungicidal Efficiency. MATERIALS 2022; 15:ma15062207. [PMID: 35329659 PMCID: PMC8948809 DOI: 10.3390/ma15062207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 01/08/2023]
Abstract
Prochloraz (Pro) controlled-release nanoparticles (NPs) based on bimodal mesoporous silica (BMMs) with redox and pH dual responses were successfully prepared in this study. BMMs was modified by a silane coupling agent containing a disulfide bond, and β-cyclodextrin (β-CD) was grafted on the surface of the NPs through host–guest interaction. Pro was encapsulated into the pores of nanoparticles by physical adsorption. NPs had a spherical structure, and their average diameter was 546.4 ± 3.0 nm as measured by dynamic light scattering. The loading rate of Pro was 28.3%, and it achieved excellent pH/redox dual-responsive release performance under acidic conditions. Foliage adhesion tests on tomato leaves showed that the NPs had good adhesion properties compared to the commercial formulation. Owing to the protection of the nanocarrier, NPs became more stable under ultraviolet light and high temperature, which improves the efficient utilization of Pro. Biological activity tests showed that the NPs exhibited effective antifungal activity, and the benign biosafety of the nanocarrier was also observed through toxicology tests on cell viability and the growth of Escherichiacoli (E. coli). This work provides a promising approach to improving the efficient utilization of pesticides and reducing environmental pollution.
Collapse
|
42
|
Pyraclostrobin Removal in Pilot-Scale Horizontal Subsurface Flow Constructed Wetlands and in Porous Media Filters. Processes (Basel) 2022. [DOI: 10.3390/pr10020414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pyraclostrobin is a fungicide extensively used for the control of various fungal diseases and is frequently detected in environmental samples. Natural systems, such as constructed wetlands (CWs) and gravity filters, are effective and environmentally friendly treatment systems, which can reduce or eliminate pesticides from the environment. The aim of this study was to investigate the capacity of two pilot-scale CWs (porous media: cobbles and fine gravel, planted with Phragmites australis) and six gravity filters (filling material: bauxite, carbonate gravel and zeolite) to remove pyraclostrobin from polluted water originating from spraying equipment rinsing sites. For this, experiments were conducted to test the performance of the above natural systems in removing this fungicide. The results showed that the mean percent pyraclostrobin removal efficiencies for cobbles and fine gravel CW units were 56.7% and 75.2%, respectively, and the mean percent removals for HRTs of 6 and 8 days were 68.7% and 62.8%, respectively. The mean removal efficiencies for the bauxite, carbonate gravel and zeolite filter units were 32.5%, 36.7% and 61.2%, respectively, and the mean percent removals for HRTs 2, 4 and 8 days were 39.9%, 43.4% and 44.1%, respectively. Regarding the feeding strategy, the mean removal values of pyraclostrobin in gravity filter units were 43.44% and 40.80% for continuous and batch feeding, respectively. Thus, these systems can be used in rural areas for the treatment of spraying equipment rinsing water.
Collapse
|
43
|
Pan H, Huang W, Wu L, Hong Q, Hu Z, Wang M, Zhang F. A pH Dual-Responsive Multifunctional Nanoparticle Based on Mesoporous Silica with Metal-Polymethacrylic Acid Gatekeeper for Improving Plant Protection and Nutrition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:687. [PMID: 35215015 PMCID: PMC8875777 DOI: 10.3390/nano12040687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
Abstract
Integrating pesticides and mineral elements into a multi-functional stimuli-responsive nanocarrier can have a synergistic effect on protecting plants from pesticides and the supply of nutrients. Herein, a pH dual-responsive multifunctional nanosystem regulated by coordination bonding using bimodal mesoporous silica (BMMs) as a carrier and coordination complexes of ferric ion and polymethacrylic acid (PMAA/Fe3+) as the gatekeeper was constructed to deliver prochloraz (Pro) for the smart treatment of wilt disease (Pro@BMMs-PMAA/Fe3+). The loading capacity of Pro@BMMs-PMAA/Fe3+ nanoparticles (Nps) was 24.0% and the "PMMA/Fe3+" complexes deposited on the BMMs surface could effectively protect Pro against photodegradation. The nanoparticles possessed an excellent pH dual-responsive release behavior and better inhibition efficacy against Rhizoctonia solani. Fluorescence tracking experiments showed that Nps could be taken up and transported in fungi and plants, implying that non-systemic pesticides could be successfully delivered into target organisms. Furthermore, BMMS-PMAA/Fe3+ nanocarriers could effectively promote the growth of crop seedlings and had no obvious toxicological influence on the cell viability and the growth of bacteria. This study provides a novel strategy for enhancing plant protection against diseases and reducing the risk to the environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (H.P.); (W.H.); (L.W.); (Q.H.); (Z.H.); (M.W.)
| |
Collapse
|
44
|
Kaziem AE, Yang L, Lin Y, Song Z, Xu H, Zhang Z. Efficiency of mesoporous silica/carboxymethyl β-glucan as a fungicide nano-delivery system for improving chlorothalonil bioactivity and reduce biotoxicity. CHEMOSPHERE 2022; 287:131902. [PMID: 34438209 DOI: 10.1016/j.chemosphere.2021.131902] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Understanding the lethal effects of pesticides nano formulations on the targeted organisms (pathogens) and the non-targeted organisms (fish, earthworms, etc) is essential in assessing the probable impact of new technologies on agriculture and environment. Here we evaluated the bioactivity and the biotoxicity of new type of fungicide smart-delivery formulation based on conjugating carboxymethylated-β-glucans on the mesoporous silica nanoparticles (MSNs) surface after loading chlorothalonil (CHT) fungicide in the MSNs pores. The obtained formulation has been characterized with FE-SEM, and HR-TEM. The CHT loading efficiency has been measured with TGA. The bioactivity of the obtained formulation (CHT@MSNs-β-glucans) has been tested against four pathogens, fusarium head blight (Fusarium graminearum), sheath rot (Sarocladium oryzae), rice sheath blight (Rhizoctonia solani), and soyabean anthracnose (Colletotrichum truncatum) compared with CHT WP 75% commercial formulation (CHT-WP) and technical CHT. The environmental biotoxicity of CHT@MSNs-β-glucans compared with CHT-WP has been tested toward earthworm (Eisenia fetida) and zebra fish (Danio rerio). The results showed that CHT@MSNs-β-glucans has an excellent bioactivity against the subjected pathogens with better inhabiting effects than CHT-WP. CHT@MSNs-β-glucans toxicity to Eisenia fetida was found 2.25 times lower than CHT-WP toxicity. The LC50 of CHT@MSNs-β-glucans to zebra fish after the first 24h was 2.93 times higher than CHT-WP. After 96h of treatment, the LC50 of CHT@MSNs-β-glucans was 2.66 times higher than CHT-WP. This work highlighted the necessity to increase the mandatory bioassays of nano formulations with the major non-target organisms in the environmental risk assessment of new pesticide formulations.
Collapse
Affiliation(s)
- Amir E Kaziem
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Department of Environmental Agricultural Sciences, Institute of Environmental Studies and Research, Ain Shams University, Cairo, 11566, Egypt; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Liupeng Yang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Yigang Lin
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zixia Song
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Hanhong Xu
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China; Guangdong Biological Pesticide Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
45
|
Lima PHCD, Antunes DR, Forini MMDL, Pontes MDS, Mattos BD, Grillo R. Recent Advances on Lignocellulosic-Based Nanopesticides for Agricultural Applications. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.809329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Controlled release systems of agrochemicals have been developed in recent years. However, the design of intelligent nanocarriers that can be manufactured with renewable and low-cost materials is still a challenge for agricultural applications. Lignocellulosic building blocks (cellulose, lignin, and hemicellulose) are ideal candidates to manufacture ecofriendly nanocarriers given their low-cost, abundancy and sustainability. Complexity and heterogeneity of biopolymers have posed challenges in the development of nanocarriers; however, the current engineering toolbox for biopolymer modification has increased remarkably, which enables better control over their properties and tuned interactions with cargoes and plant tissues. In this mini-review, we explore recent advances on lignocellulosic-based nanocarriers for the controlled release of agrochemicals. We also offer a critical discussion regarding the future challenges of potential bio-based nanocarrier for sustainable agricultural development.
Collapse
|
46
|
Zhou Z, Gao Y, Chen X, Li Y, Tian Y, Wang H, Li X, Yu X, Cao Y. One-Pot Facile Synthesis of Double-Shelled Mesoporous Silica Microcapsules with an Improved Soft-Template Method for Sustainable Pest Management. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39066-39075. [PMID: 34387079 DOI: 10.1021/acsami.1c10135] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A controlled release formulation based on silica microcapsules is an ideal selection to improve both the effective utilization and duration of pesticides to decrease ecological damage. Herein, a simple and green method for preparing double-shelled microcapsules was developed using a newly prepared quaternary ammonium ionic liquid (IL) as the functional additive to entrap avermectin (Ave) in mesoporous silica nanospheres (MSNs) and tannic acid-Cu (TA-Cu) complex as the sealing agent to form the core-shell structure (Ave-IL@MSN@TA-Cu). The obtained microcapsules with an average size of 538 nm had pH-responsive release property and good stability in soil. The half-life of microcapsules (34.66 days) was 3 times that of Ave emulsifiable concentrate (EC) (11.55 days) in a test soil, which illustrated that microcapsules could protect Ave from rapid degradation by microorganisms by releasing TA, copper, and quaternary ammonium in the soil. Ave-IL@MSN@TA-Cu microcapsules had better nematicidal activity and antibacterial activity than Ave EC due to the synergistic effect of Ave, IL, and copper incorporated in the microcapsules. Pot experiments showed that the control efficacy of microcapsules was 87.10% against Meloidogyne incognita, which is better than that of Ave EC (41.94%) at the concentration of 1.0 mg/plant by the root-irrigation method after 60 days of treatment owing to the extended duration of Ave in microcapsules. The simple and green method for the preparation of double-shelled microcapsules based on natural quaternary ammonium IL would have tremendous potential for the extensive development of controlled release pesticide formulations.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yunhao Gao
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xi Chen
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yan Li
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yuyang Tian
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Huachen Wang
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xuan Li
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xueyang Yu
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yongsong Cao
- College of Plant Protection, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|