1
|
Fan F, Liu F, Yu Q, Yi R, Ren H, Geng J. FT-GNN Tool for Bridging HRMS Features and Bioactivity: Uncovering Unidentified Estrogen Receptor Agonists in Sewage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7736-7746. [PMID: 40201978 DOI: 10.1021/acs.est.5c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Identifying primary estrogen receptor (ER) agonists in municipal sewage is essential for ensuring the health of aquatic environments. Given the complex and variable chemical composition of sewage, the predominant ER agonists remain unclear. High-resolution mass spectrometry (HRMS)-based models have been developed to predict compound bioactivity in complex matrices, but further optimization is needed to effectively bridge HRMS features with ER agonists. To address this challenge, an FT-GNN (fragmentation tree-based graph neural network) model was proposed. Given limited data and class imbalance, data augmentation was performed using model predictions within the applicability domain (AD) and oversampling technique (OTE). Model development results demonstrated that integrating the FT-GNN with data augmentation improved the balanced accuracy (bACC) value by 6%-31%. The developed model, with a high bACC to identify more true ER agonists, efficiently classified tens of thousands of unidentified HRMS features in sewage, reducing postprocessing workload in nontargeted screening. Analysis of ER agonist transformation during sewage treatment revealed the anaerobic stage as key to both their removal and formation. Estrogenic effect balance analysis suggests that α-E2 and 9,11-didehydroestriol may be two previously overlooked key ER agonists. Collectively, the development and application of the FT-GNN model are crucial advancements toward credible tracking and efficient control of estrogenic risks in water.
Collapse
Affiliation(s)
- Fan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, Institute for the Environment and Health, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Fu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Institute for the Environment and Health, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Qingmiao Yu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| | - Ran Yi
- State Key Laboratory of Pollution Control and Resource Reuse, Institute for the Environment and Health, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Institute for the Environment and Health, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Jinju Geng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
2
|
Yin C, Tan Y, Chen Y, Gao S, Wu M, Zhang Z. Mass load and source apportionment of pharmaceutical and personal care product in the Wuhan section of the Yangtze River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178222. [PMID: 39740623 DOI: 10.1016/j.scitotenv.2024.178222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Given the limited research on pharmaceuticals and personal care products (PPCPs) in the Wuhan section of the Yangtze River (WYR), this work investigated the distribution of 15 PPCPs in this region, assessed their ecological risks and annual fluxes. It was further to analyze the levels of indicator sucralose in the WYR to understand the sources of PPCPs. The results showed the average concentrations were 143.9 ± 76.77 ng/L, 3.98 ± 3.89 ng/g, and 8.14 ± 18.91 ng/g for 15 PPCPs in surface water, sediment, and soil, respectively. Among those PPCPs, bisphenol-A was the dominant compound found across the three environmental media. Significant amounts of ibuprofen and caffeine were detected in surface water, which may be linked to the increased demand for these compounds during the COVID-19 pandemic. Besides, the concentrations of synthetic estrogens (bisphenol-A and 4-nonylphenol) were higher than those of natural estrogens (estrone, 17β-estradiol, and estriol). Due to runoff dilution, climatic factors (rainfall and sunlight), and prevalence of disease, PPCPs in water showed significant seasonal variation, with higher total concentrations in dry season than those in wet and normal seasons. Spatially, higher concentrations of PPCPs were found in the middle reaches of the WYR due to the population density.Our study estimated the annual flux of 15 PPCPs in the WYR to be 71.17 tons. Source analysis revealed that untreated domestic wastewater might be discharged into the WYR during the wet season. The ecological risk of PPCPs in the WYR were generally low, with only E2 and E3 categorized as posing moderate to high risks. These findings provided valuable support for the management and control of PPCPs in the WYR.
Collapse
Affiliation(s)
- Chuang Yin
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shang Gao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Muze Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
3
|
Pang L, Wei H, Wu Y, Yang K, Wang X, Long J, Chen M, Huang X, Zhu Q, Huang H, Yi R, Wu H, Qiu X, Liang J, Huang D. Exposure to alkylphenols during early pregnancy and the risk of gestational diabetes mellitus: Fetal sex-specific effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117270. [PMID: 39500254 DOI: 10.1016/j.ecoenv.2024.117270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024]
Abstract
Alkylphenols (APs) may cause gestational diabetes mellitus (GDM) in pregnant women by impairing glucose metabolism through endocrine disruption. However, the current literature has limited epidemiological evidence on the association between APs exposure and the risk of GDM, especially the lack of evidence on joint exposure. Thus, we evaluated the effect of exposure to APs during early pregnancy on the risk of GDM. The study involved 2035 pregnant women from Guangxi Zhuang Birth Cohort (GZBC) in China. Poisson regression model, restricted cubic spline (RCS), Bayesian kernel machine regression (BKMR), and quantile g-computation (Qgcomp) were conducted to evaluate the effects of serum APs levels on the risk of GDM in pregnant women. For each Ln-unit increase in the serum nonylphenol (NP) of pregnant women, the adjusted relative risk (RR) for GDM risk was 1.12 (95 % CI: 1.00, 1.24). After sex stratification, the effect was more pronounced among pregnant women carrying female fetuses(RR=1.22; 95 % CI: 1.09, 1.38). The serum 4-t-octylphenol (4-T-OP) of the medium-exposure (adjusted RR = 3.25: 95 % CI: 1.30, 8.12) and high-exposure groups (adjusted RR = 2.90: 95 % CI: 1.15, 7.31) were related to a significantly increased risk of GDM in pregnant women carrying female fetuses only when compared to the low-exposure group. A reverse U-shaped nonlinear association was found between 4-n-octylphenol (4-N-OP) and 4-n-nonylphenol (4-N-NP) concentrations and GDM risk, and it was more susceptible in pregnant women carrying female fetuses. The Qgcomp and BKMR models showed that exposure to APs mixtures was correlated with an elevated risk of GDM in pregnant women carrying female fetuses (adjusted OR = 1.90: 95 % CI: 1.07, 3.38). Exposure to APs during early pregnancy may have potential fetal sex-specific effects on the risk of GDM, with pregnant women carrying female fetuses being more susceptible.
Collapse
Affiliation(s)
- Lixiang Pang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huanni Wei
- Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou 545006, China
| | - Yanan Wu
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Kaiqi Yang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaogang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jinghua Long
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Manlin Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaorong Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Qihua Zhu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Rui Yi
- Tiandong Maternity and Child Health Care Hospital, Baise, Guangxi 531500, China
| | - Huiping Wu
- Jingxi People's Hospital, Baise, Guangxi 531500, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
4
|
Liang D, Zeng G, Lei X, Sun D. Advancements and Challenges in Nanoscale Zero-Valent Iron-Activated Persulfate Technology for the Removal of Endocrine-Disrupting Chemicals. TOXICS 2024; 12:814. [PMID: 39590993 PMCID: PMC11598129 DOI: 10.3390/toxics12110814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
Endocrine-disrupting chemicals are a new class of pollutants that can affect hormonal metabolic processes in animals and humans. They can enter the aquatic environment through various pathways and gradually become enriched, thus posing a serious threat to the endocrine and physiological systems of both animals and humans. Nano zero-valent iron has promising applications in endocrine disruptor removal due to its excellent reducing properties and high specific surface area. However, given the dispersed focus and fragmented results of current studies, a comprehensive review is still lacking. In this paper, it was analyzed that the types of endocrine disruptors and their emission pathways reveal the sources of these compounds. Then, the main technologies currently used for endocrine disruptor treatment are introduced, covering physical, chemical, and biological treatment methods, with a special focus on persulfate oxidation among advanced oxidation technologies. Also, the paper summarizes the various activation methods of persulfate oxidation technology and proposes the nZVI-activated persulfate technology as the most promising means of treatment. In addition, this paper reviews the research progress of different modification methods of nZVI in activating persulfate for the removal of EDCs. Finally, the discussion includes recycling studies of nZVI/PS technology and emphasizes the urgency and importance of endocrine disruptor treatment. The review of this paper provides further scientific basis and technical support for nZVI/PS technology in the field of endocrine disruptor management.
Collapse
Affiliation(s)
- Dong Liang
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Guoming Zeng
- Chongqing Academy of Science and Technology, Chongqing 401123, China
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xiaoling Lei
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Zhou T, Li J, Zhang W, Zeng Y, Gao Y, Li H, Yang W, Mai Y, Liu Q, Hu C, Wang C. Pollution characteristics and risk assessment of endocrine-disrupting chemicals in surface water of national (freshwater) aquatic germplasm resource reserves in Guangdong Province. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1898-1911. [PMID: 39329192 DOI: 10.1039/d4em00425f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The distribution, composition, and risk assessment of 8 EDCs in the surface water of 14 national aquatic germplasm resource reserves (freshwater) were investigated during dry and wet seasons. Bisphenol A (BPA), nonylphenol (NP), and octylphenol (OP) were the main contributors of the 8 EDCs. The concentrations of phenolic pollutants in surface water during the dry season were higher than those in the wet season. However, no significant seasonal differences were found among the steroid hormones. According to the evaluation of estrogenic activity (EEQ > 1.0), E2 and EE2 were the main contributors to estrogenic activity. EDC mixtures posed a higher risk to crustaceans and fish (RQ > 1.0) and a moderate to high risk to algae (RQ > 0.1). Fish were the most sensitive aquatic organisms. In the study areas, EE2, E1, BPA, NP, and E2 had a higher risk than the other three compounds and should be controlled as a priority.
Collapse
Affiliation(s)
- Tao Zhou
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Jie Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Yanyi Zeng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Yuan Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Wanling Yang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Qianfu Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Caiqin Hu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| | - Chao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, Guangdong, PR China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
- Fishery Ecological Environment Monitoring Center of Pearl River Basin, Ministry of Agriculture and Rural Affairs, Guangzhou 510380, PR China
| |
Collapse
|
6
|
Liang SZ, Chang YJ, Semaha P, Liu LZ, Gao Y, Wang Z, Zhang WG. A maverick: Environmentally relevant concentrations of nonylphenol attenuate the plasmid-mediated conjugative transfer of antibiotic resistance genes. WATER RESEARCH X 2024; 24:100241. [PMID: 39188327 PMCID: PMC11345678 DOI: 10.1016/j.wroa.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024]
Abstract
Given that many organic pollutants have been reported to facilitate the plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs), it was naturally deduced that nonylphenol (NP) can also have this kind of effect. Whereas, this study demonstrates an entirely different result that environmentally relevant concentrations of NP attenuate plasmid-mediated ARGs conjugative transfer (maximum inhibition rate 64 %), further study show that NP exposure had no significant effect on bacterial growth, cell vitality, oxidative stress response, and expression of conjugation-relevant genes, which were reported to closely relate to the conjugative transfer in numerous studies. Conclusively, it was found that the dispersant function of NP impeded the occurrence of cell mating, thus was responsible for the decline of conjugative transfer. This study shows a new perspective on understanding the effect of organic pollutants like NP on the ARGs horizontal dissemination in environment.
Collapse
Affiliation(s)
- Si-Zhou Liang
- China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ya-Jun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Philip Semaha
- Department of Agriculture, Ministry of Local Government and Rural Development, AJ 2, Ajumako, Central Region, Ghana
| | - Li-Zhu Liu
- China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yan Gao
- China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhi Wang
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wei-Guo Zhang
- China Ministry of Agriculture Key Laboratory at Yangtze River Plain for Agricultural Environment, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Huang Z, Shen J, Feng J, Yang Y, Na J, Wang X. Responses to phytoplankton community succession and expression of key functional genes in plateau lakes under 17β-estradiol interference. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134561. [PMID: 38733784 DOI: 10.1016/j.jhazmat.2024.134561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Steroid estrogens (SEs) have garnered global attention because of their potential hazards to human health and aquatic organisms at low concentrations (ng/L). The ecosystems of plateau freshwater lakes are fragile, the water lag time is long, and pollutants easily accumulate, making them more vulnerable to the impact of SEs. However, the knowledge of the impact of SEs on the growth and decomposition of phytoplankton communities in plateau lakes and the eutrophication process is limited. This study investigated the effects and mechanisms of SEs exposure on dominant algal communities and the expression of typical algal functional genes in Erhai Lake using indoor simulations and molecular biological methods. The results showed that phytoplankton were sensitive to 17β-estradiol (E2β) pollution, with a concentration of 50, and 100 ng/L E2β exposure promoting the growth of cyanophyta and chlorophyta in the short term; this poses an ecological risk of inducing algal blooms. E2β of 1000 ng/L exposure led to cross-effects of estrogenic effects and toxicity, with most phytoplankton being inhibited. However, small filamentous cyanobacteria and diatoms exhibited greater tolerance; Melosira sp. even exhibited "low inhibition, high promotion" behavior. Exposure to E2β reduced the Shannon-Wiener diversity index (H'), Pielou index (J), and the number of dominant algal species (S) in phytoplankton communities, leading to instability in community succession. E2β of 50 ng/L enhanced the expression levels of relevant functional genes, such as ftsH, psaB, atpB, and prx, related to Microcystis aeruginosa. E2β of 50 ng/L and 5 mg/L can promote the transcription of Microcystis toxins (MC) related genes (mcyA), leading to more MC production by algal cells.
Collapse
Affiliation(s)
- Zhongqing Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China
| | - Jian Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China.
| | - Jimeng Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China
| | - Yanfen Yang
- National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China
| | - Jinxia Na
- National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China
| | - Xinze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, China
| |
Collapse
|
8
|
Liao Z, Jian Y, Lu J, Liu Y, Li Q, Deng X, Xu Y, Wang Q, Yang Y, Luo Z. Distribution, migration patterns, and food chain human health risks of endocrine-disrupting chemicals in water, sediments, and fish in the Xiangjiang River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172484. [PMID: 38631636 DOI: 10.1016/j.scitotenv.2024.172484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) in freshwater systems has garnered increasing attention. A comprehensive analysis of the migration patterns, bioaccumulation, and consumer health risk of EDCs along the Xiangjiang River due to fish consumption from the river ecosystem was provided. Twenty natural and synthetic target EDCs were detected and analyzed from the water, sediments, and fish samples collected along the Xiangjiang River. There were significant correlations between the EDC concentrations in fish and the sediments. This revealed that EDCs in sediments play a dominant role in the uptake of EDCs by fish. The bioaccumulation factor and biota-sediment accumulation factor were calculated, with the highest values observed for nonylphenol. Pearson's correlation analysis showed that bisphenol A is the most reliable biological indicator of EDC contamination in fish. Furthermore, based on the threshold of toxicological concerns and the health risk with dietary intake, crucian carp and catfish from the Xiangjiang River pose a certain risk for children and pregnant women compared to grass carp. The Monte Carlo simulation results indicated a certain risk of cumulative ∑EDC exposure for local residents due to fish consumption.
Collapse
Affiliation(s)
- Ze Liao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yu Jian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Lu
- Technology Center of Changsha Customs, Hunan Key Laboratory of Food Safety Science & Technology, Changsha 410004, PR China
| | - Yilin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Qinyao Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Xunzhi Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yin Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Qiuping Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Zhoufei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
9
|
Hui X, Fakhri Y, Heidarinejad Z, Ranaei V, Daraei H, Mehri F, Limam I, Nam Thai V. Steroid hormones in surface water resources in China: systematic review and meta-analysis and probabilistic ecological risk assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2213-2229. [PMID: 37437042 DOI: 10.1080/09603123.2023.2234843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
A Search was conducted in international databases including Scopus, PubMed, Embase, and Web of Science from 10 January 2005 to 15 January 2023. The risk quotient (RQ) of Estrone (E1), 17β-E2 (E2), and Estriol (E3) on the surface water resources of China was calculated by Monte Carlo Simulation (MCS) technique. The rank order of steroid hormones based on pooled (weighted average) concentration in surface water was E3 (2.15 ng/l) > E2 (2.01 ng/l) > E1 (1.385 ng/l). The concentration of E1 in Dianchi lake (236.50.00 ng/l), 17β-E2 in Licun river (78.50 ng/l), and E3 in Dianchi lake (103.1 ng/l) were higher than in other surface water resources in China. RQ related to E1, 17β-E2 and E3 in 68.00%, 88.89% and 3.92% of surface water resources were high ecological risk, respectively. Therefore, carrying out source control plans for steroid hormones in surface water sources should be conducted continuously.
Collapse
Affiliation(s)
- Xiaomei Hui
- State Environmental Protection Key Laboratory of Drinking Water Source Protection, Chinese Research Academy of Environmental Sciences, Beijing, China
- Shanxi Jinhou Ecological Environment Co, L td, Taiyuan, Shanxi, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, China
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zoha Heidarinejad
- Student Research Committee, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Ranaei
- School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Hasti Daraei
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Intissar Limam
- Laboratory of Materials, Treatment and Analysis, National Institute of Research and Physicochemical Analysis, Biotechpole Sidi-Thabet; and High School for Science and Health Techniques of Tunis, University of Tunis El Manar, Tunisia
| | - Van Nam Thai
- HUTECH Institute of Applied Sciences, HUTECH University, 475A, Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Zhou J, He X, Zhang Z, Wu G, Liu P, Wang D, Shi P, Zhang XX. Chemical-toxicological insights and process comparison for estrogenic activity mitigation in municipal wastewater treatment plants. WATER RESEARCH 2024; 253:121304. [PMID: 38364463 DOI: 10.1016/j.watres.2024.121304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Efforts in water ecosystem conservation require an understanding of causative factors and removal efficacies associated with mixture toxicity during wastewater treatment. This study conducts a comprehensive investigation into the interplay between wastewater estrogenic activity and 30 estrogen-like endocrine disrupting chemicals (EEDCs) across 12 municipal wastewater treatment plants (WWTPs) spanning four seasons in China. Results reveal substantial estrogenic activity in all WWTPs and potential endocrine-disrupting risks in over 37.5 % of final effluent samples, with heightened effects during colder seasons. While phthalates are the predominant EEDCs (concentrations ranging from 86.39 %) for both estrogenic activity and major EEDCs (phthalates and estrogens), with the secondary and tertiary treatment segments contributing 88.59 ± 8.12 % and 11.41 ± 8.12 %, respectively. Among various secondary treatment processes, the anaerobic/anoxic/oxic-membrane bioreactor (A/A/O-MBR) excels in removing both estrogenic activity and EEDCs. In tertiary treatment, removal efficiencies increase with the inclusion of components involving physical, chemical, and biological removal principles. Furthermore, correlation and multiple liner regression analysis establish a significant (p < 0.05) positive association between solid retention time (SRT) and removal efficiencies of estrogenic activity and EEDCs within WWTPs. This study provides valuable insights from the perspective of prioritizing key pollutants, the necessity of integrating more efficient secondary and tertiary treatment processes, along with adjustments to operational parameters like SRT, to mitigate estrogenic activity in municipal WWTPs. This contribution aids in managing endocrine-disrupting risks in wastewater as part of ecological conservation efforts.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Zepeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Depeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Sta Ana KM, Galera KC, Espino MP. Contamination of Bisphenol A, Nonylphenol, Octylphenol, and Estrone in Major Rivers of Mega Manila, Philippines. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:259-266. [PMID: 37905559 DOI: 10.1002/etc.5778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Endocrine-disrupting compounds (EDCs) such as natural and synthetic hormones as well as phenolic industrial chemicals are considered contaminants of emerging concern in environmental waters. While EDCs carried through rivers may impact ecosystem health and productivity, these compounds are still not widely studied nor regulated. In the present study, we report the occurrence of EDCs in urban rivers in Mega Manila, namely, the Marikina, Pasig, Angat, and Pampanga Rivers that drain into Manila Bay. Endocrine-disrupting compounds may have reached these rivers through domestic wastewater and industrial effluents. Water samples from the rivers were extracted by solid-phase extraction before instrumental analysis using a liquid chromatograph coupled to a mass spectrometer. The analytical method exhibited good linear response (>99% in the concentration range of 1-50 µg/L) and low instrument detection limits (0.14-1.46 µg/L) for the hormones estrone (E1), estradiol, ethinylestradiol, progesterone, and testosterone, and the industrial chemicals bisphenol A, nonylphenol, and octylphenol. Of the hormones, E1 was detected up to 11 ng/L. Bisphenol A, nonylphenol, and octylphenol were measured up to 54, 1878, and 62 ng/L, respectively. Endocrine-disrupting compounds are not yet monitored in water bodies in the Philippines and there are no local guidelines yet on occurrence, pollution prevention, and mitigation. Environ Toxicol Chem 2024;43:259-266. © 2023 SETAC.
Collapse
Affiliation(s)
- Katrina Marie Sta Ana
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City, Philippines
| | - Kate Coleen Galera
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City, Philippines
| | - Maria Pythias Espino
- Institute of Chemistry, University of the Philippines, Diliman, Quezon City, Philippines
| |
Collapse
|
12
|
Noventa S, Pace E, Esposito D, Libralato G, Manfra L. Handling concentration data below the analytical limit in environmental mixture risk assessment: A case-study on pesticide river monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167670. [PMID: 37852501 DOI: 10.1016/j.scitotenv.2023.167670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Aquatic organisms are exposed to ever-changing complex mixtures of chemicals throughout their lifetime. Component-Based Mixture Risk Assessment (CBMRA) is a well-established methodology for water contaminant-mixture management, the use of which is growing due to improved access to reference ecotoxicity data and extensive monitoring datasets. It enables the translation of measured exposure concentrations of chemicals into biological effect values, and thus to quantitatively estimate the risk of the whole water sample (i.e., as a mixture). However, many factors can bias the final risk decision by impacting the risk metric components; thus, a careful design of the CBMRA is needed, taking into primary consideration the specific features of the dataset and mixture risk assessment assignments. This study systematically addressed the effects of the most common approaches used for handling the concentrations of chemicals below the limit of detection/quantification (LOD/LOQ) in CBMRA. The main results included: i) an informed CBMRA procedure that enables the tracking of the risk decisions triggered by substances below LOD/LOQ, ii) a conceptual map and guidance criteria to support the selection of the most suitable approach for specific scenarios and related interpretation; iii) a guided implementation of the informed CBMRA on dataset of pesticide concentrations in Italian rivers in 2020 (702,097 records).
Collapse
Affiliation(s)
- Seta Noventa
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 30015 Chioggia, Italy.
| | - Emanuela Pace
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Vitaliano Brancati 48, 00144 Roma, Italy
| | - Dania Esposito
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Vitaliano Brancati 48, 00144 Roma, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Loredana Manfra
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), via Vitaliano Brancati 48, 00144 Roma, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
13
|
Hussain A, Wu SC, Le TH, Huang WY, Lin C, Bui XT, Ngo HH. Enhanced biodegradation of endocrine disruptor bisphenol A by food waste composting without bioaugmentation: Analysis of bacterial communities and their relative abundances. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132345. [PMID: 37643575 DOI: 10.1016/j.jhazmat.2023.132345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
Composting with food waste was assessed for its efficacy in decontaminating Bisphenol A (BPA). In a BPA-treated compost pile, the initial concentration of BPA 847 mg kg-1 fell to 6.3 mg kg-1 (99% reduction) over a 45-day composting period. The biodegradation rate was at its highest when bacterial activity peaked in the mesophilic and thermophilic phases. The average rate of total biodegradation was 18.68 mg kg-1 day-1. Standard methods were used to assess physicochemical parameters of the compost matrix and gas chromatography combined with mass spectrometry (GC/MS) was used to identify BPA intermediates. Next-generation sequencing (NGS) was used to detect BPA degraders and the diverse bacterial communities involved in BPA decomposition. These communities were found consist of 12 phyla and 21 genera during the composting process and were most diversified during the maturation phase. Three dominant phyla, Firmicutes, Pseudomonadota, and Bacteroidetes, along with Lactobacillus, Proteus, Bacillus, and Pseudomonas were found to be the most responsible for BPA degradation. Different bacterial communities were found to be involved in the food waste compost biodegradation of BPA at different stages of the composting process. In conclusion, food waste composting can effectively remove BPA, resulting in a safe product. These findings might be used to expand bioremediation technologies to apply to a wide range of pollutants.
Collapse
Affiliation(s)
- Adnan Hussain
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213 Taiwan
| | - Suei Chang Wu
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Thi-Hieu Le
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213 Taiwan
| | - Wen-Yen Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| |
Collapse
|
14
|
Hong Y, Chen M, Zhu Z, Liao W, Feng C, Yan Z, Qiao Y, Mei Y, Xu D. The Distribution Characteristics and Ecological Risks of Alkylphenols and the Relationships between Alkylphenols and Different Types of Land Use. TOXICS 2023; 11:579. [PMID: 37505545 PMCID: PMC10383479 DOI: 10.3390/toxics11070579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
In this study, the spatial distribution characteristics of nine alkylphenols (APs) in the Yongding River and Beiyun River were analyzed. The differences in the concentrations and spatial distribution patterns of nine APs were systematically evaluated using principal component analysis (PCA). The relationships between the concentration distribution patterns and the risks associated with nine APs were investigated under various categories of land use conditions in the region. The results demonstrated that the APs were widely present in both rivers, and the pollution risks associated with the APs were more severe in the Yongding River than in the Beiyun River. The results show that the contamination risks associated with 4-NP were the most serious in the two rivers, with detection percentages of 100% and 96.3%, respectively. In the Yongding River, the APs showed a tendency of low concentration levels in the upper reaches and high levels in the middle and lower regions. Meanwhile, the overall concentration levels of the APs in the Beiyun River were relatively high. However, despite the differences between the upper and middle regions of the Yongding River, the distribution pattern of the APs in the Beiyun River was basically stable. The concentration levels and risk quotient of the APs were negatively correlated with the vegetation cover land use type and positively correlated with the cropland and unused land use types within 500 m, 1 km, and 2 km. The purpose of this study was to provide theoretical data support and a basis for AP pollution risk evaluations in the Yongding River and Beiyun River.
Collapse
Affiliation(s)
- Yajun Hong
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miao Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ziwei Zhu
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Wei Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenfei Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yu Qiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yaru Mei
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Dayong Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
15
|
Li X, He X, Lin X, Li W, Gao J, Zhang N, Guo Y, Wang Z, Zhao N, Zhang B, Dong Z. Effects of bisphenols on lipid metabolism and neuro-cardiovascular toxicity in marine medaka larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106551. [PMID: 37156703 DOI: 10.1016/j.aquatox.2023.106551] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Bisphenols are environmental endocrine disruptors that have detrimental effects on aquatic organisms. Using marine medaka larvae, this study explored the effects of bisphenol compounds [bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF)] on the early growth and development of aquatic organisms. Marine medaka larvae were exposed to bisphenol compounds at concentrations of 0.05, 0.5, and 5 μM for 72 h, and changes in heartbeat rate, behavior, hormone levels, and gene expression were determined. Bisphenols were shown to have a toxic effect on the cardiovascular system of larvae and can cause neurotoxicity and endocrine disruption, such as changes to thyroid-related hormones. Functional enrichment showed that bisphenols mainly affect lipid metabolism and cardiac muscle contraction of larvae, which implied that the main toxic effects of bisphenols on marine medaka larvae targeted the liver and heart. This study provides a theoretical foundation for evaluating the toxicological effects of bisphenols on the early development of aquatic organisms.
Collapse
Affiliation(s)
- Xueyou Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin 300200, China
| | - Xiaona Lin
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Weihao Li
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Ning Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Na Zhao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Bo Zhang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China; Tianjin Fisheries Research Institute, Tianjin 300200, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
16
|
Shi G, Hu J, Cheng Y, Shi W, Chen Y. Pseudomonas aeruginosa improved the phytoremediation efficiency of ryegrass on nonylphenol-cadmium co-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28247-28258. [PMID: 36401010 DOI: 10.1007/s11356-022-24224-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The effect of Pseudomonas aeruginosa (P. aeruginosa) on the phytoremediation efficiency of ryegrass on soil contaminated with nonylphenol (NP) and cadmium (Cd) was investigated by pot experiments. Pseudomonas aeruginosa application stimulated the adsorption of Cd by ryegrass and facilitated the biodegradation of NP in the soil. Exogenous P. aeruginosa inoculation increased the activities of urease, dehydrogenase, and polyphenol oxidase in the soil of the T4 treatment by 38.5%, 50.0%, and 56.5% compared to that of the T2 treatment, respectively. There was a significant positive correlation between the activities of dehydrogenase and polyphenol oxidase and the NP removal rate (P < 0.001). The relative abundances of beneficial microorganisms (such as Sphingomonas, Lysobacter, Streptomyces, Chloroflexia, Deltaproteobacteria, and Alphaproteobacteria) were increased as a result of P. aeruginosa inoculation. These microorganisms play important roles in nutrient cycling, Cd adsorption, and NP degradation. Additionally, P. aeruginosa was not the dominate bacterial species at the end of the experiment. According to this study, P. aeruginosa application improved the phytoremediation efficiency of ryegrass on soil contaminated with NP and Cd, with a minimal risk of alien microbial invasion.
Collapse
Affiliation(s)
- Guangyu Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China.
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fujian, 350000, China.
| | - Jiayuan Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Yuanyuan Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Weilin Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Torres-García JL, Ahuactzin-Pérez M, Fernández FJ, Cortés-Espinosa DV. Bisphenol A in the environment and recent advances in biodegradation by fungi. CHEMOSPHERE 2022; 303:134940. [PMID: 35588877 DOI: 10.1016/j.chemosphere.2022.134940] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is a compound used in the manufacture of a wide variety of everyday materials that, when released into the environment, causes multiple detrimental effects on humans and other organisms. The reason for this review is to provide an overview of the presence, distribution, and concentration of BPA in water, soil, sediment, and air, as well as the process of release and migration, biomagnification, and exposure mechanisms that cause various toxic effects in humans. Therefore, it is important to seek efficient and economic strategies that allow its removal from the environment and prevent it from reaching humans through food chains. Likewise, the main removal techniques are analyzed, focusing on biological treatments, particularly the most recent advances in the degradation of BPA in different environmental matrices through the use of ligninolytic fungi, non-ligninolytic fungi and yeasts, as well as the possible routes of metabolic processes that allow their biotransformation or biodegradation due to their efficient extracellular enzyme systems. This review supports the importance of the application of new biotechnological tools for the degradation of BPA.
Collapse
Affiliation(s)
- J L Torres-García
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - M Ahuactzin-Pérez
- Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Autopista Tlaxcala-San Martín Km 10.5, 90120, San Felipe Ixtacuixtla, Tlaxcala, Mexico
| | - F J Fernández
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, 09340, Ciudad de México, México
| | - Diana V Cortés-Espinosa
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada. Carretera Estatal San Inés Tecuexcomac-Tepetitla Km 1.5, 90700, Tepetitla de Lardizabal, Tlaxcala, Mexico.
| |
Collapse
|
18
|
Hong Y, Feng C, Jin X, Xie H, Liu N, Bai Y, Wu F, Raimondo S. A QSAR-ICE-SSD model prediction of the PNECs for alkylphenol substances and application in ecological risk assessment for rivers of a megacity. ENVIRONMENT INTERNATIONAL 2022; 167:107367. [PMID: 35944286 PMCID: PMC10015408 DOI: 10.1016/j.envint.2022.107367] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/04/2022] [Accepted: 06/18/2022] [Indexed: 05/26/2023]
Abstract
Alkylphenols (APs) are ubiquitous and generally present in higher residue levels in the environment. The present work focuses on the development of a set of in silico models to predict the aquatic toxicity of APs with incomplete/unknown toxicity data in aquatic environments. To achieve this, a QSAR-ICE-SSD model was constructed for aquatic organisms by combining quantitative structure-activity relationship (QSAR), interspecies correlation estimation (ICE), and species sensitivity distribution (SSD) models in order to obtain the hazardous concentrations (HCs) of selected APs. The research indicated that the keywords "alkylphenol" and "nonylphenol" were most commonly studied. The selected ICE models were robust (R2: 0.70-0.99; p-value < 0.01). All models had a high reliability cross- validation success rates (>75%), and the HC5 predicted with the QSAR-ICE-SSD model was 2-fold than that derived with measured experimental data. The HC5 values demonstrated nearly linear decreasing trend from 2-MP to 4-HTP, while the decreasing trend from 4-HTP to 4-DP became shallower, indicates that the toxicity of APs to aquatic organisms increases with the addition of alkyl carbon chain lengths. The ecological risks assessment (ERA) of APs revealed that aquatic organisms were at risk from exposure to 4-NP at most river stations (the highest risk quotient (RQ) = 1.51), with the highest relative risk associated with 2.9% of 4-NP detected in 82.9% of the sampling sites. The targeted APs posed potential ecological risks in the Yongding and Beiyun River according to the mixture ERA. The potential application of QSAR-ICE-SSD models could satisfy the immediate needs for HC5 derivations without the need for additional in vivo testing.
Collapse
Affiliation(s)
- Yajun Hong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China.
| | - Huiyu Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Na Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Sandy Raimondo
- United States Environmental Protection Agency, Gulf Ecosystem Measurement and Modeling Division, Gulf Breeze, Florida 32561, United States
| |
Collapse
|
19
|
Xing J, Zhang S, Zhang M, Hou J. A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109275. [PMID: 35077873 DOI: 10.1016/j.cbpc.2022.109275] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a synthetic organic compound that is mainly used in the production of polymer materials polycarbonate and epoxy resin. Widespread use and irregular processing methods have led to BPA being detected globally, raising concerns about its environmental and health effects. This review outlines an overview of the presence and removal of BPA in the environment and consumer products. We also summarized the endocrine-disrupting toxicity of BPA, and the relatively less summarized neurotoxicity, cytotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity. Human exposure data show that humans have been exposed to low concentrations of BPA for a long time, future research should focus on the long-term exposure and the migration of BPA from consumer products to humans and the possible health risks associated with human exposure to BPA. Exploring economical and effective methods to reduce and remove BPA from the environment is imperative. The development of safe, functional and reproducible BPA analogs and the study of its degradation products can be the focus of subsequent research.
Collapse
Affiliation(s)
- Jianing Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Siyi Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Miaolian Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
20
|
Loffredo E. Recent Advances on Innovative Materials from Biowaste Recycling for the Removal of Environmental Estrogens from Water and Soil. MATERIALS 2022; 15:ma15051894. [PMID: 35269122 PMCID: PMC8911978 DOI: 10.3390/ma15051894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
New technologies have been developed around the world to tackle current emergencies such as biowaste recycling, renewable energy production and reduction of environmental pollution. The thermochemical and biological conversions of waste biomass for bioenergy production release solid coproducts and byproducts, namely biochar (BC), hydrochar (HC) and digestate (DG), which can have important environmental and agricultural applications. Due to their physicochemical properties, these carbon-rich materials can behave as biosorbents of contaminants and be used for both wastewater treatment and soil remediation, representing a valid alternative to more expensive products and sophisticated strategies. The alkylphenols bisphenol A, octylphenol and nonylphenol possess estrogenic activity comparable to that of the human steroid hormones estrone, 17β-estradiol (and synthetic analog 17α-ethinyl estradiol) and estriol. Their ubiquitous presence in ecosystems poses a serious threat to wildlife and humans. Conventional wastewater treatment plants often fail to remove environmental estrogens (EEs). This review aims to focus attention on the urgent need to limit the presence of EEs in the environment through a modern and sustainable approach based on the use of recycled biowaste. Materials such as BC, HC and DG, the last being examined here for the first time as a biosorbent, appear appropriate for the removal of EEs both for their negligible cost and continuously improving performance and because their production contributes to solving other emergencies, such as virtuous management of organic waste, carbon sequestration, bioenergy production and implementation of the circular economy. Characterization of biosorbents, qualitative and quantitative aspects of the adsorption/desorption process and data modeling are examined.
Collapse
Affiliation(s)
- Elisabetta Loffredo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
21
|
Ma Y, Shen W, Tang T, Li Z, Dai R. Environmental estrogens in surface water and their interaction with microalgae: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150637. [PMID: 34592293 DOI: 10.1016/j.scitotenv.2021.150637] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Environmental estrogens (EEs) have received extensive attention because they interfere with biological endocrine and reproduction systems by mimicking, antagonizing, or otherwise affecting the actions of endogenous hormones. Additionally, harmful algal blooms have become a global problem in surface water. Microalgae, as an essential primary producer, is especially important for aquatic life and the entire ecosystem. The presence of EEs in surface water may be a potential promoting factor for algal blooms, and microalgae may have effects on the degradation of EEs. This review focuses on the distribution and pollution characteristics of EEs in global surface waters, effects of single and mixed EEs on microalgae regarding growth and toxin production, mechanisms of EEs on microalgae at the cellular and molecular level. The impacts of microalgae on EEs were also discussed. This review provides a risk assessment of EEs and identifies essential clues that will aid in formulating and revising the relevant standards of surface water regarding EEs, which is significant for ecosystems and human health.
Collapse
Affiliation(s)
- Yingxiao Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Wendi Shen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Tingting Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Zihao Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| | - Ruihua Dai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China.
| |
Collapse
|