1
|
Yang X, Cheng B, Wang Z, Wang S, Liu L, Gao Y, Zhang H. Characteristics and pollution risks of potentially toxic elements and nematode community structure on farm soil near coal mines. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6835-6852. [PMID: 36482137 DOI: 10.1007/s10653-022-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
As one of the most important coal-producing provinces of China, Shanxi Province has been concerned about soil potentially toxic elements (PTEs) contamination in recent years. The study aimed to determine the status and sources of PTEs contamination and evaluate the quality of the soil ecology. This study investigated the degree of 13 PTEs contamination. The sources and contributions of PTEs were traced by the absolute principal component score followed by a multiple linear regression model (APCS-MLR). And the status of the soil ecosystem was verified by evaluating the soil nematode community around the coal mining areas in Jinzhong. The results showed that the mean PTEs concentration of 5 trace elements were higher than the background values of Shanxi, and safe to considerable was indicated by the pollution and ecological risk values. Soil Hg was the most contaminated element, followed by Cd. The distribution of PTEs was determined by coal mining activities (44.72%) followed by agricultural practice (32.37%) and coal transportation (21.37%). The nematode genera Acrobeloides (4.01%), Aphelenchus (20.30%), Meloidogyne (11.95%) and Aporcelaimus (2.74%) could be regarded as bioindicators of soil PTEs contamination by their tolerance. Concentrations of soil Cr, Mn, Ti and Cd showed remarkable influences on the total nematode abundance, maturity index, enrichment index, structural index, Shannon-Wiener diversity index and Pielou index of soil nematode. It is an appropriate method to evaluate the status of soil PTEs contamination combining the response of a single nematode genus and the nematode community evaluation index.
Collapse
Affiliation(s)
- Xiujuan Yang
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Xinjian South Road #56, Taiyuan, 030001, China
- Academic Affairs Office, Shanxi Medical University, Taiyuan, 030001, China
| | - Bijun Cheng
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Xinjian South Road #56, Taiyuan, 030001, China
| | - Ziyue Wang
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Xinjian South Road #56, Taiyuan, 030001, China
| | - Shuhan Wang
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Xinjian South Road #56, Taiyuan, 030001, China
| | - Liangpo Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, Xinjian South Road #56, Taiyuan, 030001, China
| | - Yi Gao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Hongmei Zhang
- Department of Environmental Health, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Bellakhal M, Ishak S, Al-Hoshani N, Qurtam AA, Al-Zharani M, Pacioglu O, Boufahja F. The multifaceted effects of fluoranthene and polystyrene on the taxonomic composition and associated functional traits of marine meiofauna, by using single and mixture applications. MARINE POLLUTION BULLETIN 2023; 194:115390. [PMID: 37573818 DOI: 10.1016/j.marpolbul.2023.115390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/15/2023]
Abstract
The current experiment measured the multifaceted effects of polystyrene and fluoranthene, acting alone or in a mixture on marine meiofauna, but with a special focus on nematodes' morphological and functional traits. The results showed changes in the abundances for all tested concentrations of both compounds. The nematode communities exposed to the highest concentrations of fluoranthene (30 ng.g-1 Dry Weight (DW)) and polystyrene (100 mg.kg-1 DW) alone or in a mixture, were significantly less diverse compared to control and were associated with significant changes in the percentage of taxonomic composition and feeding-guilds. The most sensitive taxa to fluoranthene comprised epistratum feeders, whereas the nematodes mostly affected by polystyrene were omnivores-carnivores. A new functional tool, the Index of Sensitivity (IOS), proved to be reliable in depicting the changes that occurred in the taxonomic and functional features of the nematofauna.
Collapse
Affiliation(s)
- Meher Bellakhal
- Higher Institute of Fishery and Aquaculture of Bizerte, University of Carthage, Tunisia
| | - Sahar Ishak
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Nawal Al-Hoshani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ashraf A Qurtam
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| |
Collapse
|
3
|
Sumboh JG, Agyenkwa-Mawuli K, Schwinger E, Donkor IO, Akorli JEB, Dwomoh D, Ashong Y, Osabutey D, Ababio FO, Koram KA, Humphries D, Cappello M, Kwofie SK, Wilson MD. Investigating Environmental Determinants of Soil-Transmitted Helminths Transmission using GPS Tracking and Metagenomics Technologies. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.17.23292808. [PMID: 37503260 PMCID: PMC10371187 DOI: 10.1101/2023.07.17.23292808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background The Global Health community aims to eliminate soil-transmitted helminth (STH) infections by 2030. Current preventive methods such as Mass Drug Administration, WASH practices, and health education needs to be complimented to halt transmission. We tracked the movement of hookworm-infected and non-infected persons and investigated soil factors in the places they frequented within an endemic community to further understand the role of human movement and sources of infections. Methods 59 positive and negative participants wore GPS tracking devices for 10 consecutive days and their movement data captured in real time. The data was overlaid on the community map to determine where each group differentially spent most of their time. Soil samples were collected from these identified sites and other communal places. Physical and chemical properties were determined for each sample using standard methods and helminth eggs cultured into larvae using the Baermann technique. Bivariate and multivariate analyses were used to determine associations between larvae counts and soil factors. Helminth species were identified with metagenomic sequencing and their distributions mapped to sampling sites in the community. Results The study found that there was no significant difference in the average larvae counts in soil between sites assessed by infected and non-infected participants (P=0.59). However, soil factors, such as pH, carbon and sandy-loamy texture were associated with high larvae counts (P<0.001) while nitrogen and clay content were associated with low counts(P<0.001). The dominant helminth species identified were Panagrolaimus superbus (an anhydrobiotic helminth), Parastrongyloides trichosuri (a parasite of small mammals), Trichuris trichuria (whipworm), and Ancylostoma caninum (dog hookworm). Notably, no Necator americanus was identified in any soil sample. Conclusion This study provides important insights into the association between soil factors and soil-transmitted helminths. These findings contribute to our understanding of STH epidemiology and support evidence-based decision-making for elimination strategies.
Collapse
Affiliation(s)
- Jeffrey Gabriel Sumboh
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana. Legon, Accra, Ghana
| | - Kwasi Agyenkwa-Mawuli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana. Legon, Accra, Ghana
| | - Eyram Schwinger
- Department of Mathematics, University of Ghana. Legon, Accra, Ghana
| | - Irene Owusu Donkor
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana. Legon, Accra, Ghana
| | - Jewelna E. B. Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana. Legon, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, University of Ghana. Legon, Accra, Ghana
| | - Yvonne Ashong
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana. Legon, Accra, Ghana
| | - Dickson Osabutey
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana. Legon, Accra, Ghana
| | - Felix Owusu Ababio
- Soil Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Kwadwo Ansah Koram
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana. Legon, Accra, Ghana
| | - Debbie Humphries
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States of America
| | - Michael Cappello
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States of America
| | - Samuel K. Kwofie
- School of Biomedical Engineering, Faculty of Engineering, University of Ghana. Legon, Accra, Ghana
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana. Legon, Accra, Ghana
| |
Collapse
|
4
|
NG CWW, YAN WH, TSIM KWK, SO PS, XIA YT, TO CT. Effects of Bacillus subtilis and Pseudomonas fluorescens as the soil amendment. Heliyon 2022; 8:e11674. [PMID: 36439778 PMCID: PMC9691937 DOI: 10.1016/j.heliyon.2022.e11674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The application of soil beneficial bacteria (SBB) in agriculture is steadily increasing as it provides a promising way to replace chemical fertilisers and other supplements. Although the role of SBB as a biofertiliser is well understood, little is known about the response of soil physiochemical properties via the change in soil enzymatic activities with SBB growth. In this study, sterilised bulk soil was inoculated with Bacillus subtilis (BS) and Pseudomonas fluorescens (PF), which exhibit excellent characteristics in vitro for potentially improving soil quality. It is found that the contents of bioavailable nitrogen and ammonium in soil inoculated with SBB increased significantly, up to 34% and 57% relative to a control. This resulted from the enhancement of soil urease activity with BS and PF treatments by approximately 90% and 70%, respectively. The increased soil urease activity can be explained by the increased microorganism activity evident from the larger population size of BS (0.78–0.97 CFU mL−1/CFU mL−1) than PF (0.55–0.79 CFU mL−1/CFU mL−1) (p < 0.05). Results of principal component analysis also reinforce the interaction apparent in the significant relationship between soil urease activity and microbial biomass carbon (p < 0.05). Therefore, it can be concluded that the enhancement of soil enzymatic activities induced bulk soil fertility upregulation because of bacterial growth. These results demonstrate the application of SBB to be a promising strategy for bulk soil amendment, particularly nutrient restoration.
Collapse
Affiliation(s)
- Charles Wang Wai NG
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Wen Hui YAN
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
- Corresponding author.
| | - Karl Wah Keung TSIM
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Pui San SO
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yi Teng XIA
- Division of Life Science and Centre for Chinese Medicine, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Chun Ting TO
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
5
|
Höss S, Reiff N, Asekunowo J, Helder J. Nematode Community of a Natural Grassland Responds Sensitively to the Broad-Spectrum Fungicide Mancozeb in Soil Microcosms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2420-2430. [PMID: 35815477 DOI: 10.1002/etc.5427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Fungicides make up the largest part of total pesticide use, with the dithiocarbamate mancozeb being widely applied as a nonsystemic contact pesticide to protect a wide range of field crops against fungal diseases. Although nematodes are key drivers of soil functioning, data on effects of fungicides, and especially mancozeb, on these nontarget organisms are scarce. Therefore, the effects of mancozeb on a soil nematode community from a natural grassland were assessed in small-scale soil microcosms. Nematodes were exposed to mancozeb-spiked soil in six nominal concentrations (7-133 mg/kg dry soil) and analyzed after 14, 56, and 84 days in terms of densities, genus composition, and functional traits. Because this fungicide is known to quickly degrade in soils (50% degradation time <1 day), mancozeb concentrations were analyzed for all sampling occasions. Chemical analysis revealed considerably lower measured concentrations compared with the aimed nominal soil concentrations at the beginning of the exposure (1-18 mg/kg dry soil), suggesting fast degradation during the spiking process. Nevertheless, the native nematode community responded sensitively to the fungicide mancozeb, revealing lower no-observed-effect concentration and 10% effect concentration (EC10) values than reported for other soil invertebrates such as springtails and earthworms. Using the EC10 for the most sensitive nematode community endpoint (percentage of predators and omnivores: 1.2 mg/kg dry soil), the risk assessment exhibited a toxicity exposure ratio of 0.66 and, thus, a high risk of mancozeb for soil nematodes. Keeping in mind their abundance and their central roles in soil food-web functioning, the demonstrated sensitivity to a widely applied fungicide underscores the relevance of the inclusion of nematodes into routine risk-assessment programs for pesticides. Environ Toxicol Chem 2022;41:2420-2430. © 2022 SETAC.
Collapse
Affiliation(s)
| | | | | | - Johannes Helder
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Rauchschwalbe MT, Höss S, Haegerbaeumer A, Traunspurger W. Long-term exposure of a free-living freshwater micro- and meiobenthos community to microplastic mixtures in microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154207. [PMID: 35240192 DOI: 10.1016/j.scitotenv.2022.154207] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 05/22/2023]
Abstract
Microplastics in a wide range of shapes and polymer types (MPs; <5 mm) accumulate in freshwater sediments, where they may pose an environmental threat to sediment-dwelling micro- and meiobenthos. To date, the effects of MPs on those organisms have mostly been studied in single-species experiments exposed to high particle concentrations. By contrast, there have been few investigations of the effects resulting from the long-term exposure of natural communities to environmental relevant MPs. This research gap was addressed in the present study. A microcosm experiment was conducted to examine the impact of a mixture of MPs of varying polymer composition, shape, and size (50% polystyrene (PS) beads: 1-μm diameter; 37% polyethylene terephthalate (PET) fragments: 32 × 21 μm in size, and 13% polyamide (PA) fibers 104 × 15 μm in size; % based on the total particle number) provided at two concentrations (low: 4.11 × 105 MPs/kg sediment dw and high: 4.11 × 107 MPs/kg sediment dw) and two exposure durations (4 and 12 weeks) on a micro- and meiobenthic community collected from a freshwater sediment. MPs exposure did not alter the abundance of protozoa (ciliates and flagellates) as well as the abundance and biomass of meiobenthic organisms (nematodes, rotifers, oligochaetes, gastrotrichs, nauplii), whereas the abundance and biomass of harpacticoid copepods was affected. Neither nematode species diversity (species richness, Shannon-Wiener index, and evenness) nor the NemaSPEAR[%]-index (pollution-sensitive index based on freshwater nematodes) changed in response to the MPs. However, changes in the structure of the meiobenthic and nematode community in the presence of environmentally relevant MPs mixtures cannot be excluded, such that microcosms experiments may be of value in detecting subtle, indirect effects of MPs.
Collapse
Affiliation(s)
| | | | - Arne Haegerbaeumer
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany
| | - Walter Traunspurger
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|