1
|
Hou J, Wang L, Wang J, Chen L, Han B, Yang T, Liu W. Insights on common fungicides: A national survey on farmland soils from Mainland China. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138177. [PMID: 40199079 DOI: 10.1016/j.jhazmat.2025.138177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Fungicides are a growing concern owing to their ecological and human health threats. In China, which is a large fungicide-consuming country, only a few provincial studies have reported several fungicide residues in agricultural soils. Additionally, terrestrial ecological risk assessments of pesticides are limited to the single species. This study showed that fungicides were commonly found in agricultural soils in mainland China, and the Σ13fungicides concentrations ranged from 0.0548 to 3183 μg/kg, with the major contributing component being difenoconazole. Spatial variation in fungicide concentrations was significant, with the highest concentrations observed in Southern China. The Σ13fungicides concentration was higher in soils covered with plastic films compared to uncovered soils, possibly because microplastics from agro-film sources promote fungicide retention in the soil. Among the crop types, the highest fungicide residues were found in soils planted with fruits. In addition, this study was the first to use the probabilistic species sensitivity distribution (pSSD) approach to deduce the predicted no-effect concentrations of major fungicides as terrestrial safety thresholds. Particularly, soil texture conditions may influence the hazard assessment of fungicides. Finally, from the species taxa perspective, the proportions of ecological risks of carbendazim and tebuconazole in agricultural soils in China were 4.3 % and 5.9 %, respectively.
Collapse
Affiliation(s)
- Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiXi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - JinZe Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China; Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Tong Yang
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
2
|
Gouin N, Bertin A, Snow DD, Lozada A, Grandjean F, Kolok AS. Occurrence and environmental risk assessment of pesticides reveal important threats to aquatic organisms in precordilleran rivers of north-central Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 984:179701. [PMID: 40412075 DOI: 10.1016/j.scitotenv.2025.179701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/05/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
While pesticides are essential for food production, their widespread use poses environmental risks beyond lowland areas. Recent evidence indicates that mountain ecosystems are also vulnerable due to both local agriculture and long-range atmospheric transport. This study assesses pesticide contamination and ecological risks in five mountainous agricultural watersheds of north-central Chile, where pesticides support intensive crop production. Using primarily polar organic chemical integrative samplers (POCIS), complemented by sediment samples, we found pesticides at 26 of 30 sampled sites. Detection varied by location and method. Desethylatrazine, an atrazine metabolite, was most frequently found in POCIS samples, detected at 20 sites across all watersheds. While other pesticides only occurred at few sites, their presence across multiple, geographically dispersed locations contributed to extensive ecological risk. Northern watersheds (Limarí, Choapa, Aconcagua) showed the highest ecological risks, despite lower pesticide loads, due to the presence of highly toxic insecticides. Key factors influencing pesticide distribution included water conductivity, agricultural land use, and latitude. Ecotoxicological risk assessments revealed eight pesticides exceeding high-risk thresholds for aquatic organisms-mainly insecticides and fungicides. Pyrethroids such as deltamethrin, cyfluthrin, and lambda-cyhalothrin posed severe threats to fish and invertebrates. High-risk levels were also detected in sediments, particularly in the northernmost Limarí watershed. These findings underscore the urgent need for targeted monitoring and stricter pesticide regulation in mountain freshwater ecosystems of Chile, which are vital water sources and harbor unique biodiversity. This study provides one of the first comprehensive evaluations of pesticide risks in mountainous rivers, highlighting the ecological threats from agricultural contaminants.
Collapse
Affiliation(s)
- Nicolas Gouin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Instituto de Ecología y Biodiversidad (IEB), Universidad de La Serena, Chile; Centro de Estudios Avanzados Zonas en Áridas, Raúl Bitrán 1305, La Serena, Chile.
| | - Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Instituto de Ecología y Biodiversidad (IEB), Universidad de La Serena, Chile.
| | - Daniel D Snow
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, NE 68583-0844, United States.
| | - Adriana Lozada
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile.
| | - Frédéric Grandjean
- Laboratoire Ecologie et Biologie des Interactions, UMR-CNRS 7267, 3 rue Jacques Fort, TSA 51106, F-86073 POITIERS Cedex 9, France.
| | - Alan S Kolok
- College of Natural Resources, University of Idaho, Moscow, ID 83844-3002, United States..
| |
Collapse
|
3
|
da Silva ES, Becker RW, Starling MCVM, Machado EC, Reis APV, Aguilar AP, Mendes TADO, Sirtori C, Amorim CC. An integrated analysis of the use and potential risks of pharmaceutical drugs in hospital wastewater: Consumption and occurrence by suspect screening analysis, and antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 973:179132. [PMID: 40101409 DOI: 10.1016/j.scitotenv.2025.179132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Hospital wastewater (HWW) contains pharmaceutical drugs, antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARG), and pathogens, posing potential risks to environmental and public health. However, data on the occurrence of these contaminants are scarce, especially in low- and middle-income countries. This study employed LC-QTOF MS for a qualitative suspect screening of 1922 pharmaceutical drugs and metabolites in HWW (n = 8 samples). Results were used in an environmental risk assessment applied with the support of in silico tools, to predict potential risks to aquatic organisms. ARB were analyzed using plate count agar method and ARG by Real-time PCR. 113 drugs were identified in HWW, and antibiotics were the most frequently detected (15 compounds). Environmental risk assessment indicated that 29 compounds have the potential to cause toxic effects to aquatic fauna, among which 4 compounds (ampicillin, escitalopram, iopromide, and topiramate) may pose a very high potential risk (RQ > 2). In addition, ARB resistant to azithromycin and cefazolin (106-107 CFU/mL) were abundant in HWW samples, while low levels of bacteria resistant to meropenem (105 CFU/mL) were detected. The relative number of copies of blaKPC, catA1, sul1, ermB, qnrS, vanB, floR, and aadA were higher in HWW from one of the hospitals. However, there was no significant difference for blaOXA (p value = 0.1271) or mecA genes (p value = 0.6077) in HWW samples. These results call attention to potential risks posed by the discharge of HWW and reveal the need to raise data for improving management practices for environmental protection.
Collapse
Affiliation(s)
- Eloísa Stéphanie da Silva
- Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Raquel W Becker
- Laboratory of Pesticides Residues Analysis, Federal University of Santa Maria, Av. Roraima, 1000 - Camobi, Santa Maria, RS 97105-000, Brazil
| | - Maria Clara V M Starling
- Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | - Elayne C Machado
- Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ana Paula V Reis
- Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ananda Pereira Aguilar
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n° CCBII, Viçosa, Minas Gerais 36570-900, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n° CCBII, Viçosa, Minas Gerais 36570-900, Brazil; Teaching, Research and Extension Association, Biopark, Rua Alexander Fleming, 2194 Toledo, Paraná, Brazil
| | - Carla Sirtori
- Laboratory of Pesticides Residues Analysis, Federal University of Santa Maria, Av. Roraima, 1000 - Camobi, Santa Maria, RS 97105-000, Brazil; Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil.
| | - Camila C Amorim
- Research Group on Environmental Applications of Advanced Oxidation Processes (GruPOA), Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
4
|
Dai Y, Song X, Zhao J, Wang L, Cui X, Lu L, Zhang J, Zhang H, Zhang D, Li K. Spatiotemporal distribution and potential ecological risks of current-use pesticides (CUPs) in Laizhou Bay, China. MARINE ENVIRONMENTAL RESEARCH 2025; 206:107042. [PMID: 40031394 DOI: 10.1016/j.marenvres.2025.107042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Pesticides occur widely in coastal waters and potentially pose a risk to marine ecosystems and human health. The spatiotemporal distribution of current-use pesticides (CUPs) was studied in Laizhou Bay (LZB) and the Xiaoqing River watershed in China during the summer of 2022 and spring of 2023. The pesticide composite index (PCI) and persistence index (PI) were established in association with the risk quotient (RQ) to assess the ecological risk in LZB. In this study, 17 and 12 kinds of CUP were detected in rivers and LZB seawater, respectively, with atrazine and neonicotinoid insecticides (NEOs) being the most frequently detected CUPs at higher concentrations. The average concentration of CUPs decreased from rivers to the coast and towards the center of the LZB, with higher levels in spring and lower levels in summer in rivers and a reversed pattern in seawater. The high-risk areas lie in the LZB coastal area and the estuary. Atrazine, chlorpyrifos, and imidacloprid might pose a high risk to aquatic organisms based on the RQ in the LZB, whereas the priority concern pesticides are atrazine and triazophos based on the PCI and PI. This study is of great significance for assessing the composite ecological risk of CUPs in aquatic environments.
Collapse
Affiliation(s)
- Yufei Dai
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xianli Song
- Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao, 266104, China
| | - Jing Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Limin Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoru Cui
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Li Lu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jingyu Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Haoyu Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dahai Zhang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Keqiang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
5
|
Tesi GO, Okpara KE, Tesi JN, Agbozu IE, Techato K. Assessment of organophosphate pesticides in soils and vegetables from agricultural areas of Delta Central District, Nigeria. Sci Rep 2025; 15:8267. [PMID: 40064926 PMCID: PMC11894152 DOI: 10.1038/s41598-024-83518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/16/2024] [Indexed: 03/14/2025] Open
Abstract
The application of agrochemicals such as organophosphate pesticides (OPPs) has several benefits in agriculture but also poses great risks to the environment and human well-being. Thus, this study was conducted to determine the concentrations, distribution pattern, relationships, potential risks and sources of OPPs in agricultural soils and vegetables from Delta Central District (DCD) of Nigeria to provide useful information for pollution history, establishment of pollution control measures and risk management. Fourteen OPPs were determined in the soil and vegetables using a gas chromatograph-mass selective detector (GC-MSD). The ∑14 OPPs concentrations varied from 5.29 to 419 ng g-1 for soil and 0.69 to 130 ng g-1 for vegetables. On average, pirimiphos methyl (23.8 ng g-1) and diazinone (4.74 ng g-1) were the dominant OPPs in soils and vegetables respectively. The cumulative ecological risk assessed using the toxicity-exposure-ratio (TER) and risk quotient (RQ) approaches revealed that there was a high risk of OPPs to soil organisms. The increasing order of OPPs toxicity to the soil organisms was chlorpyriphos < fenitrothion < diazinone < pirimiphos methyl while the cumulative human health risk suggested there was adverse non-carcinogenic risk for children but not for adults exposed to OPPs in these agricultural soils and vegetables.
Collapse
Affiliation(s)
- Godswill Okeoghene Tesi
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Department of Chemistry, Federal University of Petroleum Resources, Effurun, Nigeria
| | - Kingsley Ezechukwu Okpara
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Institute of Geosciences and Environmental Management, Rivers State University, Nkpolu- Orowurukwu, Port Harcourt, Nigeria
| | - Juliet Ngozi Tesi
- Department of Environmental Management and Toxicology, Federal University of Petroleum Resources, Effurun, Nigeria
| | - Iwekumo Ebibofe Agbozu
- Department of Environmental Management and Toxicology, Federal University of Petroleum Resources, Effurun, Nigeria
| | - Kuaanan Techato
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
6
|
Davydova L, Menshova A, Shumatbaev G, Babaev V, Nikitin E. Phytochemical Study of Ethanol Extract of Gnaphalium uliginosum L. and Evaluation of Its Antimicrobial Activity. Antibiotics (Basel) 2024; 13:785. [PMID: 39200085 PMCID: PMC11352081 DOI: 10.3390/antibiotics13080785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
This study evaluates the antibacterial and antifungal effects of ethanol extracts from Gnaphalium uliginosum L. derived from freshly harvested plant biomass, including stems, leaves, flowers, and roots. The extract was analyzed using gas chromatography-mass spectrometry (GC-MS) to determine its antimicrobial activity against phytopathogenic bacteria and fungi. Two methods were used in the experiments: agar well diffusion and double serial dilution. Extraction was carried out using the maceration method with different temperature regimes (25 °C, 45 °C, and 75 °C) and the ultrasonic method at various powers (63-352 W) for different durations (5 and 10 min). It was found that the 70% ethanol extract obtained through the ultrasonic experiment at 189 W power for 10 min and at 252 W power for 5 min had the highest antimicrobial activity compared to the maceration method. The most sensitive components of the extracts were the Gram-positive phytopathogenic bacteria Clavibacter michiganensis and the Gram-negative phytopathogenic bacteria Erwinia carotovora spp., with MIC values of 156 μg/mL. Among the fungi, the most sensitive were Rhizoctonia solani and Alternaria solani (MIC values in the range of 78-156 µg/mL). The evaluation of the antimicrobial activity of extracts using the diffusion method established the presence of a growth suppression zone in the case of C. michiganensis (15-17 mm for flowers, leaves, and total biomass), which corresponds to the average level of antimicrobial activity. These findings suggest that G. uliginosum has potential as a source of biologically active compounds for agricultural use, particularly for developing novel biopesticides.
Collapse
Affiliation(s)
- Lilia Davydova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia; (A.M.); (G.S.); (V.B.); (E.N.)
| | | | | | | | | |
Collapse
|
7
|
Li Y, Zhang J, Wang W, Lu Y, Sun L, Zhang Y. Ecological Risk Assessment of Three Pesticide Additives in Soil and Application to the Remediation of Contaminated Soil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1677-1689. [PMID: 38661489 DOI: 10.1002/etc.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Pesticide additives (PAs) are auxiliary ingredients added to the pesticide manufacturing and use processes, constituting 1% to 99% of the pesticide and often composed of benzene and chlorinated hydrocarbons. We selected three typical PAs, toluene, chloroform, and trichloroethylene, to evaluate their retention function toxicity and ecological risk in soil. Soil immobilization techniques and aquatic model organisms were used to demonstrate the effectiveness of the immobilized soil method to determine the ecological risk of chemicals. The 48-h median lethal concentrations of toluene, chloroform, and trichloroethylene alone in spiked soil on Daphnia magna were 10.5, 2.3, and 1.1 mg/L (medium, high, and high toxicity, respectively). The toxicity of the three-PA mixtures showed an antagonistic effect. The risk levels of toluene, chloroform, and trichloroethylene in the soil were evaluated as moderate to high, low to high, and high risk, respectively. The toxicity of two pesticide-contaminated sites in the Yangtze River Delta before and after remediation was successfully evaluated by immobilized soil technology. The toxicity of two soil sampling points was reduced from medium toxic to low toxic and no toxic, respectively, after remediation. The results of our study give a rationale for and prove the validity of the aquatic model organisms and soil immobilization techniques in assessing the soil retention functions toxicity of PAs. Environ Toxicol Chem 2024;43:1677-1689. © 2024 SETAC.
Collapse
Affiliation(s)
- Ying Li
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Jing Zhang
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Wenqiang Wang
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Yongze Lu
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Liwei Sun
- School of Energy & Environment, Southeast University, Nanjing, China
| | - Yimin Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| |
Collapse
|
8
|
Zuo W, Zhao Y, Qi P, Zhang C, Zhao X, Wu S, An X, Liu X, Cheng X, Yu Y, Tang T. Current-use pesticides monitoring and ecological risk assessment in vegetable soils at the provincial scale. ENVIRONMENTAL RESEARCH 2024; 246:118023. [PMID: 38145733 DOI: 10.1016/j.envres.2023.118023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023]
Abstract
Pesticides represent one of the largest intentional inputs of potentially hazardous compounds into agricultural soils. However, as an important vegetable producing country, surveys on pesticide residues in soils of vegetable production areas are scarce in China. This study presented the occurrence, spatial distribution, correlation between vegetable types and pesticides, and ecological risk evaluation of 94 current-use pesticides in 184 soil samples from vegetable production areas of Zhejiang province (China). The ecological risks of pesticides to soil biota were evaluated with toxicity exposure ratios (TERs) and risk quotient (RQ). The pesticide concentrations varied largely from below the limit of quantification to 20703.06 μg/kg (chlorpyrifos). The situation of pesticide residues in Jiaxing is more serious than in other cities. Soils in the vegetable areas are highly diverse in pesticide combinations. Eisenia fetida suffered exposure risk from multiple pesticides. The risk posed by chlorpyrifos, which exhibited the highest RQs at all scenarios, was worrisome. Only a few pesticides accounted for the overall risk of a city, while the other pesticides make little or zero contribution. This work will guide the appropriate use of pesticides and manage soil ecological risks, achieving green agricultural production.
Collapse
Affiliation(s)
- Wei Zuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinju Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yijun Yu
- Zhejiang Cultivated Land Quality and Fertilizer Management Station, Hangzhou 310020, China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
9
|
Qin H, Bu D, Zhang Z, Han G, Huang K, Liu C. Organophosphorus flame retardants in fish from the middle reaches of the Yangtze River: Tissue distribution, age-dependent accumulation and ecological risk assessment. CHEMOSPHERE 2024; 354:141663. [PMID: 38479684 DOI: 10.1016/j.chemosphere.2024.141663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Two fish species from the middle reaches of the Yangtze River, China, were sampled to investigate the occurrence, tissue distribution, age-dependent accumulation and ecological risk assessment of 24 organophosphorus flame retardants (OPFRs). Seventeen OPFRs were detected in tissue samples with a total concentration ranging from not detected (ND) to 1092 ng g-1 dw. Cl-OPFRs were predominant in all tissues (mean: 145 ng g-1 dw, median: 72.9 ng g-1 dw) and the concentrations of OPFRs in brain were the greatest (crucian carp: 525 ng g-1 dw, silver carp: 56.0 ng g-1 dw) compared with the other three organs (e.g., liver, muscle and gonad). Furthermore, the total concentrations of OPFRs in crucian carp tissues were significantly greater than those in silver carp (P < 0.01). Age-dependent accumulation of OPFRs was observed in the two fish species, but the accumulation profiles in the two fish species were different. Ecological risk assessment demonstrated that both fish species were at medium to high risk, and TDCIPP was a main contributor (>50%).
Collapse
Affiliation(s)
- Haiyu Qin
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianping Bu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zihan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guixin Han
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai Huang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
10
|
Mahdavi V, Solhi Heris ME, Mehri F, Atamaleki A, Moridi Farimani M, Mahmudiono T, Fakhri Y. Concentration and non-dietary human health risk assessment of pesticide residues in soil of farms in Golestan province, Iran. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:968-978. [PMID: 36966491 DOI: 10.1080/09603123.2023.2194611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Detection of pesticide residues in soil samples was conducted using UHPLC-MS/MS. Non-dietary health risk assessment was conducted using calculate chronic daily intake (CDI) from ingestion, inhalation and dermal contact pathways and following non-carcinogenic and carcinogenic risks in the adults and adolescent. The rank order of pesticide in soil based on their concentration was malathion (0.082 mg kg-1)> cyproconazole (0.019 mg kg-1)> propargite (0.018 mg kg-1)> butachlor (0.016 mg kg-1) > chlorpyrifos (0.0067 mg kg-1)> diazinon (0.0014 mg kg-1)> imidacloprid (0.0007 mg kg-1). Hazard index (HI) values obtained of exposure to pesticides in soil in adults and adolescent were 0.0012 and 0.0035, respectively. Hence, exposed population are at the acceptable range of non-carcinogenic risk (HI < 1). Cancer risk (CR) values due to propargite in soil via ingestion pathway in adults and adolescent were 2.03E-09 and 2.08E-09, respectively; therefore, carcinogenic risk due to the exposure to pesticide contaminated soil was safe range (CR < 1E-06).
Collapse
Affiliation(s)
- Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Mir-Ebrahim Solhi Heris
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Atamaleki
- Department of Environmental Health Engineering, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahdi Moridi Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Yadolah Fakhri
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
11
|
Zhang B, Liu X, Wei W, Li X, Zhu H, Chen L. Environmental carrying capacity and ecological risk assessment of pesticides under different soil use types in the Central Plains Urban Agglomeration (CPUA), China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122852. [PMID: 37944884 DOI: 10.1016/j.envpol.2023.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Soil environmental safety has received much attention during the past few decades due to its significance in agricultural production and human health. Special attention is required for soil pesticide residues and ecological risks. This study examined 197 soil samples from industrial, residential and agricultural areas for the presence of 12 organophosphorus pesticides (OPPs) and 8 synthetic pyrethroids (SYPs) in the 16 cities in Henan Province, and the center of CPUA, based on the Central Plains Urban Agglomeration (CPUA) concept proposed by China. The total average concentrations of ∑12OPPs in industrial, residential and agricultural soils were 194, 217, 267 ng/g dry weight, and those of ∑8SYPs were 26.8, 35.7, 25.5 ng/g dry weight, respectively. The two pollutants with the greatest concentrations in the soils were malathion and fenpropathrin, respectively, the dominant components of OPPs and SYPs. The soil environmental carrying capacity (SECC) analysis, representing the maximum residual load that can be supported, shows that acephate and cyhalothrin were overloaded, with a predicted period of over 500 years. Among the 16 cities of CPUA, a higher frequency of high ecological risk could be observed only in Shangqiu. The OPPs in children had total non-carcinogenic risk values of more than 1.0. Similarly, the non-carcinogenic risks of SYPs in adults and children in the residential areas were more than 1.0. The study provides knowledge on how to effectively manage soil safety in Henan Province, which is the center of the CPUA, with a large population and grain province to protect ecosystems and reduce the risks of soil pesticide residues in humans.
Collapse
Affiliation(s)
- Baozhong Zhang
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, Henan, 450001, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| | - Xiaolong Liu
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, Henan, 450001, China.
| | - Wenhao Wei
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, Henan, 450001, China.
| | - Xiquan Li
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, Henan, 450001, China.
| | - Huina Zhu
- College of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou, Henan, 450001, China; Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, 450001, Henan Province, China.
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
12
|
Hou J, Chen L, Han B, Li Y, Yu L, Wang L, Tao S, Liu W. Distribution characteristics and risk assessment of neonicotinoid insecticides in planting soils of mainland China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166000. [PMID: 37541504 DOI: 10.1016/j.scitotenv.2023.166000] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Neonicotinoid insecticides (NEOs) are generally used in crop production. Their widespread use on agricultural soil has raised concerns regarding their health and ecological risks. Previous studies have reported the contamination of the farmland soils with NEOs from the coastal provinces of China. Information about NEOs at the national scale as well as the residues of their metabolites are relatively unknown. In this study, 391 soil samples were collected from 31 provinces in nine agricultural regions across mainland China, and the concentrations of ten parent NEOs and three metabolites were determined. At least one NEO was detected in all soil samples, with the sum of the NEOs (ΣNEOs) ranging from 0.04 to 702 μg/kg. The most common parent NEO and metabolite are imidacloprid and imidacloprid-urea, respectively. The concentrations of NEOs in coastal regions at the same latitude were higher than those in inland regions. The NEOs were further compared in the soils of seven types of monocrops and three types of multiple crops (multicrops) (i.e., two types of crops were produced in succession or simultaneously within the decade of this study). The results showed that the highest NEO residues were found in soils planted with vegetables (VE), fruits (FR), and cotton (CO) monocrops and VE & FR multicrops. Differences in NEO concentrations were observed between soils planted with monocrops and multicrops. For example, VE & FR > VE > vegetables and grains (VE & GR) > GR. Moreover, the health risks posed by NEOs in agricultural soils in China are extremely low, and the ecological risks require urgent attention. Particularly, individual NEOs in > 45% of agricultural soils in mainland China may have sublethal effects on two non-target species (HQnon-target > 0.01).
Collapse
Affiliation(s)
- Jie Hou
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Liyuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bingjun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yujun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lixi Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Pegu R, Paul S, Bhattacharyya P, Prakash A, Bhattacharya SS. Exorbitant signatures of pesticides and pharmaceuticals in municipal solid wastes (MSWs): Novel insights through risk analysis, dissolution dynamics, and model-based source identification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165855. [PMID: 37516171 DOI: 10.1016/j.scitotenv.2023.165855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Studies on the occurrence and fates of emerging organic micropollutants (EOMPs) like pharmaceuticals and pesticides in MSWs are scarce in the literature. Therefore, MSWs were sampled from 20 Indian landfills and characterized for five widely consumed EOMPs (chlorpyrifos, cypermethrin, carbofuran, carbamazepine, and sodium diclofenac), physicochemical, and biological properties. The pesticide (median: 0.17-0.44 mg kg-1) and pharmaceutical (median: 0.20-0.26 mg kg-1) concentrations significantly fluctuated based on landfill localities. Eventually, principal component and multi-factor (MFA) models demonstrated close interactions of EOMPs with biological (microbial biomass and humification rates) and chemical (N, P, K, Ca, S, etc.) properties of MSWs. At the same time, the MFA resolved that EOMPs' fates in MSWs significantly differ from bigger cosmopolitan cities to smaller rural townships. Correspondingly, the concentration-driven ecological risks were high in 15 MSWs with EOMP-toxicity ranks of diclofenac > carbofuran = chlorpyrifos > cypermethrin > carbamazepine. The EOMPs' dissolution dynamics and source apportionments were evaluated using the positive matrix factorization (PMF) model for the first time on experimental data, extracting four anthropogenic sources (households, heterogeneous business centers, agricultural, and open drains). The most significant contribution of EOMPs to MSWs was due to heterogeneous business activity. Notably, the aging of soluble chemical fractions seems to influence the source characteristics of EOMPs strongly.
Collapse
Affiliation(s)
- Ratul Pegu
- Soil and Agro Bio-engineering Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India
| | - Sarmistha Paul
- Soil and Agro Bio-engineering Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India; State Pollution Control Board, Govt. of Assam, Guwahati-781021, India
| | - Pradip Bhattacharyya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand 815301, India
| | - Amit Prakash
- Environmental Modeling Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India.
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Laboratory, Department of Environmental Science, Tezpur Central University, Napaam, Tezpur 784028, Assam, India.
| |
Collapse
|
14
|
Bhandari G, Chiaia-Hernández AC, Atreya K, Geissen V, Singh SP. Knowledge and practices of commercial banana farmers related to pesticide use in Chitwan district, Nepal; a cross-sectional study and meta-analyses. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1490. [PMID: 37978088 DOI: 10.1007/s10661-023-12093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
The exposure of farmers to pesticides due to inadequate safety measures is a concern in low-income countries in Africa and Asia. However, until now, there have been limited studies on the farmers' risk due to pesticide application to fruit crops. The knowledge of farmers' exposure related to pesticide use and their safety practices was studied among 100 banana farmers in three areas (Padampur, Jagatpur, and Thimura) of Chitwan district, Nepal. More than 75% of the farmers complained about problems related to insects. Most frequently used insecticides in the area were chlorpyrifos and cypermethrin. Ten percent (10%) of the applied pesticides were highly hazardous to humans, according to the World Health Organization hazard category, with skin rash being the most common acute symptom reported by 29% of the farmers. Banned organochlorine and organophosphate insecticides, such as endosulfan and triazophos, respectively, are still being used by farmers in the aforementioned areas. Spearman's correlation analysis revealed the lack of knowledge and safety practices among farmers leading to inadequate awareness related to the negative effects of pesticide use on human health and the environment. Therefore, government extension service can play a crucial role in improving banana farmers' knowledge of the toxic effects of pesticides as well as enforcing the Nepali language in the labeling of pesticide containers and packages.
Collapse
Affiliation(s)
- Govinda Bhandari
- Progressive Sustainable Developers Nepal (PSD-Nepal), Kathmandu, Nepal.
| | - Aurea C Chiaia-Hernández
- Institute of Geography & Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Kishor Atreya
- School of Forestry and Natural Resources Management, Institute of Forestry, Tribhuvan University, Kathmandu, Nepal
- Department of Watershed Management and Environmental Science, Institute of Forestry (Pokhara Campus), Tribhuvan University, Pokhara, Nepal
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sheelendra Pratap Singh
- Toxicokinetics laboratory, ASSIST Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
15
|
Mohammed S, Koekkoek J, Hodgson IOA, de Boer J, Lamoree M. Silicone wristband as a sampling tool for insecticide exposure assessment of vegetable farmers. ENVIRONMENTAL RESEARCH 2023; 237:117094. [PMID: 37683782 DOI: 10.1016/j.envres.2023.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The use of passive sampling devices (PSDs) as an appropriate alternative to conventional methods of assessing human exposure to environmental toxicants was studied. One-time purposive sampling by a silicone wristband was used to measure insecticide residues in 35 volunteer pepper farmers in the Vea irrigation scheme in the Guinea savannah and the Weija irrigation scheme in the coastal savannah ecological zones of Ghana. A GC-MS/MS method was developed and validated for quantifying 18 insecticides used by farmers in Ghana. Limits of detection (LODs) and quantitation (LOQs) ranged from 0.64 to 67 and 2.2-222 ng per wristband, respectively. The selected insecticides showed a range of concentrations in the various silicone wristbands from not detected to 27 μg/wristband. The concentrations of 13 insecticides were above their LOQs. Chlorpyrifos had the highest detection frequencies and concentrations, followed by cyhalothrin and then allethrin. This study shows that silicone wristbands can be used to detect individual insecticide exposures, providing a valuable tool for future exposure studies. Ghanaian vegetable farmers are substantially exposed to insecticides. Hence, the use of appropriate personal protective equipment is recommended.
Collapse
Affiliation(s)
- Saada Mohammed
- Vrije Universiteit, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands; CSIR Water Research Institute, P.O. Box 38, Achimota, Ghana.
| | - Jacco Koekkoek
- Vrije Universiteit, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | | | - Jacob de Boer
- Vrije Universiteit, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Marja Lamoree
- Vrije Universiteit, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Sun Q, Dong Y, Wen X, Zhang X, Hou S, Zhao W, Yin D. A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Front Nutr 2023; 10:1244459. [PMID: 37593680 PMCID: PMC10428016 DOI: 10.3389/fnut.2023.1244459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Food safety is a widespread global concern with the emergence of foodborne diseases. Thus, establishing accurate and sensitive detection methods of harmful contaminants in different food matrices is essential to address and prevent the associated health risks. Among various analytical tools, mass spectrometry (MS) can quantify multiple impurities simultaneously due to high resolution and accuracy and can achieve non-target profiling of unknown pollutants in food. Therefore, MS has been widely used for determination of hazardous contaminants [e.g., mycotoxin, pesticide and veterinary drug residues, polychlorinated biphenyls (PCBs), dioxins, acrylamide, perfluorinated compounds (PFCs) and p-Phenylenediamine compounds (PPDs) in food samples]. This work summarizes MS applications in detecting harmful contaminants in food matrices, discusses advantages of MS for food safety study, and provides a perspective on future directions of MS development in food research. With the persistent occurrence of novel contaminants, MS will play a more and more critical role in food analysis.
Collapse
Affiliation(s)
- Qiannan Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, Henan, China
| | - Yide Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, China
| | - Shijiao Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Dong Z, Cui K, Liang J, Guan S, Fang L, Ding R, Wang J, Li T, Zhao S, Wang Z. The widespread presence of triazole fungicides in greenhouse soils in Shandong Province, China: A systematic study on human health and ecological risk assessments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121637. [PMID: 37059173 DOI: 10.1016/j.envpol.2023.121637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Triazole fungicides (TFs) are extensively used on greenhouse vegetables and are ubiquitously detected in the environment. However, the human health and ecological risks associated with the presence of TFs in the soil are unclear. In this study, ten widely used TFs were measured in 283 soil samples from vegetable greenhouses across Shandong Province, China, and their potential human health and ecological risks were assessed. Among all soil samples, difenoconazole, myclobutanil, triadimenol, and tebuconazole were the top detected TFs, with detection rates of 85.2-100%; these TFs had higher residues, with average concentrations of 5.47-23.8 μg/kg. Although most of the detectable TFs were present in low amounts, 99.3% of the samples were contaminated with 2-10 TFs. Human health risk assessment based on hazard quotient (HQ) and hazard index (HI) values indicated that TFs posed negligible non-cancer risks for both adults and children (HQ range, 5.33 × 10-10 to 2.38 × 10-5; HI range, 1.95 × 10-9 to 3.05 × 10-5, <1). Ecological risk assessment based on the toxicity exposure ratio (TER) and risk quotient (RQ) values indicated that difenoconazole was a potential risk factor for soil organisms (TERmax = 1 for Eisenia foetida, <5; RQmean = 1.19 and RQmax = 9.04, >1). Moreover, 84 of the 283 sites showed a high risk (RQsite range, 1.09-9.08, >1), and difenoconazole was the primary contributor to the overall risk. Considering their ubiquity and potential hazards, TFs should be continuously assessed and prioritized for pesticide risk management.
Collapse
Affiliation(s)
- Zhan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, China; Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong, 250100, China
| | - Shengying Zhao
- Shandong Shibang Agrochemical Co., Ltd., Heze, Shandong, 274300, China
| | - Zhongni Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
18
|
Mu H, Yang X, Wang K, Tang D, Xu W, Liu X, Ritsema CJ, Geissen V. Ecological risk assessment of pesticides on soil biota: An integrated field-modelling approach. CHEMOSPHERE 2023; 326:138428. [PMID: 36958499 DOI: 10.1016/j.chemosphere.2023.138428] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Pesticide residues in soils can cause negative impacts on soil health as well as soil biota. However, research related to the toxicity and exposure risks of pesticides to soil biota are scarce, especially in the North China Plain (NCP) where pesticides are intensively applied. In this study, the occurrence and distribution of 15 commonly used pesticides in 41 fields in Quzhou county in the NCP were determined during the growing season in 2020. The ecological risks of pesticides to the soil biota, including earthworms, enchytraeids, springtails, mites and nitrogen mineralization microorganisms, were assessed using toxicity exposure ratios (TERs) and risk quotient (RQ) methods. Based on pesticide detection rates and RQs, pesticide hazards were ranked using the Hasse diagram. The results showed that pesticides were concentrated in the 0-2 cm soil depth. Chlorantraniliprole was the most frequently detected pesticide with a detection rate of 37%, while the highest concentration of 1.85 mg kg-1 was found for carbendazim in apple orchards. Chlorpyrifos, carbendazim and imidacloprid posed a chronic exposure risk to E. fetida, F. candida and E. crypticus with the TERs exceeding the trigger value. Pesticide mixtures posed ecological risks to soil biota in 70% of the investigated sites. 47.5% of samples were ranked as high-risk, with the maximum RQ exceeding 490. According to the Hasse diagram, abamectin, tebuconazole, chlorantraniliprole and chlorpyrifos were ranked as the most hazardous pesticides for soil biota in the study region, indicating that alternative methods of pest management need to be considered. Therefore, practical risk mitigation solutions are recommended, in which the use of hazardous pesticides would be replaced with low-risk pesticides with similar functions from the Hasse diagram, or with biopesticides.
Collapse
Affiliation(s)
- Hongyu Mu
- Soil Physics and Land Management Group, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands; College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Xiaomei Yang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands; College of Resources and Environmental Sciences, Northwest A&F University, 712100, Yangling, China.
| | - Kai Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Darrell Tang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands
| | - Wen Xu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Xuejun Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Coen J Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700, AA, Wageningen, the Netherlands
| |
Collapse
|
19
|
Yang JM, Lu HL, Liu JH, Qian XR, Fu GL, Gao JF. Embryonic development, hatchling performance and metabolic profile after egg exposure to environmentally relevant levels of chlorpyrifos in an aquatic turtle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115095. [PMID: 37267781 DOI: 10.1016/j.ecoenv.2023.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
The extensive use of organophosphorus insecticides poses a threat to the survival of non-target organisms. Ecotoxicological outcomes of embryonic exposure to insecticides are rarely evaluated in various oviparous species. In this study, soft-shelled turtle (Pelodiscus sinensis) eggs were incubated in moist substrate containing different levels (0, 2, 20 and 200 μg/kg) of chlorpyrifos to investigate its toxic effects on embryonic development and survival, and hatchling physiological performance. Chlorpyrifos exposure had no significant impacts on embryonic development rate and egg survival in P. sinensis. Similarly, embryonic chlorpyrifos exposure neither obviously affected the size and locomotor performance of hatchlings, nor changed the activities of superoxide dismutase and catalase, and content of malondialdehyde in their erythrocytes. Based on liquid chromatography-mass spectrometry analysis, minor metabolic perturbations related to amino acid, lipid and energy metabolism in hatchlings after embryonic chlorpyrifos exposure were revealed by hepatic metabolite profiling. Overall, our results suggested that embryonic exposure to environmentally relevant levels of chlorpyrifos had only a limited impact on physiological performances of hatchlings, although it would result in a potential risk of hepatotoxicity in P. sinensis.
Collapse
Affiliation(s)
- Jia-Meng Yang
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Hong-Liang Lu
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| | - Jia-Hui Liu
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Xin-Ru Qian
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Guang-Li Fu
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Jian-Fang Gao
- Herpetological Research Center, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.
| |
Collapse
|
20
|
Xie W, Liu J, Qu Y, Du F. Construction of a ratiometric fluorescent sensing platform based on near-infrared carbon dots for organophosphorus pesticides detection. ANAL SCI 2023:10.1007/s44211-023-00319-3. [PMID: 36944823 DOI: 10.1007/s44211-023-00319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
In this work, a convenient ratiometric fluorescent platform was designed to measure organophosphorus pesticides (OPs) based on acetylcholinesterase (AChE), acetylthiocholine (ATCh), manganese dioxide nanosheets (MnO2), near-infrared carbon dots (RCDs) and o-phenylenediamine (OPD). In this platform, a direct oxidation of OPD by MnO2 generated the luminescent product 2,3-diaminophenolazine (DAP) through intrinsic oxidase activity, while RCDs served as a fluorescent reference indicator. In the presence of AChE and ATCh, the enzymatic hydrolysate thiocholine (TCh) would reduce MnO2 nanosheets to Mn2+, leading to the quenching of DAP fluorescence. On the other hand, OPs can inhibit the catabolism of ATCh by AChE thus acting as a recognizer of OPs. According to these reactions, OPs were quantitatively analyzed by the intensity ratio of fluorescence emitted from RCDs and DAP (F560/F676). The constructed platform can detect OPs with the range of 0.2-0.6 μM with a detection limit of 4.3 nM. Figure A ratiometric fluorescent probe based on carbon dots was obtained and using it to determine the concentration of organophosphorus pesticides.
Collapse
Affiliation(s)
- Wenfei Xie
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jinrui Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yunting Qu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Fangkai Du
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| |
Collapse
|
21
|
Singh RP, Mahajan M, Gandhi K, Gupta PK, Singh A, Singh P, Singh RK, Kidwai MK. A holistic review on trend, occurrence, factors affecting pesticide concentration, and ecological risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:451. [PMID: 36890356 DOI: 10.1007/s10661-023-11005-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Demographic outbursts and increased food demands invoke excessive use of pesticides in the agricultural field for increasing productivity which leads to the relentless decline of riverine health and its tributaries. These tributaries are connected to a plethora of point and non-point sources that transport pollutants including pesticides into the Ganga river's mainstream. Simultaneous climate change and lack of rainfall significantly increase pesticide concentration in the soil and water matrix of the river basin. This paper is intended to review the paradigm shift of pesticide pollution in the last few decades in the river Ganga and its tributaries. Along with this, a comprehensive review suggests the ecological risk assessment method which facilitates policy development, sustainable riverine ecosystem management, and decision-making. Before 2011, the total mixture of Hexachlorocyclohexane was found at 0.004-0.026 ng/mL in Hooghly, but now, the concentration has increased up to 0.465-4.132 ng/mL. Aftermath of critical review, we observed maximum residual commodities and pesticide contamination reported in Uttar Pradesh > West Bengal > Bihar > Uttara Khand possibly because of agricultural load, increasing settlement, and incompetency of sewage treatment plant in the reclamation of pesticide contamination.
Collapse
Affiliation(s)
- Rajeev Pratap Singh
- Waste management, Resource recovery & Ecotoxicology (WRE) Laboratory, Department of Environment and Sustainable Development, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India.
| | - Monika Mahajan
- Waste management, Resource recovery & Ecotoxicology (WRE) Laboratory, Department of Environment and Sustainable Development, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Kavita Gandhi
- Pesticide Residue Laboratory, Sophisticated Environmental Analytical Facility, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Pankaj Kumar Gupta
- Faculty of Environment, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada
| | - Anita Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prafull Singh
- Remote Sensing & Groundwater Modeling Lab, Department of Geology, Central University South Bihar (CUSB), Gaya, 824236, India
| | - Rahul Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mohd Kashif Kidwai
- Department of Energy & Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana, India
| |
Collapse
|
22
|
Mohasin P, Chakraborty P, Anand N, Ray S. Risk assessment of persistent pesticide pollution: Development of an indicator integrating site-specific characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160555. [PMID: 36460110 DOI: 10.1016/j.scitotenv.2022.160555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Detection of high pesticide concentrations in sediments and water often leads to prioritizing a site as being 'at risk'. However, the risk does not depend on pesticide concentration alone, but on other site-specific characteristics also. We developed an indicator that identifies the 'Level of Concern' by integrating five such characteristics: (i) pesticide concentrations in surface and groundwater causing risks to ecological health (ii) impacts on human health, (iii) water scarcity, (iv) agricultural production, and (v) biodiversity richness. We applied this framework in an agricultural region of the Lower Ganges Basin in West Bengal, India. We measured concentrations of selected organochlorine pesticides (OCPs) in surface and groundwater within an 8 km2 area in 2019. Of 20 banned and restricted OCPs, 11 were detected as causing high risk to ecological health and 10 at concentrations above the Accepted Carcinogenic Risk Limit (ACRL) for humans. In the pre-monsoon, the mean concentrations of ΣOCPs in groundwater and surface water were 126.9 ng/L and 104 ng/L, in the monsoon they were 144.7 ng/L and 138 ng/L, and in the post-monsoon 122.1 ng/L and 147 ng/L respectively. In groundwater, no significant seasonal difference was observed in most pesticides. In the surface water, 7 pesticides were significantly higher in the monsoon and post-monsoon, which may be attributed to increased runoff as well as post monsoon application of OCPs. In September 2022 we again measured OCP concentrations in surface water and sediment. The mean concentration of 14 of the 20 measured OCPs were found to be significantly lower in the post-pandemic period compared to the pre-pandemic time. These lower pesticide concentrations may indicate a reduced use of OCPs in agricultural practices during the pandemic. This area was identified as being at the highest Level of Concern, even though the OCP concentrations alone conformed to general guidelines.
Collapse
Affiliation(s)
- Piya Mohasin
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India.
| | - Niharika Anand
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sujata Ray
- Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
| |
Collapse
|
23
|
Femi-Oloye OP, Oloye FF, Jones PD, Giesy JP. Sorption behaviour and toxicity of an herbicide safener "cyprosulfamide". THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160077. [PMID: 36372173 DOI: 10.1016/j.scitotenv.2022.160077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Cyprosulfamide is a herbicide safener that works against the injurious effects of herbicides such as isoxaflutole, dicamba, nicosulfuron, tembotrione, thiencarbazone-methyl. However, its sorption behaviour in soils and toxicity to aquatic organisms are yet to be thoroughly examined. This study determined the octanol-water partition coefficient, sorption properties, acute and chronic toxic effects, and potency of cyprosulfamide to the cladoceran water flea (Daphnia magna). The influence of soil properties such as organic carbon content, cation exchange capacity, pH, and field capacity on adsorption and desorption properties were also examined. The Log Kow (0.55) of cyprosulfamide was less than that of some other safeners, such as benoxacor or furilazole, found in aquatic environments. The sorption of cyprosulfamide to the soil was driven by pH, so sorption decreased with an increase in pH. Other characteristics, such as cation exchange capacity (CEC), organic carbon content, and field capacity, do not directly correlate with the distribution coefficient. Cyprosulfamide generally has a low affinity for soil and is thus mobile and prone to transport to surrounding surface waters. No lethality was observed at the highest concentration (120 mg/L) tested for acute toxicity to D. magna; hence the LC50 will be >120 mg/L. During chronic exposures, cyprosulfamide caused adverse effects at a concentration of 120 mg/L on the number of neonates and brood size. The death rate for the chronic study was a function of concentration and increased with days of exposure. Cyprosulfamide is unlikely to cause lethality to D. magna at relevant environmental concentrations.
Collapse
Affiliation(s)
- O P Femi-Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - F F Oloye
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - P D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - J P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Integrative Biology, Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, MI, USA; Department of Environmental Sciences, Baylor University, Waco, TX 76706, USA.
| |
Collapse
|
24
|
Shan G, Zhu M, Zhang D, Shi T, Song J, Li QX, Hua R. Effects of plant morphology, vitamin C, and other co-present pesticides on the deposition, dissipation, and metabolism of chlorothalonil in pakchoi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84762-84772. [PMID: 35789467 DOI: 10.1007/s11356-022-21405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Pesticide residues have been a focus of attention of food safety. Different varietal pakchoi plants grown in open fields were studied to understand effects of morphology, leaf wax content, and vitamin C on the deposition, dissipation, and metabolism of chlorothalonil. The loose pakchoi plants and flat leaves were conducive to pesticide deposition, but not plants with erect leaves. Chlorothalonil on nine varieties of pakchoi dissipated in the first-order kinetic with T1/2 s of 1.4 ~ 2.0 days. Vitamin C in pakchoi could promote the dissipation of chlorothalonil. Carbendazim could significantly promote the dissipation of chlorothalonil on pakchoi. Interestingly, four metabolites of chlorothalonil were identified in the pakchoi and the metabolic pathway was predicted by DFT calculations. The risk assessment showed that pakchoi were safe for consumption after 10 days of application of the recommended dose. This work provides important information for the understanding of deposition, dissipation, and metabolism of chlorothalonil in pakchoi.
Collapse
Affiliation(s)
- Guolei Shan
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Meiqing Zhu
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Dong Zhang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Jialong Song
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Qing X Li
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
25
|
Zhang Y, Dong Z, Peng Z, Zhu J, Zhuo F, Li Y, Ma Z. A nationwide survey on the endosulfan residues in Chinese cotton field soil: Occurrence, trend, and ecological risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119725. [PMID: 35839972 DOI: 10.1016/j.envpol.2022.119725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The nationwide occurrence of endosulfan residues in cotton fields has not yet been investigated. Therefore, in this study, 202 surface soil samples from 27 cities were collected from cotton fields in 8 major cotton-planting provinces of China, covering more than 97% of the national cotton sown area. The results showed that endosulfan residues were detected in cotton fields throughout the country. The main type of residue found was endosulfan sulfate (ES-sulfate), followed by β-endosulfan and α-endosulfan, with average concentrations of 0.475, 0.129, and 0.048 μg/kg, respectively. Significant spatial variations in the endosulfan residues was noted, and the highest concentration of endosulfan residues was observed in the northwest inland cotton-growing area, followed by that in the Yellow River basin and Yangtze River basin cotton-growing areas. The endosulfan residues showed significant positive correlations with soil organic matter and soil clay contents. The α/β endosulfan ratio was determined to be in the range of 0.02-1.20, indicating that endosulfan residues originated from the endosulfan application performed in historical cotton cultivation efforts. Together with the literature data, the concentrations of α-endosulfan and β-endosulfan residues peaked in 2015 and 2017, respectively, and showed an overall decreasing trend from 2002 to 2021. The results of the ecological risk assessment suggested that Folsomia candida was most sensitive to endosulfan residues, with 20.8% of the sites presenting a high risk. However, in general, the soil ecological risk of cotton fields across the country was low. Our study demonstrated that China has achieved promising results in controlling the use and pollution of endosulfan, especially after 2014.
Collapse
Affiliation(s)
- Yang Zhang
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100035, China.
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Zheng Peng
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100035, China
| | - Jingquan Zhu
- National Agro-Tech Extension and Service Center, Beijing, 100125, China
| | - Fuyan Zhuo
- National Agro-Tech Extension and Service Center, Beijing, 100125, China
| | - Yang Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing, 100097, China
| | - Zhihong Ma
- Beijing Research Center for Agricultural Standards and Testing, Beijing, 100097, China
| |
Collapse
|
26
|
Mu H, Zhang J, Yang X, Wang K, Xu W, Zhang H, Liu X, Ritsema CJ, Geissen V. Pesticide screening and health risk assessment of residential dust in a rural region of the North China Plain. CHEMOSPHERE 2022; 303:135115. [PMID: 35636607 DOI: 10.1016/j.chemosphere.2022.135115] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Pesticides that have accumulated in arable soil could be easily transported by wind erosion, thereby potentially threating air quality and human health in surrounding areas. The risks this poses to farmers exposed to pesticide-associated dust is still unknown, especially in rural areas of China. In this study, we screened pesticide residues in dust (indoor and outdoor) collected from the homes and yards of pesticide sprayers (21 participants) and farm workers (14 participants) living in Quzhou County located in the North China Plain to assess health risks by exposed to pesticide-contaminated dust. The results showed that multiple pesticide residues were detected in the dust samples and more than 90% of the samples contained over 10 pesticide residues. The maximum detected number of residues was 23, out of the 25 pesticides currently used in the farming area. There was a wide range of pesticide concentrations with the geometric mean values measuring between 0.03 and 0.86 mg kg-1. More residues and higher concentrations of pesticides were detected in indoor dust compared to outdoor dust. Over the monitoring period, the pesticide application has not caused significant pesticide accumulation in dust. The measured concentrations of carbendazim, dimethomorph, dimethomorph and pendimethalin paired indoor-outdoor dust samples were significantly correlated (p < 0.05). The health risks were assessed using the hazard index (HI) and highest HI was found for children under indoor exposure (HI = 0.82). In addition, based on the survey and statistics, pesticide preparation in the home was significantly correlated with the pesticide indoor exposure level. Therefore, farmers should take measures, such as preparing pesticides outside of the house or in the open fields with protection, in order to avoid the exposure risk of pesticides associated with dust.
Collapse
Affiliation(s)
- Hongyu Mu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Jingcheng Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Yang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands; College of Resources and Environmental Sciences, Northwest A&F University, 712100, Yangling, China
| | - Kai Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China.
| | - Wen Xu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Hongyan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| | - Xuejun Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing, 100193, China
| | - Coen J Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
27
|
Yang Y, Chen T, Liu X, Wang S, Wang K, Xiao R, Chen X, Zhang T. Ecological risk assessment and environment carrying capacity of soil pesticide residues in vegetable ecosystem in the Three Gorges Reservoir Area. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128987. [PMID: 35487003 DOI: 10.1016/j.jhazmat.2022.128987] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination by pesticide residues has become an increasing concern of ecological protection. However, the soil environmental carrying capacity (SECC) of pesticide residues in agricultural ecosystems was limited studied. Based on the concept of ecological risk assessment, a modified system on the environment carrying capacity was proposed for estimate SECC of pesticide residues in agricultural soils. Subsequently, the assessment on ecological risk and SECC of soil pesticide residues in vegetable ecosystem were performed in the Three Gorges Reservoir Area (TGRA). In 201 topsoil samples, 62.1% of the pesticide compounds were detected over limit of quantitation, and exhibit a high proportion of multiple pesticide contamination. Pyrethroid insecticides and herbicide glyphosate showed most frequent occurrence and high levels. The SECC of the TGRA varies with the limit standard, annual cumulative amount and risk quotient of each pesticide contaminant in soils. Except that fenpropathrin has exceeded SECC, chlorfenapyr, β-cyfluthrin and glyphosate posed the greatest threat to SECC in the next 50 years. Additionally, ecological risks by pesticide residues in vegetable ecosystem can be affected by various planting activities. These results will contribute to guide the rational application of pesticides and control soil environmental risks, thereby achieving the agricultural green development in the TGRA.
Collapse
Affiliation(s)
- Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
| | - Tongtong Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xuchen Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Shuai Wang
- Chongqing Agro-Tech Extension Station, Chongqing 400121, China
| | - Kai Wang
- College of Resources and Environment, China Agricultural University, Beijing 100193, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Tong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
28
|
Mu H, Wang K, Yang X, Xu W, Liu X, Ritsema CJ, Geissen V. Pesticide usage practices and the exposure risk to pollinators: A case study in the North China Plain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113713. [PMID: 35667311 DOI: 10.1016/j.ecoenv.2022.113713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Due to the frequent pesticide applications, bees are suffered from pesticide exposure risks via consumption and direct contact with sprayed drifts. However, if pesticides are misused and the potential exposure risk to bees based on realistic pesticide application data are still little reported. In this study, pesticide application patterns in wheat-maize rotation system, vegetable and apple producing areas, was studied by interviewing farmers in Quzhou County, the North China Plain. The pesticide use status was evaluated by the recommended and actual applied dose and risk quotient (RQ) based Bee-REX model was used to assess the exposure risks of pesticide to bees based on the collected pesticide application data. The results showed that over half (52 %) of farmers in selected sites misused pesticides and orchard owners were frequently misused pesticides. Positive correlations were found between pesticide usage performance and farmers' specialized training experience. Pesticides applied in orchards have caused higher exposure risks to bees with the mean of RQs exceed 120 and 1880 via acute contact and dietary routes, respectively. Pesticide misuse significantly elevates the exposure risk to bees that the mean RQ under misuse scenarios was 5.8 times than that of correct use. Abamectin, fipronil and neonicotinoids contributed most to the pesticide exposure risk to bees. The main findings of this study imply that more sustainable pest and pollinator management strategies, including the moratorium high-risk insecticides and providing diverse flower resources and habitats, are highly needed. Additionally, measures such as implementing farmer educating and training programs should also be put on the agenda.
Collapse
Affiliation(s)
- Hongyu Mu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, the Netherlands.
| | - Kai Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China.
| | - Xiaomei Yang
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, the Netherlands; College of Resources and Environmental Sciences, Northwest A&F University, 712100 Yangling, China
| | - Wen Xu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Xuejun Liu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Observation and Research Station of Agriculture Green Development (Quzhou, Hebei), China Agricultural University, Beijing 100193, China
| | - Coen J Ritsema
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
29
|
Piao M, Sun Y, Wang Y, Teng H. Preparation of BiVO
4
/RGO‐TNT Nanomaterials for Efficient and Recyclable Photocatalysis of Imidacloprid Insecticide. ChemistrySelect 2022. [DOI: 10.1002/slct.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Yixuan Wang
- College of Environmental Science and Engineering Jilin Normal University Siping China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control the Education Department of Jilin Province Jilin Normal University Siping China
- College of Environmental Science and Engineering Jilin Normal University Siping China
| |
Collapse
|
30
|
In vitro and in vivo evidence for the mitigation of monocrotophos toxicity using native Trichoderma harzianum isolate. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
31
|
Tao Y, Liu J, Xu Y, Liu H, Yang G, He Y, Xu J, Lu Z. Suspecting screening "known unknown" pesticides and transformation products in soil at pesticide manufacturing sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152074. [PMID: 34863759 DOI: 10.1016/j.scitotenv.2021.152074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and risks of pesticides and their transformation products in soil at the manufacturing sites are "known unknowns." In this study, pesticides and their transformation products were screened in soil at 6 pesticide manufacturing sites across China using liquid and gas chromatography coupled with quadrupole time-of-flight mass spectrometry. The screening strategy can correctly identify 75% of 209 pesticides spiked at 50 ng g-1. A total of 212 pesticides were identified; 23.1% of pesticides detected were above 200 ng g-1, and the maximum concentration was 1.5 × 105 ng g-1. The risk quotients of 20% pesticides were greater than 1, and the maximum risk quotient of imidacloprid reached 6.3 × 104. The most recent site showed a larger number of pesticides with higher diversity, whereas older sites were dominated by organochlorine insecticides. The extended screen identified 163 transformation products with concentrations up to 6.6 × 104 ng g-1. Half of the transformation products had higher concentrations than their parent compounds, and metabolic ratios up to 371 were observed. The results of this study validate the prevalence of pesticides and their transformation products in soil at pesticide manufacturing sites. The results also highlight the importance of comprehensive screening at industrial sites and call for improved management and regulation of pesticide manufacturing, particularly for in-service facilities.
Collapse
Affiliation(s)
- Yufeng Tao
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiwen Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hang Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guiling Yang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|
32
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Screening and assessing of pesticide residues and their health risks in vegetable field soils from the Eastern Nile Delta, Egypt. Toxicol Rep 2022; 9:1281-1290. [DOI: 10.1016/j.toxrep.2022.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
|
34
|
Zhang J, Zhang M, Tao H, Qi G, Guo W, Ge H, Shi J. A QSAR-ICE-SSD Model Prediction of the PNECs for Per- and Polyfluoroalkyl Substances and Their Ecological Risks in an Area of Electroplating Factories. Molecules 2021; 26:molecules26216574. [PMID: 34770982 PMCID: PMC8587016 DOI: 10.3390/molecules26216574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of highly fluorinated aliphatic compounds that are persistent and bioaccumulate, posing a potential threat to the aquatic environment. The electroplating industry is considered to be an important source of PFASs. Due to emerging PFASs and many alternatives, the acute toxicity data for PFASs and their alternatives are relatively limited. In this study, a QSAR–ICE–SSD composite model was constructed by combining quantitative structure-activity relationship (QSAR), interspecies correlation estimation (ICE), and species sensitivity distribution (SSD) models in order to obtain the predicted no-effect concentrations (PNECs) of selected PFASs. The PNECs for the selected PFASs ranged from 0.254 to 6.27 mg/L. The ΣPFAS concentrations ranged from 177 to 983 ng/L in a river close to an electroplating industry in Shenzhen. The ecological risks associated with PFASs in the river were below 2.97 × 10−4.
Collapse
Affiliation(s)
- Jiawei Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Mengtao Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
| | - Huanyu Tao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Guanjing Qi
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
| | - Wei Guo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hui Ge
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
- Correspondence: (H.G.); (J.S.)
| | - Jianghong Shi
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; (J.Z.); (M.Z.); (H.T.); (G.Q.); (W.G.)
- Correspondence: (H.G.); (J.S.)
| |
Collapse
|