1
|
Zhang H, Wei C, Chen A, Ke X, Li Z, Qin Z, Tian Y, Wu H, Qiu G, Zhu S. re-aerobic treatment and dissolved oxygen regulation in full-scale aerobic-hydrolysis and denitrification-aerobic process for achieving simultaneous detoxification and nitrification of coking wastewater. BIORESOURCE TECHNOLOGY 2025; 416:131754. [PMID: 39510356 DOI: 10.1016/j.biortech.2024.131754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The biological treatment of coking wastewater is a challenge. The application of prepositioned aerobic process has rarely been systematically reported, among which the detoxification and nitrification performance of the prepositioned aerobic unit (O1) is worthy of investigation. Results indicate that O1 achieves stable simultaneous detoxification and nitrification by regulating the dissolved oxygen, effectively maintaining ammonification, nitrosation, and complete nitrification phases. Microbial community structure, metabolic pathways and functional genes showed different preferences at different phases. High dissolved oxygen concentrations (2.20-3.00 mg/L) benefited the enrichment of carbon and nitrogen related major metabolic pathways and functional genes. BOD5/CODCr ratio, dissolved oxygen and toxic pollutants together shaped microbial community structure and nitrogen transformation processes. Based on the principle of DO regulation, it could assemble a biotransformation compartment for nitrogen removal from complex wastewaters through a pollutant detoxification mechanism of rapid microbial proliferation,and provides a promising approach for toxic industrial wastewater.
Collapse
Affiliation(s)
- Heng Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| | - Acong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Xiong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; School of Environment, South China Normal University, Guangzhou, Guangdong, 510006, PR China
| | - Zhi Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Yuxin Tian
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Huang Z, Yi G, Wang Q, Wang S, Xu Q, Huan C, Wang Y, Zhang W, Wang A, Liu W. Improving microbial activity in high-salt wastewater: A review of innovative approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176278. [PMID: 39278494 DOI: 10.1016/j.scitotenv.2024.176278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The Zero discharge technology has become an important pathroute for sustainable development of high salt wastewater treatment. However, the cohabitation of organic and inorganic debris can cause serious problems such membrane clogging and the formation of hazardous impurity salts that further restrict the recovery of all salt varieties by evaporating and crystallizing. In highly salinized wastewater, biological treatments offer advantages in terms of cost and sustainability when used as a pre-treatment step to eliminate organic debris. On the other hand, high salinity is always a major obstacle to microbial diversity, abundance, and activity, which can result in low organic matter removal effectiveness or the failure of the microbial treatment system. Biofortification techniques can attenuate the negative effects of salt stress and other unfavourable conditions on microorganisms, while the regulation mechanisms of microbial and community collaboration by fortification methods have been an open question. Therefore, a comprehensive summary of the types, mechanisms, and effects of the major biofortification techniques is proposed. This review dialyzes the characteristics and sources of hypersaline wastewater and the main treatment methods. Then, the mechanisms of microbial salt tolerance are summarized and discussed based on microbial characteristics and the protective effects provided by the processes. Finally, the research and application of the main bioaugmentation methods are developed in detail, describing the characteristics, advantages and disadvantages of the different enhancement methods in their implementation. This review provides a more comprehensive perspective on the future engineering applications of bioaugmentation technology, and explores in depth the possibilities of applying biological methods to high-salinity wastewater treatment.
Collapse
Affiliation(s)
- Zongyi Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Genping Yi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiandi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Changan Huan
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yuqi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wenzhe Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; China Testing & Certification International Group Co.,Ltd., Beijng 100024, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
3
|
Zhuang W, Tan Z, Guo Z, Liu Q, Han F, Xie J, Wei C, Zhu S. Nitrogen metabolism network in the biotreatment combination of coking wastewater: Take the OHO process as a case. CHEMOSPHERE 2024; 364:143025. [PMID: 39111675 DOI: 10.1016/j.chemosphere.2024.143025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
As steel production increases, large volumes of highly toxic and nitrogen-rich coking wastewater (CWW) are produced, prompting the development of a novel oxic-hydrolytic-oxic (OHO) biological treatment combination designed for highly efficient removal of nitrogen-contained contaminants. However, previous studies have not comprehensively explored the CWW biotreatment from the perspective of nitrogen metabolism functional genes and pathways. Based on the investigation of taking the full-scale OHO biotreatment combination as a case, it was found that the O1 and O2 bioreactors remove nitrogen through the ammonia assimilation accounting for 33.87% of the total nitrogen (TN) removal rate, while the H bioreactor removes nitrogen through the simultaneous nitrification-denitrification accounting for 61.11% of the TN removal rate. The major ammonia assimilation taxa include Thauera, Immundisolibacter and Thiobacillus; the major nitrifying taxa include Nitrospira and Nitrosomonas; and the major denitrifying taxa include Thiobacillus, Lautropia and Mesorhizobium. Additionally, the H bioreactor exhibits the potential to be optimized for simultaneous nitrification-denitrification coupled with anaerobic ammonium oxidation (Anammox). These understandings will guide the optimization of engineering design and operational practices, contributing to more effective and sustainable wastewater treatment strategies.
Collapse
Affiliation(s)
- Weixiong Zhuang
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zhijie Tan
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Ziyu Guo
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Qiaozhen Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Fangzhou Han
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Junting Xie
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
4
|
Dong J, Chen Z, Han F, Hu D, Ge H, Jiang B, Yan J, Zhuang S, Wang Y, Cui S, Liang Z. Performance of a novel up-flow electrocatalytic hydrolysis acidification reactor (UEHAR) coupled with anoxic/oxic system for treating coking wastewater. WATER RESEARCH 2024; 257:121670. [PMID: 38723347 DOI: 10.1016/j.watres.2024.121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
In this study, the performance of a novel up-flow electrocatalytic hydrolytic acidification reactor (UEHAR) and anoxic/oxic (ANO2/O2) combined system (S2) was compared with that of a traditional anaerobic/anoxic/oxic (ANA/ANO1/O1) system (S1) for treating coking wastewater at different hydraulic retention time (HRT). The effluent non-compliance rates of chemical oxygen demand (COD) of S2 were 45 %, 35 %, 25 % and 55 % lower than S1 with HRT of 94, 76, 65 and 54 h. The removal efficiency of benzene, toluene, ethylbenzene and xylene (BTEX) in S2 was 10.6 ± 2.4 % higher than that in S1. The effluent concentration of volatile phenolic compounds (VPs) in S2 was lower than 0.3 mg/L. The dehydrogenase activity (DHA) and adenosine triphosphate (ATP) of O2 were enhanced by 67.2 ± 26.3 % and 40.6 ± 14.2 % compared with O1, respectively. Moreover, COD was used to reflect the mineralization index of organic matter, and the positive correlation between COD removal rate and microbial activity, VPs, and BTEX was determined. These results indicated that S2 had extraordinary microbial activity, stable pollutant removal ability, and transcendental effluent compliance rate.
Collapse
Affiliation(s)
- Jian Dong
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.
| | - Fei Han
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Bei Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Jitao Yan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Shuya Zhuang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Yifan Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Shiming Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Zhibo Liang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| |
Collapse
|
5
|
Li W, Li X, Zhang Q, Kao C, Hou X, Peng Y. Recent advances of partial anammox by controlling nitrite supply in mainstream wastewater treatment through step-feed mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168965. [PMID: 38030009 DOI: 10.1016/j.scitotenv.2023.168965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
At present, the step-feed process is a very active branch in practical application of mainstream wastewater treatment, and the anammox technology empowers the sustainable development and in-depth research of step-feed process. This review provides a systematically inspection of the realization and application of partial anammox process through step-feed mode, with a particular focus on controlling nitrite supply for anammox. The characteristics and advantages of step-feed mode in traditional management are reviewed. The unique organics utilization strategy by step-feed and indispensable intermittent aeration mode creates advantages for achieving nitritation (NH4+ → NO2-) and denitratation (NO3- → NO2-), providing flexible combination possibility with anammox. Additionally, the lab- or pilot-scale control strategies with different forms of anammox, including nitritation/anammox, denitratation/anammox, and double-anammox (combined nitritation/anammox and denitratation/anammox), are summarized. Finally, future directions and application perspectives on leveraging the relationship between flocs and biofilm, nitritation and denitratation, and different strains to maximize the anammox proportion in N-removal are proposed.
Collapse
Affiliation(s)
- Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaohang Hou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
6
|
Zhou Y, Celine Zhang Y, Hu X, Zhou Y, Bai Y, Xiang P, Zhang Z. Overlooked role in bacterial assembly of different-sized granules in same sequencing batch reactor: Insights into bacterial niche of nutrient removal. BIORESOURCE TECHNOLOGY 2024; 391:129992. [PMID: 37949147 DOI: 10.1016/j.biortech.2023.129992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
The unique ecosystem within different-sized granules affects microbial assembly, which is crucial for wastewater treatment performance. This study operated an aerobic granular sludge system to evaluate its performance in treating synthetic municipal wastewater. Subsequently, the microbial community within different-sized granules was characterized to investigate bacterial assembly, and elucidated their biological potential for nutrient removal. The nutrient removal efficiencies were as follows: 93.8 ± 2.8 % chemical oxygen demand, 65.4 ± 4.0 % total nitrogen, and 93.8 ± 6.8 % total phosphorus. The analysis of microbial assembly unveiled remarkable diversity among different-sized sludges, the genus relative abundance displayed 61.4 % positive and 33.0 % negative correlation with sludge size. The excellent potential for organic degradation, denitrification, and polyphosphate accumulation occurred in sludge sizes of > 0.75 mm, 0.20-0.50 mm, and < 0.20 mm, respectively. Functional annotation further confirmed the nutrient removal potential within different-sized sludges. This study provides valuable insights into the bacterial niche of different-sized sludges, which can enhance their practical application.
Collapse
Affiliation(s)
- Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | | | - Xueli Hu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuanhang Zhou
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ping Xiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
7
|
Chalaris M, Gkika DA, Tolkou AK, Kyzas GZ. Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119627-119653. [PMID: 37962753 DOI: 10.1007/s11356-023-30891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Metallurgy is pivotal for societal progress, yet it yields wastewater laden with hazardous compounds. Adhering to stringent environmental mandates, the scientific and industrial sectors are actively researching resilient treatment and disposal solutions for metallurgical effluents. The primary origins of organic pollutants within the metallurgical sector include processes such as coke quenching, steel rolling, solvent extraction, and electroplating. This article provides a detailed analysis of strategies for treating steel industry waste in wastewater treatment. Recent advancements in membrane technologies, adsorption, and various other processes for removing hazardous pollutants from steel industrial wastewater are comprehensively reviewed. The literature review reveals that advanced oxidation processes (AOPs) demonstrate superior effectiveness in eliminating persistent contaminants. However, the major challenges to their industrial-scale implementation are their cost and scalability. Additionally, it was discovered that employing a series of biological reactors instead of single-step biological processes enhances command over microbial communities and operating variables, thus boosting the efficacy of the treatment mechanism (e.g., achieving a chemical oxygen demand (COD) elimination rate of over 90%). This review seeks to conduct an in-depth examination of the current state of treating metallurgical wastewater, with a particular emphasis on strategies for pollutant removal. These pollutants exhibit distinct features influenced by the technologies and workflows unique to their respective processes, including factors such as their composition, physicochemical properties, and concentrations. Therefore, it is of utmost importance for customized treatment and disposal approaches, which are the central focus of this review. In this context, we will explore these methods, highlighting their advantages and characteristics.
Collapse
Affiliation(s)
- Michail Chalaris
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece.
| | - Despina A Gkika
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| | - Athanasia K Tolkou
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| |
Collapse
|
8
|
Yan B, Jiang L, Zhou H, Okokon Atakpa E, Bo K, Li P, Xie Q, Li Y, Zhang C. Performance and microbial community analysis of combined bioreactors in treating high-salinity hydraulic fracturing flowback and produced water. BIORESOURCE TECHNOLOGY 2023; 386:129469. [PMID: 37451509 DOI: 10.1016/j.biortech.2023.129469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The anoxic/oxic systems are a widely used biological strategy for wastewater treatment. However, little is known about the performance and microbial community correlation of different combined bioreactors in the treatment of high-COD and high-salinity hydraulic fracturing flowback and produced water (HF-FPW). In this study, the performance of Up-flow anaerobic sludge bed-bio-contact oxidation reactor (UASB-BCOR) and Fixed-bed baffled reactor (FBR-BCOR) in treating HF-FPW was investigated and compared. The results suggested the FBR-BCOR could efficiently remove COD, SS, NH4+-N, and oil pollutants, and it exhibited better resistance to the negative interference of hydraulic shock load on it. Besides, the correlation analysis first disclosed the key functional genera during the degradation process, including Ignavibacterium, Ellin6067, and Zixibacteria. Moreover, network analysis revealed that the difference of microbial co-occurrence network structure is the main driving factor for the difference of bioreactor processing capacity. This work demonstrates the feasibility and potential of FBR-BCOR in treating HF-FPW.
Collapse
Affiliation(s)
- Bozhi Yan
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Lijia Jiang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Hanghai Zhou
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Edidiong Okokon Atakpa
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Kuiyong Bo
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Pingyuan Li
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Qinglin Xie
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
9
|
Li D, Yan S, Yong X, Zhang X, Zhou J. Ball-milled magnetic sludge biochar enables fast aerobic granulation in anoxic/oxic process for the treatment of coal chemical wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163241. [PMID: 37011673 DOI: 10.1016/j.scitotenv.2023.163241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Coal chemical wastewater (CCW) containing toxic and hazardous matters requires to be treated prior to discharge. Promoting the in-situ formation of magnetic aerobic granular sludge (mAGS) in continuous flow reactor process has a great potential for CCW remediation. However, long granulation time and low stability limit the application of AGS technology. In this study, Fe3O4/sludge biochar (Fe3O4/SC) with biochar matrix derived from coal chemical sludge were applied to facilitate the aerobic granulation in two-stage continuous flow reactors, containing separated anoxic and oxic reaction units (abbreviated as A/O process). The performance of A/O process was evaluated at various hydraulic retention times (HRTs) (42 h, 27 h, and 15 h). Magnetic Fe3O4/SC with porous structures, high specific surface area (BET = 96.69 m2/g), and abundant functional groups was successfully prepared by ball-milled method. Adding magnetic Fe3O4/SC to A/O process could promote aerobic granulation (85 days) and the removal of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total nitrogen (TN) from CCW at all tested HRTs. Since the formed mAGS had high biomass, good settling ability, and high electrochemical activities, mAGS-based A/O process had high tolerance to the decrease of HRT from 42 h to 15 h for CCW treatment. The optimized HRT for A/O process was 27 h, at which Fe3O4/SC addition can result in the increase of COD, NH4+-N and TN removal efficiencies by 2.5 %, 4.7 % and 10.5 %, respectively. Based on 16S rRNA genes sequencing, the relative abundances of genus Nitrosomonas, Hyphomicrobium/Hydrogenophaga and Gaiella in mAGS accounting for nitrification, denitrification as well as COD removal were increased during aerobic granulation. Overall, this study proved that adding Fe3O4/SC to A/O process was effective for facilitating aerobic granulation and CCW treatment.
Collapse
Affiliation(s)
- Dan Li
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Su Yan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xueying Zhang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Jun Zhou
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
10
|
Zhang K, Li X, Chen M, Sun J, Rong K, Liu S. Multi-chambers of pilot-scale reactor enhanced partial nitritation performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162843. [PMID: 36924965 DOI: 10.1016/j.scitotenv.2023.162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
Nowadays, applying anammox to treat high nitrogenous side-stream wastewater has taken a step forward. However, the partial nitritation process is sensitive to the ammonium concentration and the nitrogen loading rate, which significantly influences the nitrogen removal performance. This study investigated the performance of a novel nitritation pilot-scale reactor which was divided into four chambers. The nitrite accumulation efficiency reached more than 90 % in the rural wastewater treatment process. As the reactor was divided into four chambers, the comprehensive statistical results showed that the concentration of free ammonium in the front chambers had been effectively improved. The proportion of free ammonium concentration (>0.1 mg NH3·L-1), which could inhibit the activity of nitrite oxidizing bacteria, in first chamber (PN1) was 2 times higher than in the last chamber (PN4). Meanwhile, Nitrosomonas, responsible for ammonium oxidation to nitrite, was highly enriched in the first two chambers even though the dissolved oxygen was maintained at 1.5 ± 0.3 mg·L-1. Compare to conventional reactor, the resistance of the novel reactor to volumetric shock loading has been enhanced. Even though the ammonium loading rate fluctuated greatly, the effluent was still stable and could meet the demand following the anammox process. This study demonstrated that the reactor with multi-chambers could effectively improve the nitrite accumulation efficiency in the partial nitritation process and thus provide a new perspective on the partial nitritation process in a single reactor and further promote the anammox performance in the wastewater treatment process.
Collapse
Affiliation(s)
- Kuo Zhang
- College of Environmental Sciences and Engineering, Department of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Xinjue Li
- College of Environmental Sciences and Engineering, Department of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Maofu Chen
- Beijing Enterprises Water Group Limited Co., Ltd., Beijing 102299, PR China
| | - Jingqi Sun
- College of Environmental Sciences and Engineering, Department of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Kaiyu Rong
- College of Environmental Sciences and Engineering, Department of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Department of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
11
|
Zhou Y, Zhou Y, Chen S, Guo N, Xiang P, Lin S, Bai Y, Hu X, Zhang Z. Evaluating the role of algae in algal-bacterial granular sludge: Nutrient removal, microbial community and granular characteristics. BIORESOURCE TECHNOLOGY 2022; 365:128165. [PMID: 36283664 DOI: 10.1016/j.biortech.2022.128165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Algal-bacterial granular sludge (ABGS) and bacterial granular sludge (BGS, control group) were operated over 240 days to investigate the role of algae in treating synthetic municipal wastewater. The results showed that algae significantly improved the removal efficiency of total nitrogen (TN). The nitrogen removal load of ABGS was 2.6 mg-N/g-VSS/day (22.8 %, light) and 1.1 mg-N/g-VSS/day (9.6 %, dark) higher than that of BGS, respectively, which was attributed to algae enhanced NH3-N removal capacity in the anaerobic stage and increased the utilization efficiency of organics in denitrification. Algae increased the relative abundance of denitrifying bacteria, and ABGS (28.83 %) was higher than BGS (14.28 %). Moreover, the dominant phylum of algae was Chlorophyta (98.39 %), the chlorophyll-a was sustained at 1.28 ± 0.26 mg/g-VSS. Algae significantly increased the content of extracellular polymeric substances (EPS), and the increased polysaccharide came from the tightly bound EPS. This study expands the understanding of the role of algae in ABGS.
Collapse
Affiliation(s)
- Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yuanhang Zhou
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Siqin Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Niuniu Guo
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ping Xiang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Shutao Lin
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xueli Hu
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
12
|
Zhang Q, Wu M, Ailijiang N, Mamat A, Chang J, Pu M, He C. Impact of Voltage Application on Degradation of Biorefractory Pharmaceuticals in an Anaerobic-Aerobic Coupled Upflow Bioelectrochemical Reactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15364. [PMID: 36430083 PMCID: PMC9690855 DOI: 10.3390/ijerph192215364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Diclofenac, ibuprofen, and carbamazepine are frequently detected in the environment, where they pose a threat to organisms and ecosystems. We developed anaerobic-aerobic coupled upflow bioelectrochemical reactors (AO-UBERs) with different voltages, hydraulic retention times (HRTs), and types of electrode conversion, and evaluated the ability of the AO-UBERs to remove the three pharmaceuticals. This study showed that when a voltage of 0.6 V was applied, the removal rate of ibuprofen was slightly higher in the system with aerobic cathodic and anaerobic anodic chambers (60.2 ± 11.0%) with HRT of 48 h than in the control systems, and the removal efficiency reached stability faster. Diclofenac removal was 100% in the 1.2 V system with aerobic anodic and anaerobic cathodic chambers, which was greater than in the control system (65.5 ± 2.0%). The contribution of the aerobic cathodic-anodic chambers to the removal of ibuprofen and diclofenac was higher than that of the anaerobic cathodic-anodic chambers. Electrical stimulation barely facilitated the attenuation of carbamazepine. Furthermore, biodegradation-related species (Methyloversatilis, SM1A02, Sporomusa, and Terrimicrobium) were enriched in the AO-UBERs, enhancing pharmaceutical removal. The current study sheds fresh light on the interactions of bacterial populations with the removal of pharmaceuticals in a coupled system.
Collapse
Affiliation(s)
- Qiongfang Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Anwar Mamat
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Jiali Chang
- Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Leshan 614000, China
| | - Miao Pu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
13
|
Hou Z, Zhou X, Zhao Z, Dong W, Wang H, Liu H, Zeng Z, Xie J. Advanced aromatic organic compounds removal from refractory coking wastewater in a step-feed three-stage integrated A/O bio-filter: Spectrum characterization and biodegradation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116140. [PMID: 36070652 DOI: 10.1016/j.jenvman.2022.116140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Extensive presence of aromatic organic compounds (AOCs) is a major course for the non-biodegradability of coking wastewater (COW). In-depth understanding of bio-degradation of AOCs is crucial for optimizing the design and operation of COW biological treatment systems in practical applications. Herein, the behavior and fate of AOCs were explored in a lab-scale step-feed three-stage integrated A/O biofilter (SFTIAOB) treating synthetic COW. Long-term operation demonstrated that COD, phenol, indole, quinoline and pyridine could be simultaneously removed. Phenol and indole were chiefly removed by anoxic zones, while quinoline and pyridine removal occurred in both anoxic and aerobic zones. Ultraviolet-visible spectrum observed that initial carboxylation and subsequent ring cracking and mineralization. Infrared spectroscopy also confirmed that key functional groups were cracked and produced during AOCs bio-degradation. Three-dimensional fluorescence spectrum indicated that significant transformation and elimination of tryptophan and humic acid with high molecular weight. Ring cleavage, distinct degradation and even complete mineralization of complex AOCs were further verified by gas chromatography-mass spectrometry. Moreover, functional degrading bacteria and aromatic ring-cleavage enzymes was successfully identified. Finally, AOCs biodegradation mechanisms by alternating anoxic and aerobic treatment was unraveled. This research provides thorough insights on AOCs biodegradation using a step-feed multi-stage alternating anoxic/oxic COW treatment process.
Collapse
Affiliation(s)
- Zilong Hou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Xin Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huaguang Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Zhiwei Zeng
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Jin Xie
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| |
Collapse
|
14
|
He D, Singh SK, Peng L, Kaushal R, Vílchez JI, Shao C, Wu X, Zheng S, Morcillo RJL, Paré PW, Zhang H. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. THE ISME JOURNAL 2022; 16:2622-2632. [PMID: 35842464 PMCID: PMC9561528 DOI: 10.1038/s41396-022-01288-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022]
Abstract
Flavonoids are stress-inducible metabolites important for plant-microbe interactions. In contrast to their well-known function in initiating rhizobia nodulation in legumes, little is known about whether and how flavonoids may contribute to plant stress resistance through affecting non-nodulating bacteria. Here we show that flavonoids broadly contribute to the diversity of the Arabidopsis root microbiome and preferentially attract Aeromonadaceae, which included a cultivable Aeromonas sp. H1 that displayed flavonoid-induced chemotaxis with transcriptional enhancement of flagellum biogenesis and suppression of fumarate reduction for smooth swims. Strain H1 showed multiple plant-beneficial traits and enhanced plant dehydration resistance, which required flavonoids but not through a sudden "cry-for-help" upon stress. Strain H1 boosted dehydration-induced H2O2 accumulation in guard cells and stomatal closure, concomitant with synergistic induction of jasmonic acid-related regulators of plant dehydration resistance. These findings revealed a key role of flavonoids, and the underlying mechanism, in mediating plant-microbiome interactions including the bacteria-enhanced plant dehydration resistance.
Collapse
Affiliation(s)
- Danxia He
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Sunil K Singh
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Richa Kaushal
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Department of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Juan I Vílchez
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Instituto de Tecnologia Química e Biológica (ITQB), Oeiras, Lisbon, Portugal
| | - Chuyang Shao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoxuan Wu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuai Zheng
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Málaga, Spain
| | - Paul W Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Huiming Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
15
|
Application Potential of Cyanide Hydratase from Exidia glandulosa: Free Cyanide Removal from Simulated Industrial Effluents. Catalysts 2021. [DOI: 10.3390/catal11111410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Industries such as mining, cokemaking, (petro)chemical and electroplating produce effluents that contain free cyanide (fCN = HCN + CN−). Currently, fCN is mainly removed by (physico)chemical methods or by biotreatment with activated sludge. Cyanide hydratases (CynHs) (EC 4.2.1.66), which convert fCN to the much less toxic formamide, have been considered for a mild approach to wastewater decyanation. However, few data are available to evaluate the application potential of CynHs. In this study, we used a new CynH from Exidia glandulosa (protein KZV92691.1 designated NitEg by us), which was overproduced in Escherichia coli. The purified NitEg was highly active for fCN with 784 U/mg protein, kcat 927/s and kcat/KM 42/s/mM. It exhibited optimal activities at pH approximately 6–9 and 40–45 °C. It was quite stable in this pH range, and retained approximately 40% activity at 37 °C after 1 day. Silver and copper ions (1 mM) decreased its activity by 30–40%. The removal of 98–100% fCN was achieved for 0.6–100 mM fCN. Moreover, thiocyanate, sulfide, ammonia or phenol added in amounts typical of industrial effluents did not significantly reduce the fCN conversion, while electroplating effluents may need to be diluted due to high fCN and metal content. The ease of preparation of NitEg, its high specific activity, robustness and long shelf life make it a promising biocatalyst for the detoxification of fCN.
Collapse
|