1
|
Abdel-Hady GN, Hino T, Murakami H, Miwa A, Thi Thuy Cao L, Kuroki T, Nimura-Matsune K, Ikeda T, Ishida T, Funabashi H, Watanabe S, Kuroda A, Hirota R. Laboratory evolution and characterization of nitrate-resistant phosphite dehydrogenase (PtxD) for enhanced cyanobacterial cultivation. J Biotechnol 2025; 402:59-68. [PMID: 40086668 DOI: 10.1016/j.jbiotec.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/16/2025]
Abstract
Phosphite dehydrogenase (PtxD) catalyzes NAD+-dependent oxidation of phosphite (Pt) to phosphate (Pi), offering various biotechnological applications, such as the creation of Pt-dependency for the biological containment of genetically modified organisms. Previously, we established a Pt-dependent cyanobacterial strain (RH714) by expressing PtxD and a reduced phosphorous compound-specific transporter (HtxBCDE) in Synechococcus elongatus PCC 7942 devoid of its endogenous Pi transporters. This strain demonstrated strict Pt dependency but failed to grow in unbuffered BG-11 medium supplemented with 2 % CO2 owing to medium acidification below approximately pH 6.5. The present study aimed to overcome this limitation by passaging the RH714 strain in an unbuffered growth medium, resulting in mutants capable of growing without buffering. The mutant strains carried a Gly157Ser mutation in the Rossmann fold domain of PtxD, leading to approximately five- and eight-fold higher Km values for NAD+ and Pt, respectively, compared with the wild-type enzyme. Interestingly, PtxDG157S exhibited enhanced resistance to nitrate, a major component of BG-11, suggesting that reduced substrate affinity mitigates nitrate inhibition at lower pH levels. Further kinetic analysis revealed that nitrate inhibits wild-type PtxD through an uncompetitive mechanism, targeting the enzyme-substrate complex at an allosteric site. Consequently, the PtxDG157S mutation reduces nitrate binding, facilitating sustained growth of Pt-dependent strains under conditions without pH buffering. These findings imply that PtxDG157S could significantly enhance the applicability of Pt-dependent cyanobacterial strain.
Collapse
Affiliation(s)
- Gamal Nasser Abdel-Hady
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Tomohito Hino
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hiroki Murakami
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Akari Miwa
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Linh Thi Thuy Cao
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomomi Kuroki
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | | | - Takeshi Ikeda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takenori Ishida
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hisakage Funabashi
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Akio Kuroda
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Japan
| | - Ryuichi Hirota
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Seto Inland Sea Carbon-neutral Research Center, Hiroshima University, Japan.
| |
Collapse
|
2
|
Chaos-Hernández D, Reynel-Ávila HE, Bonilla-Petriciolet A, Villalobos-Delgado FJ. Extraction methods of algae oils for the production of third generation biofuels - A review. CHEMOSPHERE 2023; 341:139856. [PMID: 37598949 DOI: 10.1016/j.chemosphere.2023.139856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Microalgae are the main source of third-generation biofuels because they have a lipid content of 20-70%, can be abundantly produced and do not compete in the food market besides other benefits. Biofuel production from microalgae is a promising option to contribute for the resolution of the eminent crisis of fossil energy and environmental pollution specially in the transporting sector. The choice of lipid extraction method is of relevance and associated to the algae morphology (i.e., rigid cells). Therefore, it is essential to develop suitable extraction technologies for economically viable and environment-friendly lipid recovery processes with the aim of achieving a commercial production of biofuels from this biomass. This review presents an exhaustive analysis and discussion of different methods and processes of lipid extraction from microalgae for the subsequent conversion to biodiesel. Physical methods based on the use of supercritical fluids, ultrasound and microwaves were reviewed. Chemical methods using solvents with different polarities, aside from mechanical techniques such as mechanical pressure and enzymatic methods, were also analyzed. The advantages, drawbacks, challenges and future prospects of lipid extraction methods from microalgae have been summarized to provide a wide panorama of this relevant topic for the production of economic and sustainable energy worldwide.
Collapse
Affiliation(s)
- D Chaos-Hernández
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - H E Reynel-Ávila
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico; CONACYT, Av. Insurgentes 1582 Sur, Ciudad de México, 03940, Aguascalientes, Ags, Mexico.
| | - A Bonilla-Petriciolet
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - F J Villalobos-Delgado
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| |
Collapse
|
3
|
Lv YT, Chen X, Zhang X, Zhu C, Pan Y, Sun T, Wang L. Denitrification for acidic wastewater treatment: Long-term performance, microbial communities, and nitrous oxide emissions. J Biosci Bioeng 2022; 134:513-520. [PMID: 36216689 DOI: 10.1016/j.jbiosc.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022]
Abstract
Acidic nitrogenous wastewater often requires alkali pretreatment before biological treatment, which results in increased system complexity and operating costs. The demonstration of denitrification under acidic conditions would provide a theoretical basis for the direct treatment of such wastewater. In this study, the denitrification performance, microbial community, and nitrous oxide (N2O) emissions under acidic conditions were investigated using a sequencing batch reactor. When the influent pH decreased from 5.5 to 4.5, the sequencing batch reactor removed 99.8 ± 0.2% of the nitrate and 92.5 ± 1.6% (n = 171) of the chemical oxygen demand, and the production efficiency of N2O increased significantly to 11.45%. This was 2.6-fold higher than that observed at pH 5.5. The long-term denitrification treatment of acidic wastewater (pH 4.5) led to the formation of granular sludge, and Thauera, Allorhizobium-Neorhizobium-Parararhizobium-Rhizobium, and Diaphorobacter became the dominant microbes with a collective abundance of 81.3%. More importantly, only 0.25% of the nitrate was denitrified as N2O, and the batch test revealed that the emissions of N2O decreased with the increase in sludge size. These results indicate that denitrifying granular sludge formed under acidic conditions and denitrifying bacteria capable of N2O reduction proliferated, which both resulted in a significant reduction in the release of N2O.
Collapse
Affiliation(s)
- Yong-Tao Lv
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China.
| | - Xiaolin Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Xuyang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Chuanshou Zhu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Yongbao Pan
- Shaanxi Modern Architecture Design & Research Institute Co. Ltd., No. 168 Xingtai 7th street, Xi'an 710021, China
| | - Ting Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| | - Lei Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China; Key Laboratory of Environmental Engineering of Shaanxi Province, No. 13 Yanta Road, Xi'an 710055, China
| |
Collapse
|
4
|
Van Lal Chhandama M, Satyan KB. Sustainable approach for biodiesel production and wastewater treatment by cultivating Pleusrastrum insigne in wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:679-686. [PMID: 35875946 DOI: 10.1080/15226514.2022.2103092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The globalized modern world has been confronted with some of the most challenging problems, most of which arise from human activities. Overexploitation of fossil fuels which leads to energy and environmental crisis, and loss of aquatic ecosystem due to improper disposal of household and industrial waste into water bodies constitute some of the biggest emerging global problems. In this study, an unconventional and sustainable approach to produce biodiesel was analyzed by growing Pleurastrum insigne in different wastewater. The growth of P. insigne in wastewater in turn resulted in up to 93.61% reduction in biological oxygen demand, 58.62% reduction in total phosphorus content, and up to 76.61% total nitrogen removal in the wastewater. The total lipid content of the organism was highest in wastewater sample 6 (30.47%). The fatty acid profile also showed a high percentage of C16 and C18 fatty acids which are desirable fatty acids for a high-grade fuel. Production of biodiesel conforming to international standards was predicted from P. insigne cultivated in wastewater confirming the effectiveness of combining wastewater treatment and biodiesel production. Novelty statement: Pleurastrum insigne has never been studied before for phytoremediation of wastewater and biodiesel production. This novel research highlighted the application of P. insigne in wastewater treatment and the viable scope in biodiesel production. This work aimed to provide a significant contribution in reducing the cost of production of biodiesel from microalgae while shedding new light on an eco-friendly approach to wastewater treatment.
Collapse
Affiliation(s)
- Michael Van Lal Chhandama
- Department of Biotechnology, School of Sciences (Block-I), JAIN (Deemed-to-be University), Bengaluru, India
| | - Kumudini Belur Satyan
- Department of Biotechnology, School of Sciences (Block-I), JAIN (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
5
|
Singh V, Mishra V. Evaluation of the effects of input variables on the growth of two microalgae classes during wastewater treatment. WATER RESEARCH 2022; 213:118165. [PMID: 35183015 DOI: 10.1016/j.watres.2022.118165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment carried out by microalgae is usually affected by the type of algal strain and the combination of cultivation parameters provided during the process. Every microalga strain has a different tolerance level towards cultivation parameters, including temperature, pH, light intensity, CO2 content, initial inoculum level, pretreatment method, reactor type and nutrient concentration in wastewater. Therefore, it is vital to supply the right combination of cultivation parameters to increase the wastewater treatment efficiency and biomass productivity of different microalgae classes. In the current investigation, the decision tree was used to analyse the dataset of class Trebouxiophyceae and Chlorophyceae. Various combinations of cultivation parameters were determined to enhance their performance in wastewater treatment. Nine combinations of cultivation parameters leading to high biomass production and eleven combinations each for high nitrogen removal efficiency and high phosphorus removal efficiency for class Trebouxiophyceae were detected by decision tree models. Similarly, eleven combinations for high biomass production, nine for high nitrogen removal efficiency, and eight for high phosphorus removal efficiency were detected for class Chlorophyceae. The results obtained through decision tree analysis can provide the optimum conditions of cultivation parameters, saving time in designing new experiments for treating wastewater at a large scale.
Collapse
Affiliation(s)
- Vishal Singh
- School of Biochemical Engineering, IIT(BHU), Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, IIT(BHU), Varanasi, India.
| |
Collapse
|
6
|
Chen C, Zhang X, Liu C, Wu Y, Zheng G, Chen Y. Advances in downstream processes and applications of biological carboxylic acids derived from organic wastes. BIORESOURCE TECHNOLOGY 2022; 346:126609. [PMID: 34954356 DOI: 10.1016/j.biortech.2021.126609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Recovering carboxylic acids derived from organic wastes from fermentation broth is challenging. To provide a reference for future study and industrial application, this review summarized recent advances in recovery technologies of carboxylic acids including precipitation, extraction, adsorption, membrane-based processes, etc. Meanwhile, applications of recovered carboxylic acids are summarized as well to help choose suitable downstream processes according to purity requirement. Integrated processes are required to remove the impurities from the complicated fermentation broth, at the cost of loss and expense. Compared with chemical processes, biological synthesis is better options due to low requirements for the substrates. Generally, the use of toxic agents, consumption of acid/alkaline and membrane fouling hamper the sustainability and scale-up of the downstream processes. Future research on novel solvents and materials will facilitate the sustainable recovery and reduce the cost of the downstream processes.
Collapse
Affiliation(s)
- Chuang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guanghong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
7
|
Song W, Ding S, Zhou L, Li N, Zhang Y, Li H, Ding J, Lu J. The performance of co-immobilized strains isolated from activated sludge combined with Scenedesmus quadricauda to remove nutrients and organics in black odorous water. BIORESOURCE TECHNOLOGY 2022; 345:126571. [PMID: 34921924 DOI: 10.1016/j.biortech.2021.126571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
In this study, three bacteria were isolated from activated sludge (Pseudomonas aeruginosa, Bacillus subtilis, and Dietzia maris). After that, isolated strains and Scenedesmus quadricauda that could degrade refractory organics, as co-immobilization species, were prepared gel beads to treat black odorous water. Under the optimized conditions, the removal rate of chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen (TN) and total phosphorus (TP) reached 94.36%, 95.7%, 91.22% and 95.27%, respectively, and organics (including aromatic proteins and microbial-by-product-like compounds) were also significantly removed. Microbial analysis reveals that the community structure had a significant difference before and after treatment, and the main dominant at the genus level was transformed from Nitrospirillum (approximately 18.03%) to Flavobacterium (approximately 17.64%). This study also found that the immobilized gel beads have excellent stability and reusability, which provided a feasible and robust bioremediation strategy for the treatment of actual black-odor water.
Collapse
Affiliation(s)
- Wanchao Song
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shaoxuan Ding
- Faculty of Science, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Linqing Zhou
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Na Li
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, PR China; Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Yonghui Zhang
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Huawei Li
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Jincheng Ding
- College of Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Jie Lu
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
8
|
Carvalho YO, Oliveira> WV, Pagano RL, Silva CF. Application of Artificial Neural Networks in the Tertiary Treatment of Liquid Effluent with the Microalgae
Chlorella vulgaris. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yasmin O. Carvalho
- Federal University of Sergipe Postgraduate Program in Chemical Engineering Ave. Marechal Rondon 49100-000 São Cristóvão Brazil
| | - Weverton V. Oliveira>
- Federal University of Sergipe Department of Chemical Engineering/Industrial Biochemistry Laboratory Ave. Marechal Rondon 49100-000 São Cristóvão Brazil
| | - Rogério L. Pagano
- Federal University of Sergipe Postgraduate Program in Chemical Engineering Ave. Marechal Rondon 49100-000 São Cristóvão Brazil
| | - Cristina F. Silva
- Federal University of Sergipe Postgraduate Program in Chemical Engineering Ave. Marechal Rondon 49100-000 São Cristóvão Brazil
- Federal University of Sergipe Department of Chemical Engineering/Industrial Biochemistry Laboratory Ave. Marechal Rondon 49100-000 São Cristóvão Brazil
| |
Collapse
|