1
|
Brtnicky M, Kucerik J, Skarpa P, Mustafa A, Siddiqui MH, Hammerschmiedt T, Naveed M, Kintl A, Baltazar T, Holatko J. Dose-dependent effects of poly-3-hydroxybutyrate on soil quality and maize development: A trade-off between soil quality and crop productivity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118131. [PMID: 40185035 DOI: 10.1016/j.ecoenv.2025.118131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Poly-3-hydroxybutyrate (P3HB), a biopolymer synthesized by soil bacteria, has emerged as a promising tool for sustainable agriculture, offering dual benefits as a carbon reservoir and an eco-friendly biotechnological product. However, its impact on soil nutrient dynamics and plant nutrient uptake remains underexplored. This study evaluated the effects of P3HB biodegradation on soil properties and maize (Zea mays) growth in a pot experiment with five P3HB application rates (0-10 % w/w), in both planted and unplanted soils. Key analyses included soil pH, enzyme activity, microbial biomass carbon (MBC), nutrient contents in soil and plant biomass, and residual P3HB (a rarely addressed aspect in previous research). The addition of P3HB influenced soil biota in both planted and unplanted soils, showing consistent trends across application rates. P3HB reduced soil pH (from 7.4 to 7.1 at 1 % and 6.4 at 10 % P3HB in unplanted soil) and increased total carbon (by approximately 100 % in unplanted and 65 % in planted soils at 10 % P3HB). In unplanted soils, P3HB degraded more quickly, but enzyme activities of β-glucosidase and phosphatase decreased by 20 % and 15 %, respectively. Conversely, arylsulphatase and urease activities increased by 80 % and 200 %, respectively, in both soil variants in both variants. Microbial biomass carbon increased by 500 % in unplanted soils compared to the unamended control, while planted soils showed a 10 % increase. Available nutrients (K and P) were higher in unplanted soils compared to planted soils. In planted soils, competition for nutrients (N, P, K) among maize plants, the rhizobiome, and P3HB-degrading microbes led to reduced above-ground biomass at higher P3HB application rates (from 5.6 g to 0.5 g per plant at 1 % P3HB). Statistical analysis (Eta-squared values and ANOVA) revealed that P3HB dose primarily influenced soil physico-chemical properties and plant parameters, whereas maize planting had a smaller impact, affecting only pH and MBC. P3HB biodegradation improved soil properties, particularly by increasing MBC and total carbon. However, application rates of 1 % and above caused slight acidification, increased nutrient competition, and reduced nutrient availability, ultimately hindering maize growth. These results underscore the trade-offs between improving soil quality and maintaining crop productivity, highlighting the importance of optimizing P3HB application rates in agricultural systems. This study provides critical insights into the dual effects of biodegradable plastics like P3HB, emphasizing their potential as microbial carbon storage polymers while cautioning against excessive use in crop production.
Collapse
Affiliation(s)
- Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno 613 00, Czech Republic.
| | - Jiri Kucerik
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno 613 00, Czech Republic.
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno 613 00, Czech Republic
| | - Adnan Mustafa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno 613 00, Czech Republic; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno 613 00, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno 613 00, Czech Republic; Agricultural Research, Ltd., Troubsko 664 41, Czech Republic
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno 613 00, Czech Republic
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno 613 00, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, Rapotin 788 13, Czech Republic
| |
Collapse
|
2
|
Wang T, Yu L, Wang Z, Yang C, Dong F, Yang D, Xi H, Sun Z, Bol R, Awais M, Yang L, Fu H. Effect of simulated acidification on soil properties and plant nutrient uptake of eggplant in greenhouse. FRONTIERS IN PLANT SCIENCE 2025; 16:1558458. [PMID: 40230604 PMCID: PMC11994667 DOI: 10.3389/fpls.2025.1558458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Soil acidification adversely affects plant growth and development by decreasing the accessibility of roots to essential nutrients. Thus, it decreases crop yield. However, there has been a lack of systematic research on how soil acidification influences nutrient absorption in eggplant cultivated in greenhouse. To address this research gap, an experiment was conducted in a greenhouse with seven different acidity levels (4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5), achieved by adding dilute H2SO4. The findings indicated that the soil organic matter (SOM) content at pH 4.5 decreased by 49% - 50% compared to pH levels of 7.0 - 7.5. In addition, the levels of exchangeable aluminum (Al3+) and soil electrical conductivity (EC) were highest at pH 4.5, with increases of 82 -88 mg kg-1 and 1.78 - 1.82 ms cm-1, respectively, compared to pH 7.0 - 7.5. The total nitrogen (TN), phosphorus (TP), and potassium (TK) content in the soil declined as acidity increased, reaching their lowest levels of 0.59, 0.42, and 3.79 g kg-1 at pH 4.5. Among the available nutrients, only potassium levels did not exhibit significant variation across treatments. However, the levels of macro elements in the soil consistently decreased, while the concentrations of trace elements (Fe, Cu, Zn) increased with rising acidity; conversely, the levels of other trace elements (B, Mo, Mn) decreased. The amounts of exchangeable calcium (Ca2+) and magnesium (Mg2+) at pH levels of 4.5 - 5.0 dropped by 61% - 66% and 70% - 78%, respectively, compared to pH 7.5. Further analyses indicated that soil pH values between 6.0 - 4.5 reduced the nutrient absorption capacity of eggplant, with the lowest nutrient content observed at pH 4.5. Mantel analyses confirmed that soil pH significantly affects plant nutrient uptake. This research provides both theoretical insights and practical guidance for the effective management of vegetable soil in greenhouse.
Collapse
Affiliation(s)
- Tianqi Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Leixin Yu
- Shenyang Urban Construction University, Shenyang, China
| | - Zhen Wang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Shandong, Jinan, China
| | - Chuang Yang
- Shenyang Hengxin Technology Management Consulting Service Co., Ltd, Shenyang, China
| | - Feiyu Dong
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Diwen Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Haijun Xi
- Chaoyang Agricultural Development Service Center, Chaoyang, China
| | - Zhouping Sun
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Roland Bol
- Institute of Bio- and Geosciences, IBG3 Agrosphere, Forschungszentrum Juelich, Juelich, Germany
| | - Muhammad Awais
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Lijuan Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Hongdan Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Khan S, Gao H, Milham P, Eltohamy KM, Ullah H, Mu H, Gao M, Yang X, Hamid Y, Hooda PS, Shaheen SM, Wu N. Predicting the governing factors for the release of colloidal phosphorus using machine learning. CHEMOSPHERE 2024; 362:142699. [PMID: 38944354 DOI: 10.1016/j.chemosphere.2024.142699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Predicting the parameters that influence colloidal phosphorus (CP) release from soils under different land uses is critical for managing the impact on water quality. Traditional modeling approaches, such as linear regression, may fail to represent the intricate relationships that exist between soil qualities and environmental influences. Therefore, in this study, we investigated the major determinants of CP release from different land use/types such as farmland, desert, forest soils, and rivers. The study utilizes the structural equation model (SEM), multiple linear regression (MLR), and three machine learning (ML) models (Random Forest (RF), Support Vector Regression (SVR), and eXtreme Gradient Boosting (XGBoost)) to predict the release of CP from different soils by using soil iron (Fe), aluminum (Al), calcium (Ca), pH, total organic carbon (TOC) and precipitation as independent variables. Results show that colloidal-cations (Fe, Al, Ca) and colloidal-TOC strongly influence CP release, while bioclimatic variables (precipitation) and pH have weaker effects. XGBoost outperforms the other models with an R2 of 0.94 and RMSE of 0.09. SHapley Additive Explanations described the outcomes since XGBoost is accurate. The relative relevance ranking indicated that colloidal TOC had the highest ranking in predicting CP. This was supported by the analysis of partial dependence plots, which showed that an increase in colloidal TOC increased soil CP release. According to our research, the SHAP XGBoost model provides significant information that can help determine the variables that considerably influence CP contents as compared to RF, SVM, and MLR.
Collapse
Affiliation(s)
- Sangar Khan
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China
| | - Huimin Gao
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China
| | - Paul Milham
- Hawkesbury Institute for the Environment, University of Western Sydney, LB 1797, Penrith, New South Wales, 2751, Australia
| | - Kamel Mohamed Eltohamy
- College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Water Relations and Field Irrigation Department, Agricultural and Biological Research Division, National Research Centre, 12622, Cairo, Egypt
| | - Habib Ullah
- Innovation Center of Yangtze River Delta, Zhejiang University, Zhejiang, 311400, China
| | - Hongli Mu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China
| | - Meixiang Gao
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China
| | - Xiaodong Yang
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China
| | - Yasir Hamid
- College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peter S Hooda
- Faculty of Engineering, Computing and the Environment, Kingston University London, UK
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Environmental Sciences, Department of Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo, 315211, China.
| |
Collapse
|
4
|
Wei L, Zhou Y, Yin G, Cui J, Yin J, Liu R, Chen Q, Zhang S. Ammonium addition reduces phosphorus leaching in a long-term mineral or organic fertilized calcareous soil during flooding conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121167. [PMID: 38749136 DOI: 10.1016/j.jenvman.2024.121167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Organic amendment substitutes mineral fertilizers has been proven to increase the organic matter content of soils, which in turn may induce phosphorus (P) mobilization by triggering the redox reaction. However, under flooded conditions according to local agricultural practices, as one of the factors restricting the decomposition of organic matter, the role ammonium plays in P transformation and leaching from soils with different organic matter remains unclear. To address the knowledge gap, the calcareous soils were collected from a long-term field trial (>13 years) containing two treatments with equal P inputs: a long-term mineral fertilization and a long-term organic amendment. Both long-term mineral fertilized soil and long-term organic amended soil were split into ammonium applications or no ammonium applications. A series of column devices were deployed to create flooded conditions and monitor the P leaching from the collected soils. The K-edge X-ray absorption near-edge structure and sequential extraction method were employed jointly to detect soil P fractions and speciation, and the P sorption/desorption characteristics of soil were evaluated by Langmuir fitting. The results showed a reduction of cumulative leached P from soils by 33.2%-43.3% after ammonium addition, regardless of previous long-term mineral fertilization or organic amendment history. A significant enhancement of soil labile P pool (indicated by the H2O-P fraction and NaHCO3-P fraction) after ammonium addition results in the reduction in soil P leaching. The reduced P sorption capacity coupled with the transformation from hydroxyapatite to β-tricalcium phosphate indicated that the phosphate retention is attributed to the precipitation formation rather than phosphate sorption by soil. The present study highlights that the ammonium addition could affect the phosphate precipitation transformation. This may be attributed to the effect of ammonium addition on the calcium and magnesium ion content and molar ratio in this soil, thereby regulating the form of soil phosphate precipitation. The mechanisms revealed in this study can support developing optimized agricultural management practices to alleviate soil P loss.
Collapse
Affiliation(s)
- Lulu Wei
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Yan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Guiming Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Jianyu Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Junhui Yin
- School of Agriculture, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Rui Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China.
| | - Shuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-Control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, PR China.
| |
Collapse
|
5
|
Eltohamy KM, Menezes-Blackburn D, Klumpp E, Liu C, Jin J, Xing C, Lu Y, Liang X. Microbially Induced Soil Colloidal Phosphorus Mobilization Under Anoxic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7554-7566. [PMID: 38647007 DOI: 10.1021/acs.est.3c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Understanding the behavior of colloidal phosphorus (Pcoll) under anoxic conditions is pivotal for addressing soil phosphorus (P) mobilization and transport and its impact on nutrient cycling. Our study investigated Pcoll dynamics in acidic floodplain soil during a 30-day flooding event. The sudden oxic-to-anoxic shift led to a significant rise in pore-water Pcoll levels, which exceeded soluble P levels by more than 2.7-fold. Colloidal fractions transitioned from dispersed forms (<220 nm) to colloid-associated microaggregates (>220 nm), as confirmed by electron microscopy. The observed increase in colloidal sizes was paralleled by their heightened ability to form aggregates. Compared to sterile control conditions, anoxia prompted the transformation of initially dispersed colloids into larger particles through microbial activity. Curiously, the 16S rRNA and ITS microbial diversity analysis indicated that fungi were more strongly associated with anoxia-induced colloidal release than bacteria. These microbially induced shifts in Pcoll lead to its higher mobility and transport, with direct implications for P release from soil into floodwaters.
Collapse
Affiliation(s)
- Kamel M Eltohamy
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Water Relations & Field Irrigation, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Daniel Menezes-Blackburn
- Department of Soils, Water and Agricultural Engineering, Sultan Qaboos University, P.O. Box 34, Al-Khoud 123, Sultanate of Oman
| | - Erwin Klumpp
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Chunlong Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junwei Jin
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaogang Xing
- Analysis Center of Agrobiology and Environmental Sciences of Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
6
|
Ding S, Zhang S, Wang Y, Chen S, Chen Q. Restricted colloidal-bound phosphorus release controlled by alternating flooding and drying cycles in an alkaline calcareous soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123204. [PMID: 38142807 DOI: 10.1016/j.envpol.2023.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Colloid-facilitated phosphorus (P) migration plays an important role in P loss from farmland to adjacent water bodies. However, the dynamics of colloidal P (Pcoll) release as influenced by irrigation in alkaline calcareous soil remains a knowledge gap. The present study, monitored the dynamic change of Pcoll under different water management strategies: 1) control, 2) flooding, and 3) alternating flooding and drying cycles. Soil water-dispersible colloids (0.6 nm-1 μm) were extracted by combining filtration and ultrafiltration methods. The contents of P, cation and organic carbon in the water-dispersible colloids were determined and the stability and mineral composition of colloidal fractions were characterized. The results showed that Pcoll ranged from 16.5 to 25.5 mg kg-1 and represented 42.8%-64.9% of the water-extracted P in the control. Flooding significantly decreased the Pcoll content by 16.0%-62.1% (mean 32.7%) and it may be attributed to the dissolution of colloidal iron (Fe) bound P. The alternating flooding and drying treatment significantly reduced the Pcoll content by 11.6%-88.0% (mean 67.6%). The Pcoll content of the flooding event was always greater than the Pcoll content of the drying event during flooding and drying cycles. Redundancy analysis and random forest modeling showed that the colloidal calcium (Ca) and ionic strength in soil solutions had negative correlations with the Pcoll content, and pH, ionic strength and truly dissolved P were the critical factors affecting Pcoll. Drying of the flooded soil led to the decrease of pH and the increase of ionic strength, colloidal Ca content and positive charges of colloid surfaces, which promoted colloid aggregation and enhanced soil P sorption capacity. This restricted the loss potential of Pcoll. In summary, controlled flooding and drainage when managed correctly have a role to play in mitigating Pcoll loss from P-enriched calcareous soils.
Collapse
Affiliation(s)
- Shuai Ding
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Shuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, PR China.
| | - Yang Wang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, Beijing, 100193, PR China
| | - Shuo Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| |
Collapse
|
7
|
Zhang S, Wei L, Trakal L, Wang S, Shaheen SM, Rinklebe J, Chen Q. Pyrolytic and hydrothermal carbonization affect the transformation of phosphorus fractions in the biochar and hydrochar derived from organic materials: A meta-analysis study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167418. [PMID: 37774876 DOI: 10.1016/j.scitotenv.2023.167418] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Carbonized organic materials are widely used to achieve soil improvement and alleviate soil pollution. The carbonization process significantly changes the total phosphorus (P) content and the P form in the solid phase derived from organic materials, which in turn has a significant impact on the P fertilizer effect in soils. In the present study, a meta-analysis with 278 observational data was conducted to detect the impact of the carbonization process (including pyrolytic carbonization and hydrothermal carbonization) on the transformation of P fractions in biochar or hydrochar derived from different organic materials. The results showed that the carbonization process significantly increased the total P content of the solid phase by 67.9%, and that the rate of P recovery from raw materials stayed high with a mean value of 86.8%. Among them, the impact of sludge-derived char was smaller when compared to the manure-derived char and biomass-derived char. The increase of total P in the biochar (or hydrochar) produced at >500 °C (or >200 °C) was more notable than that at <500 °C (or <200 °C). Simultaneously, the carbonization process significantly decreased the proportion of available P pool in the solid phase by 51.7% on average and increased the proportion of stable P pool in the solid phase by 204%. Appropriate production temperature helps to adjust the proportion of stable P pool in the solid phase. This meta-analysis pointed out that the carbonized solid phase recovers most of the P in the feedstock and that it promotes a significant transformation of available P pool in the feedstock to stable P in the carbonized solid phase. These findings provide useful information for the rational use of carbonization technology, the development of corresponding field management strategies, and the potential value of carbonized solid phase utilization.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China; Key Laboratory of Arable Land Quality Monitoring and Evaluation, State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China
| | - Lulu Wei
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6, Suchdol, Czech Republic
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing 100193, PR China.
| |
Collapse
|
8
|
Song X, Alewell C, Borrelli P, Panagos P, Huang Y, Wang Y, Wu H, Yang F, Yang S, Sui Y, Wang L, Liu S, Zhang G. Pervasive soil phosphorus losses in terrestrial ecosystems in China. GLOBAL CHANGE BIOLOGY 2024; 30:e17108. [PMID: 38273551 DOI: 10.1111/gcb.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024]
Abstract
Future phosphorus (P) shortages could seriously affect terrestrial productivity and food security. We investigated the changes in topsoil available P (AP) and total P (TP) in China's forests, grasslands, paddy fields, and upland croplands during the 1980s-2010s based on substantial repeated soil P measurements (63,220 samples in the 1980s, 2000s, and 2010s) and machine learning techniques. Between the 1980s and 2010s, total soil AP stock increased with a small but significant rate of 0.13 kg P ha-1 year-1 , but total soil TP stock declined substantially (4.5 kg P ha-1 year-1 ) in the four ecosystems. We quantified the P budgets of soil-plant systems by harmonizing P fluxes from various sources for this period. Matching trends of soil contents over the decades with P budgets and fluxes, we found that the P-surplus in cultivated soils (especially in upland croplands) might be overestimated due to the great soil TP pool compared to fertilization and the substantial soil P losses through plant uptake and water erosion that offset the P additions. Our findings of P-deficit in China raise the alarm on the sustainability of future biomass production (especially in forests), highlight the urgency of P recycling in croplands, and emphasize the critical role of country-level basic data in guiding sound policies to tackle the global P crises.
Collapse
Affiliation(s)
- Xiaodong Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Christine Alewell
- Environmental Geosciences, Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Pasquale Borrelli
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Yuanyuan Huang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huayong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shunhua Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yueyu Sui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Liangjie Wang
- Co-Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Siyi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ganlin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
9
|
Zhang S, Zhu Q, de Vries W, Ros GH, Chen X, Muneer MA, Zhang F, Wu L. Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118531. [PMID: 37423193 DOI: 10.1016/j.jenvman.2023.118531] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Soil amendments, including lime, biochar, industrial by-products, manure, and straw are used to alleviate soil acidification and improve crop productivity. Quantitative insight in the effect of these amendments on soil pH is limited, hampering their appropriate use. Until now, there is no comprehensive evaluation of the effects of soil amendments on soil acidity and yield, accounting for differences in soil properties. We synthesized 832 observations from 142 papers to explore the impact of these amendments on crop yield, soil pH and soil properties, focusing on acidic soils with a pH value below 6.5. Application of lime, biochar, by-products, manure, straw and combinations of them significantly increased soil pH by 15%, 12%, 15%, 13%, 5% and 17%, and increased crop yield by 29%, 57%, 50%, 55%, 9%, and 52%, respectively. The increase of soil pH was positively correlated with the increase in crop yield, but the relationship varied among crop types. The most substantial increases in soil pH and yield in response to soil amendments were found under long-term applications (>6 year) in strongly acidic (pH < 5.0) sandy soils with a low cation exchange capacity (CEC, <100 mmolc kg-1) and low soil organic matter content (SOM, <12 g kg-1). Most amendments increased soil CEC, SOM and base saturation (BS) and decreased soil bulk density (BD), but lime application increased soil BD (1%) induced by soil compaction. Soil pH and yield were positively correlated with CEC, SOM and BS, while yield declined when soils became compacted. Considering the impact of the amendments on soil pH, soil properties and crop yield as well as their costs, the addition of lime, manure and straw seem most appropriate in acidic soils with an initial pH range from <5.0, 5.0-6.0 and 6.0-6.5, respectively.
Collapse
Affiliation(s)
- Siwen Zhang
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qichao Zhu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572000, China.
| | - Wim de Vries
- Wageningen University and Research, Environmental Systems Analysis Group, PO Box 47, 6700AA, Wageningen, the Netherlands
| | - Gerard H Ros
- Wageningen University and Research, Environmental Systems Analysis Group, PO Box 47, 6700AA, Wageningen, the Netherlands
| | - Xiaohui Chen
- Research Centre of Phosphorous Efficient Utilization and Water Environment Protection Along the Yangtze River Economic Belt, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Liangquang Wu
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Hussain A, Jamil MA, Abid K, Chen L, Khan K, Duan W, Alam T, Riaz U. Variations in soil phosphorus fractionations in different water-stable aggregates under litter and inorganic fertilizer treatment in Korean pine plantation and its natural forest. Heliyon 2023; 9:e17261. [PMID: 37389077 PMCID: PMC10300375 DOI: 10.1016/j.heliyon.2023.e17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023] Open
Abstract
Soil aggregation in forest ecosystem is considered as a significant physical process mainly influenced by manure, fertilizers or combination. This aggregation may directly alter the soil nutrient and their fractions in soil. So, soil samples were collected from two types of forests i.e. Natural Korean pine forests (NKPF) and Korean pine plantation (KPP) in order to know the quantities of organic and inorganic Phosphorus (P) amounts in different aggregate sizes viz. >5 mm, 2-5 mm, 0.25-2 mm, <0.25 mm under forest litter and synthetic fertilizer application below the treatments as undisturbed soil (CK), removed litter (RL), altered litter (AL) while the fertilizer treatments were as control; C: (No added N and P,), L: low (5 g N m-2 a-1 + 5 g P m-2 a-1), M: medium (15 g N m-2 a-1 + 10 g P m-2 a-1) and H: high concentration (30 g N m-2 a-1 + 20 g P m-2 a-1), respectively. The results showed that H2O-Pi, NaHCO3-Pi, Residual Pi, SOC were highest retained in larger soil aggregates (>5 mm) and decreased with the decreasing aggregate size, while other variables, i.e., NaOH-Pi, NaHCO3-Po, pH and T-N were not affected in aggregate size. H2O-Pi (48 ppm), NaHCO3-Pi (68 ppm), NaHCO3-Po (80 ppm), NaOH-Po (623 ppm), HCL-Po (67 ppm), SOC (20.36 ± 1.6) was estimated in medium fertilizer treatment. PCA analysis showed that spread/variance of data points on F1 (62.90%) is more than spread/variance of data points on F2 (57.74%) in NKPF and KPP, respectively, while correlation matrix showed high correlation between H2O-Pi and NaOH-Pi (0.63) and H2O-Pi and NaHCO3-Pi (0.63) while a strong negative correlation was present between Res-Pi and Po (-0.61). Moreover, litter inputs increased the organic-P fractions in soil particularly at medium treatment.
Collapse
Affiliation(s)
- Anwaar Hussain
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Muhammad Atif Jamil
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Kulsoom Abid
- Department of Natural Resource Management (NRM), National Agricultural Research Center (NARC), Islamabad 44000, Pakistan
| | - Lixin Chen
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Kashif Khan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wenbiao Duan
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Tajwar Alam
- Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Umair Riaz
- Department of Soil & Environmental Sciences, MNS University of Agriculture, Multan-60000, Pakistan
| |
Collapse
|
11
|
Ding S, Zhang T, Fan B, Fan B, Yin J, Chen S, Zhang S, Chen Q. Enhanced phosphorus fixation in red mud-amended acidic soil subjected to periodic flooding-drying and straw incorporation. ENVIRONMENTAL RESEARCH 2023; 229:115960. [PMID: 37116675 DOI: 10.1016/j.envres.2023.115960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Globally, red mud is a solid waste from the aluminum industry, which is rich in iron oxides. It is an effective soil amendment in agriculture that protects connected waters from legacy diffuse phosphorus (P) soil losses. However, other management practices such as flooding and drying and/or organic carbon inputs could potentially alter P fixation in these red mud-amended soils thereby releasing P to waters. The present study was designed and conducted to monitor the mobilization of P in a red mud-amended acidic soil subjected to periodic flooding-drying, straw incorporation, and a mix of both management practices. Sequential extraction and K edge X-ray absorption near-edge structure spectroscopy (k-XANES) were employed to distinguish P fractions/species and the Langmuir model was fitted to evaluate soil P sorption capacity. The content of labile P indicated by CaCl2-P was increased significantly by 101% and 28.7% in the straw incorporation and periodic flooding-drying treatments, while it decreased significantly by 22.3% in the combined periodic flooding-drying with straw incorporation treatment, compared with Control. The inherent phosphate contained in sorghum straw, and the enhanced iron (Fe) reduction and dissolution of Calcium (Ca)-bound P induced by straw addition contributed to mobilization of P in the straw incorporation treatment. In contrast, the increased poorly crystalline Al/Fe oxides-bound P and occluded Fe-bound P fraction in the combined periodic flooding-drying with straw incorporation treatment explains the decrease in CaCl2-P. Furthermore, the increased soil P sorption capacity and the decreased P desorption rate were also responsible for the reduced P loss risk in the treatment. The results of structural equation modelling (SEM) indicated that organically complexed Fe and Fe-bound P were directly affecting P mobilization in the amended soil. Overall, the present study shows that appropriate flooding-drying events coupled with straw incorporation could be a mitigation practice for stabilizing P in red mud-amended soil. However, before it can be applied on a wide scale, multi-point and field trials should be carried out to further evaluate actual environmental implications.
Collapse
Affiliation(s)
- Shuai Ding
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Tiantian Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Beibei Fan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, PR China
| | - Bingqian Fan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Junhui Yin
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Shuo Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Shuai Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China.
| | - Qing Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|
12
|
Xia L, van Dael T, Bergen B, Smolders E. Phosphorus immobilisation in sediment by using iron rich by-product as affected by water pH and sulphate concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160820. [PMID: 36526189 DOI: 10.1016/j.scitotenv.2022.160820] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Iron (Fe) rich by-product from drinking water treatment plants can be added to rivers and lakes to immobilise phosphorus (P) in sediment and lower eutrophication risks. This study was set up to investigate the P immobilisation efficiency of an Fe rich by-product as affected by the pH and sulphate (SO4) concentration in the overlying water. Both factors are known to inhibit long-term P immobilisation under anoxic conditions. A static sediment-water incubation was conducted at varying buffered water pH values (6, 7 and 8) and different initial SO4 concentrations (0-170 mg SO4 L-1) with or without Fe rich by-product amendment to the sediment. In the unamended sediment, the P release to the overlying water was highest, and up to 6 mg P L-1, at lowest water pH due to higher reductive dissolution of Fe(III) oxyhydroxides. The Fe rich by-product amendment to the sediment largely reduced P release from sediment by factors 50-160 depending on pH, with slightly lowest immobilisation at highest pH 8, likely because of pH dependent P sorption. The total sulphur (S) concentrations in the overlying water reduced during incubation. The P release in unamended sediments increased from 2.7 mg L-1 to 4.2 mg L-1 with higher initial SO4 concentrations, suggesting sulphide formation during incubation and FeS precipitation that facilitates release of P. However, no such SO4 effects were found where Fe rich by-product was applied that lowered P release to <0.1 mg L-1 illustrating high stability of immobilised P in amended sediments. This study suggests that Fe rich by-product is efficient for P immobilisation but that loss of Fe in low pH water may lower its long-term effect.
Collapse
Affiliation(s)
- Lei Xia
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | - Toon van Dael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Benoit Bergen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Erik Smolders
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Peng Y, Zhang T, Tang B, Li X, Cui S, Guan CY, Zhang B, Chen Q. Interception of fertile soil phosphorus leaching with immobilization materials: Recent progresses, opportunities and challenges. CHEMOSPHERE 2022; 308:136337. [PMID: 36084834 DOI: 10.1016/j.chemosphere.2022.136337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The non-point source pollution induced by phosphorus (P) leaching from fertile soils is accelerating the eutrophication phenomena in aqueous ecosystems. Herein, to alleviate and intercept the P leaching from the fertile soils, diverse P immobilization materials (PIM) which can transform labile P into stable P via a range of physicochemical and biological interactions have been adopted and received increasing research interest. However, the remediation mechanisms of different PIMs were complex and vary with soil properties and PIM application methods. In this review, the P fraction and mobility characteristics of different fertile soils were first introduced. Then, three kinds of PIM including inorganic materials (e.g., clay minerals and red mud), organic materials (e.g., polyacrylamide), and composites (e.g., modified biochar) applied in soil P leaching interception were concluded. The key factors (i.e., soil pH, soil texture, organic matter content and variable soil moisture) influencing PIM performance and potential PIMs used for reducing soil P leaching were also introduced. Current review can favor for proposing more suitable and insightful strategies to regulate the fertile soil P and achieve the dual goals of improving the crop land quality and yield, and preventing agricultural non-point source pollution.
Collapse
Affiliation(s)
- Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 523758, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Tiantian Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Bingbing Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 523758, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National ILan University, Yilan 260, Taiwan
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Peng Y, Zhang B, Guan CY, Jiang X, Tan J, Li X. Identifying biotic and abiotic processes of reversing biochar-induced soil phosphorus leaching through biochar modification with MgAl layered (hydr)oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157037. [PMID: 35777556 DOI: 10.1016/j.scitotenv.2022.157037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Biochar (BC) as a increasing widely adopted soil amendments showed potential threat to soil P leaching, but the relevant mechanisms were not clear enough and relevant strategy should be proposed to address the P leaching induced by BC application. In this study, effects of ordinary corn straw BC, and a fabricated Mg/Al-LDHs modified biochar (LBC) on soil P availability, adsorption, fraction and mobility were compared and investigated by conducting the column and incubation experiments at biochar to soil rate of 1 %, 2 % and 4 % (w/w). Chemical sequential extraction methods and various solid-state method (i.e., three-dimensional excitation emission matrix (EEM), x-ray diffraction (XRD), scanning electron micrograph (SEM) and P K-edge X-ray absorption near edge structure (XANES)) were utilized to give deep insights into the P mobilization and immobilization mechanisms by respectively applying the BC and LBC. Results of incubation experiments showed that applying the LBC reduced the labile P with significant CaP transformation to Al-retained P, while ordinary BC promoted the Fe/Al-P transformation to labile dibasic calcium phosphate and monobasic calcium phosphate evidenced by the EEM analysis, in-situ XANES investigation and chemical sequential extraction methods. Results of phosphatase and microbial analyses indicated that the decreased labile P after 30 days' incubation and the mitigated P leaching in LBC treatment were dominantly ascribed to abiotic processes of inorganic P transformation and (de)sorption. This research gave deep insights into abiotic and biotic processes of ordinary biochar promoting soil P leaching, and important implications for applying engineered biochar in reducing P leaching and improving soil productivity.
Collapse
Affiliation(s)
- Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China.
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Xiaoqian Jiang
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China
| | - Jinfang Tan
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China.
| |
Collapse
|
15
|
Effects of Combined Applications of Biogas Slurry and Biochar on Phosphorus Leaching and Fractionations in Lateritic Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14137924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diverse soil phosphorus (P)-leaching phenomena induced by environmental disturbance have gained increasing attention. Two kinds of typical organic materials, biochar and biogas slurry, (BS) are widely utilized to amend agricultural soil, but there is little research that gives insight into their co-effects on soil P-leaching and corresponding mechanisms. Herein, a total of six treatments (viz., control, 2% (w/w) biochar, low ratio BS with or without 2% (w/w) biochar, high ratio BS with or without 2% (w/w) biochar) were conducted to investigate the P-leaching and fraction transformation mechanisms. The column experiment results showed that compared to control, sole BS application or biochar both can slightly enhance the soil-P loss by 134.8% and 39.8%. High ratios of BS induced higher P loss than the low ratios of BS by 125.1%. In comparison with the sole BS treatment, combined BS and biochar application increase P loss but result in less soil leaching of basic cations. The incubation experiment results showed that the enhanced P-leaching in combined BS and biochar treatment is probably attributable to the enhanced soil pH, decreased DPS, soil P adsorption capacity, and transformation of moderately labile Fe–P into labile P. This research helps in understanding the abiotic process of biochar and BS in promoting soil P-leaching and soil-P management using biochar and biogas slurry.
Collapse
|
16
|
Xu F, Ma H, Liang J, Okopi SI, Yang S, Cao L, Sun W. Effects of different conditions tested "in vitro" on the phosphorus runoff potential of livestock manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 147:30-35. [PMID: 35597167 DOI: 10.1016/j.wasman.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the changes of swine and dairy manure characteristics during a long-term storage (150-180 days) under 4 °C, 20 °C, and 37 °C, sealed and unsealed conditions. Water extractable phosphorus (WEP) of both manures rapidly increased during the first 15-30 days and then decreased. At the end of the storage, the WEP reduction was 90%±3% and 71%±5% of the initial concentration for swine manure and dairy manure, respectively. Generally, unsealed storage and higher temperatures led to more WEP reduction. This study suggested that manure stored for less than 30 days had the highest P runoff potential, while a long-term manure storage reduced P runoff potential compared to freshly excreted manure.
Collapse
Affiliation(s)
- Fuqing Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongzhen Ma
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Jiawei Liang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Solomon Inalegwu Okopi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shoujun Yang
- Yantai Institute, China Agricultural University, Yantai 264670, China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
17
|
Zhang S, Wang L, Chen S, Fan B, Huang S, Chen Q. Enhanced phosphorus mobility in a calcareous soil with organic amendments additions: Insights from a long term study with equal phosphorus input. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114451. [PMID: 35007795 DOI: 10.1016/j.jenvman.2022.114451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
The agricultural practice of replacing chemical fertilizers with organic amendments (manure and/or straw) may have consequences for phosphorus (P) loss to the environment. Such a knowledge gap was examined using a ten-year field trial in calcareous soil containing four treatments with the equal annual P input but varied organic amendment combinations as follows: mineral fertilizer only as control (MF), mineral fertilizer coupled with manure (MM), mineral fertilizer coupled with manure and straw (MMS) and mineral fertilizer coupled with straw (MS). The soil P distribution, P fractions and speciation, Fe(III) reduction and P sorption kinetics were investigated using the chemical extraction, K edge X-ray absorption near-edge structure and Langmuir equations. The electronic shuttle capacity of soils and speciation of soil dissolved organic matter (DOM) were also evaluated using electrochemical methods, three-dimensional excitation-emission matrix fluorescence spectroscopy and Fourier transform infrared spectra methods. Results showed that soil Olsen-P and total P increased at depths of 20-40 cm in MM, MMS and MS treatments, suggesting that manure and/or straw addition significantly mobilized P in the soil profile. Manure and/or straw addition also decreased soil maximum P sorption capacity (Smax) and increased the desorption rate at depths of 0-20 cm in soil across treatments. At a depth of 0-20 cm in soil of the MS treatment, the enhanced Fe(Ⅲ) reduction coupled with a decrease of Fe-bound P supports that Fe reduction dominates the mobilization of P. The transformation of Ca bound-P to Al/Fe bound-P in a depth of 0-20 cm in soil of the MM treatment may be due to the high proportion of humic-like substances in the DOM at a depth of 0-20 cm in soil of the MM treatment, which may have caused a slight/microsite acidification. These results can help to develop optimized fertilization practices to effectively mitigate P loss from calcareous soils with manure and/or straw addition.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Liying Wang
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, PR China
| | - Shuo Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China
| | - Bingqian Fan
- Key Laboratory of Non-point Source Pollution Control, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Shaowen Huang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian, Beijing, 100193, PR China.
| |
Collapse
|
18
|
Zhang T, Wu X, Shaheen SM, Abdelrahman H, Ali EF, Bolan NS, Ok YS, Li G, Tsang DCW, Rinklebe J. Improving the humification and phosphorus flow during swine manure composting: A trial for enhancing the beneficial applications of hazardous biowastes. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127906. [PMID: 34891020 DOI: 10.1016/j.jhazmat.2021.127906] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Improving the recovery of organic matter and phosphorus (P) from hazardous biowastes such as swine manure using acidic substrates (ASs) in conjunction with aerobic composting is of great interest. This work aimed to investigate the effects of ASs on the humification and/or P migration as well as on microbial succession during the swine manure composting, employing multivariate and multiscale approaches. Adding ASs, derived from wood vinegar and humic acid, increased the degree of humification and thermal stability of the compost. The 31P nuclear magnetic resonance spectroscopy and X-ray absorption near-edge structure analyses demonstrated compost P was in the form of struvite crystals, Ca/Al-P phases, and Poly-P (all inorganic P species) as well as inositol hexakisphosphate and Mono-P (organophosphorus species). However, the efficiency of P recovery could be improved by generating more struvite by adding the ASs. The flows among nutrient pools resulted from the diversity in the dominant microbial communities in different composting phases after introducing the ASs and appearance of Bacillus spp. in all phases. These results demonstrate the potential value of ASs for regulating and/or improving nutrients flow during the composting of hazardous biowastes for producing higher quality compost, which may maximize their beneficial benefits and applications.
Collapse
Affiliation(s)
- Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Xiaosha Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
19
|
Shaheen SM, Wang J, Baumann K, Ahmed AA, Hsu LC, Liu YT, Wang SL, Kühn O, Leinweber P, Rinklebe J. Stepwise redox changes alter the speciation and mobilization of phosphorus in hydromorphic soils. CHEMOSPHERE 2022; 288:132652. [PMID: 34695481 DOI: 10.1016/j.chemosphere.2021.132652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Sustainable engineering and management of hydromorphic arable soils need deep knowledge about the redox-mediated interactions between nutrients and soil colloids. Consequently, we examined the redox-mediated interactions of P with metal oxides and organic carbon (OC) in toe-, mid-, and upper-slope arable soils under dynamic redox changes using geochemical (biogeochemical microcosm), spectroscopic (XANES), and molecular (quantum chemical calculations (QCC)) approaches. We controlled the redox potential (EH) in two directions i.e., 1) slowly oxidizing direction (SOD; EH increased from -286 to +564 mV); and 2) slowly reducing direction (SRD; EH decreased from +564 to -148 mV). In the SOD of all soils, P, Fe2+ and OC mobilized at EH ≤ 200 mV, due to the pH decrease from 7.2 to 4.1 and dissolution of Fe-oxyhydroxides/carbonates, as indicated by the decrease of Fe-P and Ca-P determined by P-K-edge-XANES. At EH > 200 mV, P immobilized due to the strong P binding with Fe3+ as suggested by QCC. In the SRD of mid-slope-soil, P immobilized with decreasing EH, due to pH increase and P retention by aromatic carbon and/or precipitation by carbonates, as supported by increase of organic-P and Ca-P. These findings help for management of P in arable soils.
Collapse
Affiliation(s)
- Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516, Kafr El-Sheikh, Egypt.
| | - Jianxu Wang
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082, Guiyang, PR China
| | - Karen Baumann
- University of Rostock, Faculty of Agricultural and Environmental Science, Soil Sciences, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| | - Ashour A Ahmed
- University of Rostock, Institute of Physics, D-18059, Rostock, Albert-Einstein-Str. 23-24, Germany; University of Rostock, Department of Life, Light, and Matter (LLM), Albert-Einstein-Str. 25, D-18059, Rostock, Germany
| | - Liang-Ching Hsu
- Department of Soil and Environmental Sciences, National Chung-Hsing University, 145 Xingda Rd., Taichung, 402, Taiwan
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences & Innovation and Development Center of Sustainable Agriculture, National Chung-Hsing University, 145 Xingda Rd., Taichung, 402, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, 1 Sect. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Oliver Kühn
- University of Rostock, Institute of Physics, D-18059, Rostock, Albert-Einstein-Str. 23-24, Germany; University of Rostock, Department of Life, Light, and Matter (LLM), Albert-Einstein-Str. 25, D-18059, Rostock, Germany
| | - Peter Leinweber
- University of Rostock, Faculty of Agricultural and Environmental Science, Soil Sciences, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany; University of Rostock, Department of Life, Light, and Matter (LLM), Albert-Einstein-Str. 25, D-18059, Rostock, Germany
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul, 05006, Republic of Korea.
| |
Collapse
|
20
|
A Life Cycle Assessment of an Energy-Biochar Chain Involving a Gasification Plant in Italy. LAND 2021. [DOI: 10.3390/land10111256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Life cycle assessment (LCA) is a fundamental tool for evaluating the environmental and energy load of a production cycle. Its application to renewable energy production systems offers the possibility of identifying the environmental benefits of such processes—especially those related to the by-products of production processes (i.e., digestion or biochar). Biochar has received worldwide interest because of its potential uses in bioenergy production, due to its coproducts (bio-oil and syngas), as well as in global warming mitigation, sustainable agriculture, pollutant removal, and other uses. Biochar production and use of soil is a strategy for carbon sequestration that could contribute to the reduction of emissions, providing simultaneous benefits to soil and opportunities for bioenergy generation. However, to confirm all of biochar’s benefits, it is necessary to characterize the environmental and energy loads of the production cycle. In this work, soil carbon sequestration, nitrous oxide emissions, use of fertilizers, and use of water for irrigation have been considered in the biochar’s LCA, where the latter is used as a soil conditioner. Primary data taken from experiments and prior studies, as well as open-source available databases, were combined to evaluate the environmental impacts of energy production from biomass, as well as the biochar life cycle, including pre- and post-conversion processes. From the found results, it can be deduced that the use of gasification production of energy and biochar is an attractive strategy for mitigating the environmental impacts analyzed here—especially climate change, with a net decrease of about −8.3 × 103 kg CO2 eq. Finally, this study highlighted strategic research developments that combine the specific characteristics of biochar and soil that need to be amended.
Collapse
|