1
|
Asif A, Koner S, Hsu PC, He BJ, Paul S, Hussain B, Hsu BM. Synergistic interactions between AMF and MHB communities in the rhizospheric microenvironment facilitated endemic hyperaccumulator plants growth thrive under heavy metal stress in ultramafic soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138233. [PMID: 40228454 DOI: 10.1016/j.jhazmat.2025.138233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/12/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Ultramafic outcrop settings are characterized by long-term heavy metal (HM) stress and nutrient imbalances, making plant resilience highly challenging. This study investigated that how native plant types in the serpentine environment influence the variation of synergistic interactions between rhizosphere arbuscular mycorrhizal fungi (AMF) and mycorrhizal helper bacteria (MHB) communities under HM stress and nutrient-deficient conditions, which support native plant endemism and their HM accumulation potential. The results displayed significant enrichment of key MHB (Rhizobium_tropici, Bacillus_subtilis, Pseudomonas_parafulva, Pseudomonas_akapagensis) and AMF species (Glomus_constrictum, Glomus_aggregatum, Rhizophagus_intraradices, Rhizophagus_irregularis) in rhizosphere soils (q < 0.05). Pseudomonas_chlororaphis and Burkholderia_cepacia were strongly associated with Rhizophagus_irregularis and Glomus_mosseae in Panicum maximum Jacq (PMJ) and Bidens pilosa (BP) under chromium (Cr), and cadmium (Cd) and arsenic (As) stress. Pseudomonas_fluorescens and Bacillus_pabuli were linked to Geosiphon_pyriformis and Glomus_aggregatum in Pueraria montana (PM) under nickel (Ni), lead (Pb), and cobalt (Co) stress, while Arthrobacter_globiformis and Rhizobium_leguminosarum were associated with Glomus_intraradices under copper (Cu) stress in Leucaena leucocephala (LL). Pathways related to nitrogen, phosphorous and potassium (NPK) cycling, HM detoxification, and resistance were enriched, with AMF predominantly symbiotrophic root-endophytic, except for one as lichenized nostoc endosymbiont. Canonical correspondence analysis (CCA) showed HM stress and nutrients influence MHB-AMF symbiosis, while pH moisture content (MC) and electric conductivity (EC) significantly regulate their distribution. Rhizobium_leguminosarum, Rhizobium_tropici, Nitrospira_japonica, and Rhizobium_cauense with Glomus_mosseae and Rhizophagus_irregularis drive NPK cycling in HM-stressed rhizosphere soils. This finding suggested that association between plants type and their functional rhizosphere microbiome promote an eco-friendly strategy for HM recovery from serpentine soil.
Collapse
Affiliation(s)
- Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Bing-Jia He
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Supriti Paul
- Forest Pathology division, Forest Research Institute Deemed to be University, Dehradun, Uttarakhand, India
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
2
|
Hillgén O, Palviainen M, Laurén A, Könönen M, Ojala A, Pumpanen J, Peltomaa E. Subtle changes in topsoil microbial communities of drained forested peatlands after prolonged drought. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70041. [PMID: 39512007 PMCID: PMC11544035 DOI: 10.1111/1758-2229.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
A major consequence of anthropogenic climate change is the intensification and extension of drought periods. Prolonged drought can alter conditions in drained peatlands and cause disturbances in microbial communities in the topsoil layer of the peat. Varying environmental conditions throughout the growing season, such as the availability of organic matter and nutrients, temperature and water table, further impact these communities and consequently affect carbon and nutrient cycles. The impact of drought and new forestry practices is largely unknown in drained peatland forests. We examined how microbial communities change over a growing season in different harvesting intensities (continuous cover forestry, clear-cut and uncut) in a drained peatland site using bacterial 16S and fungal ITS2 rRNA analysis. We found seasonal differences in bacterial and fungal diversity and species richness, and subtle changes in microbial communities at the phylum and genus levels when comparing various environmental factors. Diversity, species richness and relative abundance differed in spring compared to summer and autumn. However, significant differences in the microbial community structure were not detected. Understanding the responses of microbial communities to disturbances like drought and other environmental factors provides new insights into the consequences of climate change on drained forested peatlands.
Collapse
Affiliation(s)
- Oona Hillgén
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| | - Marjo Palviainen
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| | - Annamari Laurén
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
- School of Forest Sciences, Faculty of Science, Forestry and TechnologyUniversity of Eastern FinlandJoensuuFinland
| | - Mari Könönen
- Natural Resources Institute FinlandJoensuuFinland
| | - Anne Ojala
- Natural Resources Institute FinlandJoensuuFinland
| | - Jukka Pumpanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Elina Peltomaa
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
3
|
Li L, Wu J, Tao Y, Xu Z, Tang Q, Liu M. Seasonal dynamics of the microbial community in a strong-flavor baijiu fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6605-6614. [PMID: 38523062 DOI: 10.1002/jsfa.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The microbial community plays a crucial role in Chinese strong-flavor baijiu (SFB) fermentation. However, the seasonal dynamics of the microbial community in the SFB fermentation system and its contribution to the unique flavor of SFB have not been fully elucidated. In this study, we investigated the seasonal dynamics of the microbial community through 16S rRNA and ITS gene sequencing. RESULTS The results revealed significant temporal dynamics of microbial communities and environmental variables throughout the four seasons. The influence of seasons on fungal communities was found to be more significant than on bacterial communities. The diversity of bacteria was higher during the winter and summer, whereas fungal diversity was more prominent in summer and autumn. Stochastic processes maintained their dominance in microbial assembly throughout all four seasons but the significance of heterogeneous selection increased during summer for both bacteria and fungi, whereas homogeneous selection became more pronounced during winter for fungi. The pH and environmental temperature were important drivers of microbial community assembly across different seasons, primarily impacting the core genera responsible for the production of major volatile flavor compounds (VFCs), especially ethyl caproate. CONCLUSION These findings provide new insights into the impact of seasons on microbial communities and hold promise for improving the quality-control measures for SFB brewed in different seasons. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingjuan Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China
| | - Jing Wu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China
| | - Yong Tao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, China
- Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Department of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | - Zhancheng Xu
- Sichuan Jiannanchun Group Co. Ltd., Mianzhu, China
| | - Qinglan Tang
- Sichuan Jiannanchun Group Co. Ltd., Mianzhu, China
| | - Menghua Liu
- Sichuan Jiannanchun Group Co. Ltd., Mianzhu, China
| |
Collapse
|
4
|
Chen J, Cui Y, Xiao Q, Lin K, Wang B, Zhou J, Li X. Difference in microbial community structure along a gradient of crater altitude: insights from the Nushan volcano. Appl Environ Microbiol 2024; 90:e0075324. [PMID: 39028194 PMCID: PMC11337807 DOI: 10.1128/aem.00753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The variation in the soil microbial community along the altitude gradient has been widely documented. However, the structure and function of the microbial communities distributed along the altitude gradient in the crater still need to be determined. We gathered soil specimens from different elevations within the Nushan volcano crater to bridge this knowledge gap. We investigated the microbial communities of bacteria and fungi in the soil. It is noteworthy that the microbial alpha diversity peaks in the middle of the crater. However, network analysis shows that bacterial (nodes 760 vs 613 vs 601) and fungal (nodes 328 vs 224 vs 400) communities are most stable at the bottom and top of the crater, respectively. Furthermore, the soil microbial network exhibited a decline, followed by an increase across varying altitudes. The core microorganisms displayed the highest correlation with pH and alkaline phosphatase (AP, as determined through redundancy analysis (RDA) and Mantel tests for correlation analysis. The fungal community has a higher number of core microorganisms, while the bacterial core microorganisms demonstrate greater susceptibility to environmental factors. In conclusion, we utilized Illumina sequencing techniques to assess the disparities in the structure and function of bacteria and fungi in the soil.IMPORTANCEThese findings serve as a foundation for future investigations on microbial communities present in volcanic soil.
Collapse
Affiliation(s)
- Jin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Ye Cui
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Qingchen Xiao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Keqin Lin
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Boyan Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Jing Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Gao H, Gong J, Ye T, Maier M, Liu J. Constructing cropland ecological stability assessment method based on disturbance-resistance-response processes and classifying cropland ecological types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172673. [PMID: 38677433 DOI: 10.1016/j.scitotenv.2024.172673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
The cropland ecosystem stability (CES) has received increasing attention, especially in ecologically fragile areas, because of its impact on cropland quality, agricultural production and its ability to resist external disturbances. In this study, we first introduced the concepts of resilience and resistance, proposed the ecosystem disturbance-resistance-response process, and established a framework for evaluating the spatial and temporal dynamics of the CES based on RS data, and innovatively combined the RS assessment results of CES with soil field samples data to further classify cropland ecological types (CET) in a key agricultural areas of the Qinghai-Tibetan Plateau, which can effectively identify those croplands in need of priority ecological protection. Results indicate that the combined interactions of disturbance, resistance and response systems affect CES, forming a complex process with significant fluctuations and spatial variations. We also conclude that the disturbance system is positively influenced by topography and precipitation, while slope negatively affects resistance system. Hydrothermal conditions positively influence resistance system, while the response system is influenced by environmental factors at a lower intensity in six periods. It was interesting to note that soil α-biodiversity indicators are significantly and positively correlated with CES at the end of the study period. Therefore, based on the CES assessment results, we further combined the soil α-biodiversity indicators to classify the type of spatial pattern of CET and found that the eastern and northern areas have better quality, which implied an increase in the CES and a higher level of soil biodiversity, which was ideal for cropland expansion. On the contrary, we concluded that the ecosystem maintenance of the Huangshui headwaters and the northern mountainous areas needs to be strengthened in order to reverse the ecological fragility here and safeguard the cropland productive capacity.
Collapse
Affiliation(s)
- Haoran Gao
- School of Public Administration, China University of Geosciences, Wuhan 430074, China; Key Laboratory of the Ministry of Natural Resources for Legal Research, Wuhan 430074, China
| | - Jian Gong
- School of Public Administration, China University of Geosciences, Wuhan 430074, China; Key Laboratory of the Ministry of Natural Resources for Legal Research, Wuhan 430074, China.
| | - Teng Ye
- School of Public Administration, China University of Geosciences, Wuhan 430074, China; Key Laboratory of the Ministry of Natural Resources for Legal Research, Wuhan 430074, China
| | - Martin Maier
- Department of Crop Science, Division Soil Physics, University of Göttingen, Göttingen, Germany
| | - Jiakang Liu
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
6
|
Fu F, Li Y, Zhang B, Zhu S, Guo L, Li J, Zhang Y, Li J. Differences in soil microbial community structure and assembly processes under warming and cooling conditions in an alpine forest ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167809. [PMID: 37863238 DOI: 10.1016/j.scitotenv.2023.167809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Global climate change affects the soil microbial community assemblages of many ecosystems. However, little is known about the effects of climate warming on the structure of soil microbial communities or the underlying mechanisms that influence microbial community composition in alpine forest ecosystems. Thus, our ability to predict the future consequences of climate change is limited. In this study, with the use of PVC pipes, the in situ soils of the rush-tip long-bud Abies georgei var. smithii forest at 3500 and 4300 m above sea level (MASL) of the Sygera Mountains were incubated in pairs for 1 year to simulate climate cooling and warming. This shift corresponds to a change in soil temperature of ±4.7 °C. Findings showed that climate warming increased the complexity of bacterial networks but decreased the complexity of fungal networks. Climate cooling also increased the complexity of bacterial networks. However, in fungal communities, climate cooling increased the number of nodes but decreased the total number of edges. Stochastic processes acted as the drivers of bacterial community composition, with climate warming leading the shift from deterministic to stochastic drivers. Fungal communities were more sensitive to climate change than bacterial communities, with soil temperature (ST) and soil water content (SWC) acting as the main drivers of change. By contrast, soil bacterial communities were more closely related to soil conditions than fungal communities and remained stable after a year of soil transplantation. In conclusion, fungi and bacteria had different response patterns, and their responses to climate cooling and warming were asymmetric. This work is expected to contribute to our understanding of the response to climate change of soil microbial communities in alpine forests and our prediction of the functions of soil microbial ecosystems in alpine forests.
Collapse
Affiliation(s)
- Fangwei Fu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Yueyao Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Bo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Sijie Zhu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Liangna Guo
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Jieting Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Yibo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Jiangrong Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Fiore-Donno AM, Freudenthal J, Dahl MB, Rixen C, Urich T, Bonkowski M. Biotic interactions explain seasonal dynamics of the alpine soil microbiome. ISME COMMUNICATIONS 2024; 4:ycae028. [PMID: 38500704 PMCID: PMC10945362 DOI: 10.1093/ismeco/ycae028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
While it is acknowledged that alpine soil bacterial communities are primarily driven by season and elevation, there is no consensus on the factors influencing fungi and protists. Here we used a holistic approach of the microbiome to investigate the seasonal dynamics in alpine grasslands, focusing on soil food web interactions. We collected 158 soil samples along elevation transects from three mountains in the Alps, in spring during snowmelt and in the following summer. Using metatranscriptomics, we simultaneously assessed prokaryotic and eukaryotic communities, further classified into trophic guilds. Our findings reveal that the consumers' pressure increases from spring to summer, leading to more diverse and evenly distributed prey communities. Consequently, consumers effectively maintain the diverse soil bacterial and fungal communities essential for ecosystem functioning. Our research highlights the significance of biotic interactions in understanding the distribution and dynamics of alpine microbial communities.
Collapse
Affiliation(s)
- Anna Maria Fiore-Donno
- Institute of Zoology, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Jule Freudenthal
- Institute of Zoology, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| | - Mathilde Borg Dahl
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, 7260 Davos Dorf, Switzerland
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, 17489 Greifswald, Germany
| | - Michael Bonkowski
- Institute of Zoology, University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
8
|
Chen J, Xiao Q, Xu D, Li Z, Chao L, Li X, Liu H, Wang P, Zheng Y, Liu X, Qu H, Bao Y. Soil microbial community composition and co-occurrence network responses to mild and severe disturbances in volcanic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165889. [PMID: 37524180 DOI: 10.1016/j.scitotenv.2023.165889] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Soil physicochemical properties and vegetation types are the main factors affecting soil microorganisms, but there are few studies on the effects of the disturbance following volcanic eruption. To make up for this lack of knowledge, we used Illumina Miseq high-throughput sequencing to study the characteristics of soil microorganisms on both shores of a volcanically disturbed lake. Soil microorganisms in the two sites were subjected to different degrees of volcanic disturbance and showed significant heterogeneity. Mild volcanic disturbance area had higher enrichment of prokaryotic community. Co-occurrence network analysis showed that a total of 12 keystone taxa (9 prokaryotes and 3 fungi) were identified, suggesting that soil prokaryote may play a more significant role than fungi in overall community structure and function. Compared with severe volcanic disturbance area, the soil microbial community in mild volcanic disturbance area had the higher modular network (0.327 vs 0.291). The competition was stronger (positive/negative link ratio, P/N: 1.422 vs 1.159). Random forest analysis showed that soil superoxide dismutase was the most significant variable associated with soil microbial community. Structural equation model (SEM) results showed that keystone had a directly positive effect on prokaryotic (λ = 0.867, P < 0.001) and fungal (λ = 0.990, P < 0.001) multifunctionality while had also a directly positive effect on fungal diversity (λ = 0.553, P < 0.001), suggesting that keystone taxa played a key role in maintaining ecosystem stability. These results were important for understanding the effects of different levels of volcanic disturbance on soil ecosystems.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Qingchen Xiao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Daolong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Zishan Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Lumeng Chao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Pengfei Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yaxin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Xinyan Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Hanting Qu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, PR China.
| |
Collapse
|
9
|
Rui J, Zhao Y, Cong N, Wang F, Li C, Liu X, Hu J, Ling N, Jing X. Elevational distribution and seasonal dynamics of alpine soil prokaryotic communities. Front Microbiol 2023; 14:1280011. [PMID: 37808282 PMCID: PMC10557256 DOI: 10.3389/fmicb.2023.1280011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
The alpine grassland ecosystem is a biodiversity hotspot of plants on the Qinghai-Tibetan Plateau, where rapid climate change is altering the patterns of plant biodiversity along elevational and seasonal gradients of environments. However, how belowground microbial biodiversity changes along elevational gradient during the growing season is not well understood yet. Here, we investigated the elevational distribution of soil prokaryotic communities by using 16S rRNA amplicon sequencing along an elevational gradient between 3,200 and 4,200 m, and a seasonal gradient between June and September in the Qinghai-Tibetan alpine grasslands. First, we found soil prokaryotic diversity and community composition significantly shifted along the elevational gradient, mainly driven by soil temperature and moisture. Species richness did not show consistent elevational trends, while those of evenness declined with elevation. Copiotrophs and symbiotic diazotrophs declined with elevation, while oligotrophs and AOB increased, affected by temperature. Anaerobic or facultatively anaerobic bacteria and AOA were hump-shaped, mainly influenced by moisture. Second, seasonal patterns of community composition were mainly driven by aboveground biomass, precipitation, and soil temperature. The seasonal dynamics of community composition indicated that soil prokaryotic community, particularly Actinobacteria, was sensitive to short-term climate change, such as the monthly precipitation variation. At last, dispersal limitation consistently dominated the assembly process of soil prokaryotic communities along both elevational and seasonal gradients, especially for those of rare species, while the deterministic process of abundant species was relatively higher at drier sites and in drier July. The balance between deterministic and stochastic processes in abundant subcommunities might be strongly influenced by water conditions (precipitation/moisture). Our findings suggest that both elevation and season can alter the patterns of soil prokaryotic biodiversity in alpine grassland ecosystem of Qinghai-Tibetan Plateau, which is a biodiversity hotspot and is experiencing rapid climate change. This work provides new insights into the response of soil prokaryotic communities to changes in elevation and season, and helps us understand the temporal and spatial variations in such climate change-sensitive regions.
Collapse
Affiliation(s)
- Junpeng Rui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuwei Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Nan Cong
- Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Fuxin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Chao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jingjing Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ning Ling
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Bell-Dereske LP, Benucci GMN, da Costa PB, Bonito G, Friesen ML, Tiemann LK, Evans SE. Regional biogeography versus intra-annual dynamics of the root and soil microbiome. ENVIRONMENTAL MICROBIOME 2023; 18:50. [PMID: 37287059 DOI: 10.1186/s40793-023-00504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Root and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs. soil). RESULTS To capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping system. All microbial communities were most strongly structured by sampling site, though collection date also had strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial than fungal community structure, which appeared more defined by stochastic processes. Root communities, especially bacterial, were more temporally structured than soil communities which were more spatially structured, both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and saprotrophs dominating the soil community. CONCLUSIONS Our results highlight the dynamic variability of plant microbiome composition and assembly across space and time, even within a single variety of a plant species. Root and soil fungal community compositions appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better understanding of the drivers of these differential responses to space and time may improve our ability to predict microbial community structure and function under novel conditions.
Collapse
Affiliation(s)
- Lukas P Bell-Dereske
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA.
- The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
- Laboratory of Environmental Microbiology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská, Prague 4, 1083, 142 20, Czech Republic.
| | - Gian Maria Niccolò Benucci
- The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Pedro Beschoren da Costa
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Gregory Bonito
- The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Maren L Friesen
- Department of Plant Pathology, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Lisa K Tiemann
- The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Sarah E Evans
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
- The Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Lin Y, Wu H, Liu D, Li Y, Kang Y, Zhang Z, Wang W. Patterns and drivers of soil surface-dwelling Oribatida diversity along an altitudinal gradient on the Changbai Mountain, China. Ecol Evol 2023; 13:e10105. [PMID: 37214606 PMCID: PMC10196937 DOI: 10.1002/ece3.10105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
Distribution patterns of biodiversity and environmental interactions are dominant themes in ecology. In montane ecosystems, biodiversity is closely associated with altitudinal gradients. However, studies of biodiversity in montane ecosystems are focused on plants and vertebrates, with relatively less on invertebrates. Here, the present study used a Vortis arthropod suction sampler to explore the biodiversity patterns of soil surface-dwelling Oribatida and their drivers along an altitudinal gradient (600, 800, 1600, 2000, and 2300 m) from typical temperate forests, evergreen coniferous forests, subalpine birch forests to alpine tundra on the north slope of Changbai Mountain, Northeast China. Trichoribates berlesei, Platynothrus peltifer, and Oribatula tibialis were the dominant soil surface-dwelling species on Changbai Mountain. Generally, alpha diversity and beta diversity of soil surface-dwelling Oribatida decreased with the rising altitude, with a peaking density value at 2000 m. The result of beta diversity showed that the structures of community were more influenced by the species turnover component than the nestedness component. Nonmetric multidimensional scaling (NMDS) ordination showed that the community structure of soil surface-dwelling Oribatida varied significantly along the altitudinal gradient. The variance partitioning showed that the elevation and climatic conditions determined the soil surface-dwelling Oribatida community. Spatial filtering represented by geographic and elevation distances was particularly associated with soil surface-dwelling Oribatida community variation between altitudes on Changbai Mountain. However, the variation of the Oribatida community between adjacent altitudes was only associated with geographic distance. Our study provides supportive evidence for the biodiversity analyzing of soil surface-dwelling Oribatida in montane ecosystems along an altitudinal gradient.
Collapse
Affiliation(s)
- Yiling Lin
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Dong Liu
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Yaxiao Li
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Yujuan Kang
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhongsheng Zhang
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Wenfeng Wang
- Key Laboratory of Wetland Ecology and Environment, Institute of Northeast Geography and AgroecologyChinese Academy of SciencesChangchunChina
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| |
Collapse
|
12
|
Du X, Gu S, Zhang Z, Li S, Zhou Y, Zhang Z, Zhang Q, Wang L, Ju Z, Yan C, Li T, Wang D, Yang X, Peng X, Deng Y. Spatial distribution patterns across multiple microbial taxonomic groups. ENVIRONMENTAL RESEARCH 2023; 223:115470. [PMID: 36775088 DOI: 10.1016/j.envres.2023.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Even in the vertical dimension, soil bacterial communities are spatially distributed in a distance-decay relationship (DDR). However, whether this pattern is universal among all soil microbial taxonomic groups, and how body size influences this distribution, remains elusive. Our study consisted of obtaining 140 soil samples from two adjacent ecosystems in the Yellow River Delta (YRD), both nontidal and tidal, and measuring the DDR between topsoil and subsoil for bacteria, archaea, fungi and protists (rhizaria). Our results showed that the entire community generally fitted the DDR patterns (P < 0.001), this was also true at the kingdom level (P < 0.001, with the exception of the fungal community), and for most individual phyla (47/75) in both ecosystems and with soil depth. Meanwhile, these results presented a general trend that the community turnover rate of nontidal soils was higher than tidal soils (P < 0.05), and that the rate of topsoil was also higher than that of subsoil (P < 0.05). Additionally, microbial spatial turnover rates displayed a negative relationship with body sizes in nontidal topsoil (R2 = 0.29, P = 0.009), suggesting that the smaller the body size of microorganisms, the stronger the spatial limitation was in this environment. However, in tidal soils, the body size effect was negligible, probably owing to the water's fluidity. Moreover, community assembly was judged to be deterministic, and heterogeneous selection played a dominant role in the different environments. Specifically, the spatial distance was much more influential, while the soil salinity in these ecosystems was the major environmental factor in selecting the distributions of microbial communities. Overall, this study revealed that microbial community compositions at different taxonomic levels followed relatively consistent distribution patterns and mechanisms in this coastal area.
Collapse
Affiliation(s)
- Xiongfeng Du
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songsong Gu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China
| | - Zheng Zhang
- Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Shuzhen Li
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yuqi Zhou
- Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Zhaojing Zhang
- Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Qi Zhang
- Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Linlin Wang
- Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Zhicheng Ju
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengliang Yan
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Li
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Danrui Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingsheng Yang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute for Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
13
|
Li L, Xia T, Yang H. Seasonal patterns of rhizosphere microorganisms suggest carbohydrate-degrading and nitrogen-fixing microbes contribute to the attribute of full-year shooting in woody bamboo Cephalostachyum pingbianense. Front Microbiol 2022; 13:1033293. [PMID: 36523824 PMCID: PMC9745117 DOI: 10.3389/fmicb.2022.1033293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 10/15/2023] Open
Abstract
Compared with the ordinary single-season shooting among woody bamboos in Poaceae, the attribute of full-year shooting in Cephalostachyum pingbianense represents a unique shooting type or mechanism. Nevertheless, except for the overall physiological mechanism, the effect of ecological factors, especially soil microorganisms, on this full-year shooting characteristic remains unclear. In this study, 16S rRNA and ITS rRNA genes were sequenced using the Illumina platform. Our aims were to detect the seasonal changes in rhizospheric microbial communities of C. pingbianense and to discover the correlations of soil microbes with soil properties and bamboo shoot productivity. The results showed that seasonal change had no significant effect on bacterial alpha diversity, but significantly affected bacterial and fungal community structures as well as fungal richness. Among all soil properties examined, soil temperature, soil moisture and organic matter were the predominant factors affecting bacterial community diversity and structure. Soil temperature and soil moisture also significantly influenced fungal community structure, while available phosphorus had the greatest effect on fungal diversity. In each season, bacterial genera Acidothermus, Roseiarcus, and Bradyrhizobium, along with fungal genera Saitozyma, Mortierella, Trichoderma, etc., were dominant in bacterial and fungal communities, respectively. Bacterial community functions in four seasons were dominated by chemoheterotrophy, cellulolysis, and nitrogen fixation. Saprotrophic fungi occupied a high proportion in soil samples of all seasons. In addition, correlation analysis revealed that the bamboo shoot productivity was positively correlated with multiple microbial taxa involved in carbon and nitrogen cycles. It is proposed that highly abundant microbes involved in carbohydrate degradation and nitrogen fixation in the rhizosphere soil may contribute to the attribute of producing bamboo shoots all year round in C. pingbianense. This study is among the few cases revealing the connection between bamboo shooting characteristics and soil microorganisms, and provides new physiological and ecological insights into the forest management of woody bamboos.
Collapse
Affiliation(s)
| | | | - Hanqi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| |
Collapse
|
14
|
Liu GH, Liu DQ, Wang P, Chen QQ, Che JM, Wang JP, Li WJ, Zhou SG. Temperature drives the assembly of Bacillus community in mangrove ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157496. [PMID: 35870580 DOI: 10.1016/j.scitotenv.2022.157496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Mangroves are located at the interface of terrestrial and marine environments, and experience fluctuating conditions, creating a need to better explore the relative role of the bacterial community. Bacillus has been reported to be the dominant group in the mangrove ecosystem and plays a key role in maintaining the biodiversity and function of the mangrove ecosystem. However, studies on bacterial and Bacillus community across four seasons in the mangrove ecosystem are scarce. Here, we employed seasonal large-scale sediment samples collected from the mangrove ecosystem in southeastern China and utilized 16S rRNA gene amplicon sequencing to reveal bacterial and Bacillus community structure changes across seasons. Compared with the whole bacterial community, we found that Bacillus community was greatly affected by season (temperature) rather than site. The key factors, NO3-N and NH4-N showed opposite interaction with superabundant taxa Bacillus taxa (SAT) and three rare Bacillus taxa including high rare taxa (HRT), moderate rare taxa (MRT) and low rare taxa (LRT). Network analysis suggested the co-occurrence of Bacillus community and Bacillus-bacteria, and revealed SAT had closer relationship compared with rare Bacillus taxa. HRT might act crucial response during the temperature decreasing process across seasons. This study fills a gap in addressing the assembly of Bacillus community and their role in maintaining microbial diversity and function in mangrove ecosystem.
Collapse
Affiliation(s)
- Guo-Hong Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Ding-Qi Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qian-Qian Chen
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jian-Mei Che
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jie-Ping Wang
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province 350002, PR China.
| |
Collapse
|
15
|
Wang T, Wang H, Feng K, Li H, Wang H. Soil bacteria around a derelict tailings pile with different metal pollution gradients: community composition, metal tolerance and influencing factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60616-60630. [PMID: 35426553 DOI: 10.1007/s11356-022-20142-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Bacteria play a vital role in ecological processes of soil contaminated by heavy metals. Here, soil sampling was carried out around a tailings pile contaminated to different degrees by cadmium (Cd), lead (Pb) and arsenic (As). The bacteria in the soil were cultured, separated and purified on Luria-Bertani medium, and the changes in bacterial communities in soils with different pollution levels were analysed with 16S rRNA sequencing. Bacillus pacificus strain MZ520364 was found to be highly tolerant to Cd, Pb and As, and single-metal and multimetal tolerance experiments were further conducted with this strain. The results obtained from alpha diversity and operational taxonomic unit (OTU) statistical analyses showed a significant difference in bacterial composition among soils with different metal pollution levels, and the highest bacterial diversity was found at the most severely polluted site. Evidence from variance partitioning analysis (VPA) and the Spearman correlation heatmap analysis showed that the leading factors affecting bacterial community composition were cation exchange content (CEC), pH, total Zn, total As, and available As concentrations in soil. Additionally, in the single-metal treatments, B. pacificus MZ520364 could tolerate 600 mg/L Cd2+, 1000 mg/L Pb2+ or 700 mg/L As3+. When Cd, Pb and As coexisted, the best growth of B. pacificus MZ520364 was present at 120 mg/L Cd2+, 200 mg/L Pb2+ and 150 mg/L As3+. The effect of Cd, Pb and As on the growth of the strain followed the order of Cd > As > Pb, and the heavy metal combination showed more toxicity than single metals. In summary, our results revealed the ecological impact of soil physicochemical properties on the diversity and richness of soil bacterial communities and suggested that B. pacificus MZ520364 may be used for the remediation of Cd-Pb-As co-contaminated soil.
Collapse
Affiliation(s)
- Tian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China
| | - Kaiping Feng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| |
Collapse
|
16
|
Lyu Q, Luo Y, Dong Y, Xiang Y, Zhao K, Chen G, Chen Y, Fan C, Li X. Effects of Forest Gaps on the Structure and Diversity of Soil Bacterial Communities in Weeping Cypress Forest Plantations. Front Microbiol 2022; 13:882949. [PMID: 35651493 PMCID: PMC9149315 DOI: 10.3389/fmicb.2022.882949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
The decline in forest ecological function caused by pure forest plantations planted in the Yangtze River basin is becoming increasingly serious. To investigate this problem, we selected the local low-efficiency weeping cypress plantations for forest gap transformation. Three forest gap sizes, specifically large, medium, and small gaps, were established, and the effects of gap sizes on soil bacterial community structure and diversity in winter and summer were studied compared to no gaps (CK; control). Compared to CK, forest gaps had a significant effect on soil organic carbon (SOC) and soil total nitrogen (TN), and the highest values of SOC and soil TN under two seasons occurred in large forest gaps. The interactions of forest gap sizes and seasons had significant effects on pH, SOC, TN, and alpha diversity indices, including Simpson, Chao1, and ACE indices. Compared to winter, forest gaps significantly increased the soil bacterial community diversity indices in summer. Forest gap sizes significantly affected the composition of the bacterial community, but the composition of the dominant bacteria at the phyla and genera levels was similar. Linear discriminant effect size (LEfSe) analysis showed that there were 32 indicator bacterial species in two seasons. Co-occurrence network analysis revealed that the relationship of the soil bacterial community at the phyla level was complex, and there was a significant positive correlation among bacterial species. Soil bulk density (BD) and soil moisture (SM) significantly affected the soil bacterial alpha diversity indices. The composition of the dominant bacteria at the phyla level was significantly affected by soil microbial carbon (MBC), whereas the composition of dominant bacteria at the genera level was affected by soil hydrolysable nitrogen (AN) and the carbon/nitrogen (C/N) ratio. In this study, compared to the other forest gaps, large forest gaps were more conducive to the accumulation of soil nutrients, thus improving the structure of the soil bacterial community. Importantly, changes in the soil bacterial community structure due to gap formation may have profound effects on soil biogeochemical processes in weeping cypress forest plantations.
Collapse
Affiliation(s)
- Qian Lyu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yan Luo
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yuliang Dong
- Institute of Forest Genetics and Breeding, Sichuan Academy of Forestry, Chengdu, China
| | - Yongqi Xiang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Kuangji Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China.,Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China.,Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yuqin Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China.,Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China.,Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of National Forestry and Prairie Bureau on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Sichuan Agricultural University, Chengdu, China.,Forestry Ecological Engineering in Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|