1
|
Clasen LA, Alvarenga DO, Wang Y, Andersen RF, Rousk K. Rapid response of moss-associated nitrogen fixation to nutrient additions in tropical montane cloud forests with different successional stages. BIOGEOCHEMISTRY 2025; 168:12. [PMID: 39764295 PMCID: PMC11700064 DOI: 10.1007/s10533-024-01195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/20/2024] [Indexed: 03/12/2025]
Abstract
Nitrogen (N) fixation in association with mosses could be a key source of new N in tropical montane cloud forests since these forests maintain high humidity levels and stable temperatures, both of which are important to N fixation. Here, nutrient availability could be a prominent control of N fixation processes. However, the mechanisms and extent of these controls, particularly in forests at different successional stages, remains unknown to date. To address this knowledge gap, we investigated the impact of N, phosphorus (P) and molybdenum (Mo) additions on moss-associated N fixation in tropical montane cloud forests of two successional stages, an old-growth forest and an early-successional natural regrowth forest. We hypothesized that if N is available, N fixation rates would be rapidly reduced, while P and Mo would promote nitrogenase activity. Our results show that Mo additions did not affect N fixation rates, whereas N and P additions, in different doses and combinations, immediately reduced N fixation in both forests. Nonetheless, rates recovered within 1 year of nutrient additions. Nitrogen fixation rates associated with ground-covering mosses were similar in both forests. Interestingly, one year after the nutrient additions, N fixation rates across all the treatments were higher in the natural regrowth forests than the mature forests, suggesting more nutrient limitation in these regrowing forests, likely as a result of higher demand for growth. Our study highlights how moss-associated N fixation responds to changes in nutrient availability across distinct successional stages, deepening our understanding of processes that contributes to tropical montane cloud forests. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-024-01195-3.
Collapse
Affiliation(s)
- Lina Avila Clasen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Volatile Interactions, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Danillo Oliveira Alvarenga
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Volatile Interactions, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Yinliu Wang
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Volatile Interactions, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Rune Fromm Andersen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Volatile Interactions, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Volatile Interactions, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
2
|
Deutsch C, Inomura K, Luo YW, Wang YP. Projecting global biological N 2 fixation under climate warming across land and ocean. Trends Microbiol 2024; 32:546-553. [PMID: 38262802 DOI: 10.1016/j.tim.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
Biological N2 fixation sustains the global inventory of nitrogenous nutrients essential for the productivity of terrestrial and marine ecosystems. Like most metabolic processes, rates of biological N2 fixation vary strongly with temperature, making it sensitive to climate change, but a global projection across land and ocean is lacking. Here we use compilations of field and laboratory measurements to reveal a relationship between N2 fixation rates and temperature that is similar in both domains despite large taxonomic and environmental differences. Rates of N2 fixation increase gradually to a thermal optimum around ~25°C, and decline more rapidly toward a thermal maximum, which is lower in the ocean than on land. In both realms, the observed temperature sensitivities imply that climate warming this century could decrease N2 fixation rates by ~50% in the tropics while increasing rates by ~50% in higher latitudes. We propose a conceptual framework for understanding the physiological and ecological mechanisms that underpin and modulate the observed temperature dependence of global N2 fixation rates, facilitating cross-fertilization of marine and terrestrial research to assess its response to climate change.
Collapse
Affiliation(s)
- Curtis Deutsch
- Department of Geosciences and High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA.
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, South Kingstown, RI, USA
| | - Ya-Wei Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, China
| | - Ying-Ping Wang
- CSIRO Environment, Private Bag 10, Clayton South, VIC 3169, Australia
| |
Collapse
|
3
|
Kilner CL, Carrell AA, Wieczynski DJ, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gibert JP. Temperature and CO 2 interactively drive shifts in the compositional and functional structure of peatland protist communities. GLOBAL CHANGE BIOLOGY 2024; 30:e17203. [PMID: 38433341 DOI: 10.1111/gcb.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Microbes affect the global carbon cycle that influences climate change and are in turn influenced by environmental change. Here, we use data from a long-term whole-ecosystem warming experiment at a boreal peatland to answer how temperature and CO2 jointly influence communities of abundant, diverse, yet poorly understood, non-fungi microbial Eukaryotes (protists). These microbes influence ecosystem function directly through photosynthesis and respiration, and indirectly, through predation on decomposers (bacteria and fungi). Using a combination of high-throughput fluid imaging and 18S amplicon sequencing, we report large climate-induced, community-wide shifts in the community functional composition of these microbes (size, shape, and metabolism) that could alter overall function in peatlands. Importantly, we demonstrate a taxonomic convergence but a functional divergence in response to warming and elevated CO2 with most environmental responses being contingent on organismal size: warming effects on functional composition are reversed by elevated CO2 and amplified in larger microbes but not smaller ones. These findings show how the interactive effects of warming and rising CO2 levels could alter the structure and function of peatland microbial food webs-a fragile ecosystem that stores upwards of 25% of all terrestrial carbon and is increasingly threatened by human exploitation.
Collapse
Affiliation(s)
- Christopher L Kilner
- Department of Biology, Duke University, Durham, North Carolina, USA
- Bird Conservancy of the Rockies, Fort Collins, Colorado, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Samantha Votzke
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Katrina DeWitt
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Andrea Yammine
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Avila Clasen L, Permin A, Horwath AB, Metcalfe DB, Rousk K. Do Nitrogen and Phosphorus Additions Affect Nitrogen Fixation Associated with Tropical Mosses? PLANTS (BASEL, SWITZERLAND) 2023; 12:1443. [PMID: 37050067 PMCID: PMC10097241 DOI: 10.3390/plants12071443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Tropical cloud forests are characterized by abundant and biodiverse mosses which grow epiphytically as well as on the ground. Nitrogen (N)-fixing cyanobacteria live in association with most mosses, and contribute greatly to the N pool via biological nitrogen fixation (BNF). However, the availability of nutrients, especially N and phosphorus (P), can influence BNF rates drastically. To evaluate the effects of increased N and P availability on BNF in mosses, we conducted a laboratory experiment where we added N and P, in isolation and combined, to three mosses (Campylopus sp., Dicranum sp. and Thuidium peruvianum) collected from a cloud forest in Peru. Our results show that N addition almost completely inhibited BNF within a day, whereas P addition caused variable results across moss species. Low N2 fixation rates were observed in Campylopus sp. across the experiment. BNF in Dicranum sp. was decreased by all nutrients, while P additions seemed to promote BNF in T. peruvianum. Hence, each of the three mosses contributes distinctively to the ecosystem N pool depending on nutrient availability. Moreover, increased N input will likely significantly decrease BNF associated with mosses also in tropical cloud forests, thereby limiting N input to these ecosystems via the moss-cyanobacteria pathway.
Collapse
Affiliation(s)
- Lina Avila Clasen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark (K.R.)
| | - Aya Permin
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark (K.R.)
| | - Aline B. Horwath
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Daniel B. Metcalfe
- Department of Physical Geography and Ecosystem Science, Lund University, 221 00 Lund, Sweden
- Department of Ecology and Environmental Science, University of Umeå, 907 36 Umeå, Sweden
| | - Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark (K.R.)
| |
Collapse
|
5
|
Renaudin M, Laforest-Lapointe I, Bellenger JP. Unraveling global and diazotrophic bacteriomes of boreal forest floor feather mosses and their environmental drivers at the ecosystem and at the plant scale in North America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155761. [PMID: 35533858 DOI: 10.1016/j.scitotenv.2022.155761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
Feather mosses are abundant cryptogams of the boreal forest floor and shelter a broad diversity of bacteria who have important ecological functions (e.g., decomposition, nutrient cycling). In particular, nitrogen (N2-) fixation performed by feather moss-associated diazotrophs constitutes an important entry of nitrogen in the boreal forest ecosystem. However, the composition of the feather moss bacteriome and its environmental drivers are still unclear. Using cDNA amplicon sequencing of the 16S rRNA and nifH genes and cyanobacterial biomass quantification, we explored the active global and diazotrophic bacterial communities of two dominant feather moss species (i) at the ecosystem scale, along a 500-km climatic and nutrient deposition gradient in the North American boreal forest, and (ii) at the plant scale, along the moss shoot senescence gradient. We found that cyanobacteria were major actors of the feather moss bacteriome, accounting for 33% of global bacterial communities and 65% of diazotrophic communities, and that several cyanobacterial and methanotrophic genera were contributing to N2-fixation. Moreover, we showed that bacteria were occupying ecological niches along the moss shoot, with phototrophs being dominant in the apical part and methanotrophs being dominant in the basal part. Finally, climate (temperature, precipitation), environmental variables (moss species, month, tree density) and nutrients (nitrogen, phosphorus, molybdenum, vanadium, iron) strongly shaped global and diazotrophic bacteriomes. In summary, this work presents evidence that the feather moss bacteriome plays crucial roles in supporting moss growth, health, and decomposition, as well as in the boreal forest carbon and nitrogen cycles. This study also highlights the substantial effects of climate and nutrients on the feather moss bacteriome, suggesting the importance of understanding the impacts of global change on moss-associated bacterial growth and activity.
Collapse
Affiliation(s)
- Marie Renaudin
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| | | | - Jean-Philippe Bellenger
- Centre Sève, Département de Chimie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| |
Collapse
|
6
|
Rousk K. Biotic and abiotic controls of nitrogen fixation in cyanobacteria-moss associations. THE NEW PHYTOLOGIST 2022; 235:1330-1335. [PMID: 35687087 DOI: 10.1111/nph.18264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Most mosses are colonized by nitrogen (N)-fixing cyanobacteria. This discovery is relatively recent, which can explain the large knowledge gaps the field is now tackling. For instance, while we have a good understanding of the abiotic controls (e.g. nutrient availability, increased temperature), we still do not know much about the biotic controls of N2 fixation in mosses. I propose here that we should endeavour to position moss-cyanobacteria associations along the mutualism-parasitism continuum under varying abiotic conditions (e.g. nutrient availability). This would finally unravel the nature of the relationship between the partners and will be a big leap in our understanding of the evolution of plant-bacteria interactions using moss-cyanobacteria associations as a model system.
Collapse
Affiliation(s)
- Kathrin Rousk
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| |
Collapse
|
7
|
Alvarenga DO, Rousk K. Unraveling host-microbe interactions and ecosystem functions in moss-bacteria symbioses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4473-4486. [PMID: 35728619 DOI: 10.1093/jxb/erac091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Mosses are non-vascular plants usually found in moist and shaded areas, with great ecological importance in several ecosystems. This is especially true in northern latitudes, where mosses are responsible for up to 100% of primary production in some ecosystems. Mosses establish symbiotic associations with unique bacteria that play key roles in the carbon and nitrogen cycles. For instance, in boreal environments, more than 35% of the nitrogen fixed by diazotrophic symbionts in peatlands is transferred to mosses, directly affecting carbon fixation by the hosts, while moss-associated methanotrophic bacteria contribute 10-30% of moss carbon. Further, half of ecosystem N input may derive from moss-cyanobacteria associations in pristine ecosystems. Moss-bacteria interactions have consequences on a global scale since northern environments sequester 20% of all the carbon generated by forests in the world and stock at least 32% of global terrestrial carbon. Different moss hosts influence bacteria in distinct ways, which suggests that threats to mosses also threaten unique microbial communities with important ecological and biogeochemical consequences. Since their origin ~500 Ma, mosses have interacted with bacteria, making these associations ideal models for understanding the evolution of plant-microbe associations and their contribution to biogeochemical cycles.
Collapse
Affiliation(s)
- Danillo O Alvarenga
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Kathrin Rousk
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
- Centre for Permafrost, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| |
Collapse
|
8
|
Permin A, Horwath AB, Metcalfe DB, Priemé A, Rousk K. ‘High nitrogen‐fixing rates associated with ground‐covering mosses in a tropical mountain cloud forest will decrease drastically in a future climate’. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Aya Permin
- Terrestrial Ecology Section, Department of Biology University of Copenhagen Copenhagen Denmark
- Center for Permafrost (CENPERM) University of Copenhagen Copenhagen Denmark
| | - Aline B. Horwath
- Biological and Environmental Sciences, Faculty of Natural Sciences University of Stirling Stirling UK
| | - Daniel B. Metcalfe
- Department of Physical Geography and Ecosystem Science Lund University SE Lund Sweden
- Department of Ecology and Environmental Science SE Umeå Sweden
| | - Anders Priemé
- Center for Permafrost (CENPERM) University of Copenhagen Copenhagen Denmark
- Section of Microbiology, Department of Biology University of Copenhagen Copenhagen Denmark
| | - Kathrin Rousk
- Terrestrial Ecology Section, Department of Biology University of Copenhagen Copenhagen Denmark
- Center for Permafrost (CENPERM) University of Copenhagen Copenhagen Denmark
| |
Collapse
|
9
|
Liu X, Rousk K. The moss traits that rule cyanobacterial colonization. ANNALS OF BOTANY 2022; 129:147-160. [PMID: 34628495 PMCID: PMC8796673 DOI: 10.1093/aob/mcab127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Cyanobacteria associated with mosses represent a main nitrogen (N) source in pristine, high-latitude and -altitude ecosystems due to their ability to fix N2. However, despite progress made regarding moss-cyanobacteria associations, the factors driving the large interspecific variation in N2 fixation activity between moss species remain elusive. The aim of the study was to identify the traits of mosses that determine cyanobacterial colonization and thus N2 fixation activity. METHODS Four moss species varying in N2 fixation activity were used to assess cyanobacterial abundance and activity to correlate it with moss traits (morphological, chemical, water-balance traits) for each species. KEY RESULTS Moss hydration rate was one of the pivotal traits, explaining 56 and 38 % of the variation in N2 fixation and cyanobacterial colonization, respectively, and was linked to morphological traits of the moss species. Higher abundance of cyanobacteria was found on shoots with smaller leaves, and with a high frequency of leaves. High phenol concentration inhibited N2 fixation but not colonization. These traits driving interspecific variation in cyanobacterial colonization, however, are also affected by the environment, and lead to intraspecific variation. Approximately 24 % of paraphyllia, filamentous appendages on Hylocomium splendens stems, were colonized by cyanobacteria. CONCLUSIONS Our findings show that interspecific variations in moss traits drive differences in cyanobacterial colonization and thus, N2 fixation activity among moss species. The key traits identified here that control moss-associated N2 fixation and cyanobacterial colonization could lead to improved predictions of N2 fixation in different moss species as a function of their morphology.
Collapse
Affiliation(s)
- Xin Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Kathrin Rousk
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
| |
Collapse
|