1
|
Li L, Chai W, Sun C, Huang L, Sheng T, Song Z, Ma F. Role of microalgae-bacterial consortium in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121226. [PMID: 38795468 DOI: 10.1016/j.jenvman.2024.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China.
| | - Wei Chai
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Caiyu Sun
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Linlin Huang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Tao Sheng
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Zhiwei Song
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
2
|
Chen S, Wang X, Shi X, Li S, Yang L, Yan W, Xu H. Integrated system of electro-catalytic oxidation and microbial fuel cells for the treatment of recalcitrant wastewater. CHEMOSPHERE 2024; 354:141754. [PMID: 38508464 DOI: 10.1016/j.chemosphere.2024.141754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/09/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The emission of recalcitrant wastewater poses serious threats to the environment. In this study, an integrated approach combining electrocatalytic oxidation (EC) for pretreatment and microbial fuel cells (MFC) for thorough pollutant degradation is proposed to ensure efficient degradation of target substances, with low energy input and enhanced bioavailability of refractory organics. When phenol was used as the pollutant, an initial concentration of 2000 mg/L phenol solution underwent EC treatment under constant current-exponential attenuation power supply mode, resulting in a COD removal rate of 54.53%, and a phenol degradation rate of 99.83%. Intermediate products such as hydroquinone and para-diphenol were detected in the solution. After subsequent MFC treatment, only minor amounts of para-diphenol were left, and the degradation rate of phenol and its intermediate products reached 100%, with an output power density of 110.4 mW m-2. When coal chemical wastewater was used as the pollutant, further examination of the EC-MFC system performance showed a COD removal rate of 49.23% in the EC section, and a 76.21% COD removal rate in the MFC section, with an output power density of 181.5 mW m-2. Microbiological analysis revealed typical electrogenic bacteria (such as Pseudomonas and Geobacter), and specific degrading functional bacteria (such as Stenotrophomonas, Delftia, and Brevundimonas). The dominant microbial communities and their proportions adapted to environmental changes in response to the variation of carbon sources.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xinyu Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xueyao Shi
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, China.
| |
Collapse
|
3
|
Apollon W. An Overview of Microbial Fuel Cell Technology for Sustainable Electricity Production. MEMBRANES 2023; 13:884. [PMID: 37999370 PMCID: PMC10672772 DOI: 10.3390/membranes13110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The over-exploitation of fossil fuels and their negative environmental impacts have attracted the attention of researchers worldwide, and efforts have been made to propose alternatives for the production of sustainable and clean energy. One proposed alternative is the implementation of bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs), which are sustainable and environmentally friendly. MFCs are devices that use bacterial activity to break down organic matter while generating sustainable electricity. Furthermore, MFCs can produce bioelectricity from various substrates, including domestic wastewater (DWW), municipal wastewater (MWW), and potato and fruit wastes, reducing environmental contamination and decreasing energy consumption and treatment costs. This review focuses on recent advancements regarding the design, configuration, and operation mode of MFCs, as well as their capacity to produce bioelectricity (e.g., 2203 mW/m2) and fuels (i.e., H2: 438.7 mg/L and CH4: 358.7 mg/L). Furthermore, this review highlights practical applications, challenges, and the life-cycle assessment (LCA) of MFCs. Despite the promising biotechnological development of MFCs, great efforts should be made to implement them in a real-time and commercially viable manner.
Collapse
Affiliation(s)
- Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo 66050, Nuevo León, Mexico
| |
Collapse
|
4
|
Zhang NC, A D, Chao YQ, Li HY, Li C, Lin QQ, Li YY, Qiu RL. Mechanism of polycyclic aromatic hydrocarbons degradation in the rhizosphere of Phragmites australis: Organic acid co-metabolism, iron-driven, and microbial response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121608. [PMID: 37044257 DOI: 10.1016/j.envpol.2023.121608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Microbial co-metabolism is crucial for the efficient biodegradation of polycyclic aromatic hydrocarbons (PAHs); however, their intrinsic mechanisms remain unclear. To explore the co-metabolic degradation of PAHs, root organic acids (ROAs) (phenolic ROAs: caffeic acid [CA] and ferulic acid [FA]; non-phenolic ROAs: oxalic acid [OA]) were exogenously added as co-metabolic substrates under high (HFe) and low (LFe) iron levels in this study. The results demonstrated that more than 90% of PAHs were eliminated from the rhizosphere of Phragmites australis. OA can promote the enrichment of unrelated degrading bacteria and non-specific dioxygenases. FA with a monohydroxy structure can activate hydroxylase; however, it relies on phytosiderophores released by plants (such as OA) to adapt to stress. Therefore, non-specific co-metabolism occurred in these units. The best performance for PAH removal was observed in the HFe-CA unit because: (a) HFe concentrations enriched the Fe-reducing and denitrifying bacteria and promoted the rate-limiting degradation for PAHs as the enzyme cofactor; (b) CA with a dihydroxyl structure enriched the related degrading bacteria, stimulated specific dioxygenase, and activated Fe to concentrate around the rhizosphere simultaneously to perform the specific co-metabolism. Understanding the co-metabolic degradation of PAHs will help improve the efficacy of rhizosphere-mediated remediation.
Collapse
Affiliation(s)
- Ni-Chen Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Dan A
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuan-Qing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Yan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Charles Li
- Department of Public Health, California State University, East Bay, CA, 94542, USA
| | - Qing-Qi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Ying Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Sobhani D, Rastegar SO, Khamforoush M, Gu T, Khosravi A. Copper recovery from printed circuit boards leaching solution with bioelectricity generation using microbial fuel cell. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02881-6. [PMID: 37225874 DOI: 10.1007/s00449-023-02881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Recovery of valuable metals via leaching printed circuit boards (PCBs) has gained moment recently. This work studied the Microbial fuel cell (MFC) performances for recovery of Cu from a Cu2+ solution by examining key operating parameters. A dual-chamber MFC with 6 cm × 6 cm × 7 cm dimensions was constructed. Both anode and cathode electrodes were made of a carbon cloth sheet. The anodic and cathodic chambers were separated by a Nafion membrane. The highest Cu recovery efficiency was 99.7% after 240 h batch mode operation, yielding 102 mW/m2 MFC power density output using 1 g/L Cu2+ solution as the catholyte (initial pH 3) and an anolyte containing 1 g/L sodium acetate inoculated with a sludge from a wastewater treatment plant's anaerobic pond, with 2 cm distance between the electrodes made of polyacrylonitrile polymer. The highest open circuit voltage, current density (based on cross-section cathode area) and power density with an external load of 1 kΩ was 555 mV, 347 mA/m2 and 193 mW/m2, respectively. Additionally, recovery of Cu in the leachate of PCBs using sulfuric acid leaching after 48 h was performed and the highest Cu recovery was 50% in 48 h.
Collapse
Affiliation(s)
- D Sobhani
- Chemical Engineering Department, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
| | - S O Rastegar
- Chemical Engineering Department, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran.
| | - M Khamforoush
- Chemical Engineering Department, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
| | - T Gu
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, OH, 45701, USA
| | - A Khosravi
- Chemical Engineering Department, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
6
|
Yang N, Luo H, Liu M, Xiong X, Jin X, Zhan G. Coupling mixotrophic denitrification and electroactive anodic nitrification by nitrate addition for promoting current generation and nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159082. [PMID: 36174696 DOI: 10.1016/j.scitotenv.2022.159082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nitrate promotes anodic denitrification and fasts organic matter removal in microbial fuel cells (MFCs). However, it suffers from poor total nitrogen (TN) removal and current recovery. In this study, some novel electroactive nitrifying/denitrifying bacteria (ENDB) were introduced in a single chambered air-cathode MFC to investigate the performance of this device and the microbial community shift by adding nitrate. Results showed a similar disturbance in current output by adding nitrate during a short-term operation. However, a stable and reproducible current increase was achieved in the continuous experiment. A maximum current of 0.76 A m-3 and a maximum TN removal of >99 % were accomplished. The corresponding corrected coulombic efficiency was approximately 18 %. Under repeatable batches, a sharp decrease in chemical oxygen demand (COD) with feeding nitrate confirmed the temporary competition on electron donors through heterotrophic denitrification. The later current increase and nitrite detection occurring without metabolized COD could be considered evidence of electroactive anodic nitrification. The ENDB biofilm successfully coupled mixotrophic denitrification and electroactive anodic nitrification. It eventually promoted TN removal. In the process, genera Pseudoxanthomonas, Thauera, and Pseudomonas were enriched in the anodic ENDB biofilms. Cyclic voltammetry data confirmed the promotion of the electron transfer process by biofilms. The bacterial function predication revealed that the genes related to nitrogen removal and electron transfer were upregulated. Therefore, mixotrophic denitrification and electroactive anodic nitrification processes facilitated power recovery with the high efficiency of pollutant removal, finally ensuring water body security.
Collapse
Affiliation(s)
- Nuan Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), Chengdu 610041, China.
| | - Huiqin Luo
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), Chengdu 610041, China
| | - Ming Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), Chengdu 610041, China
| | - Xia Xiong
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), Chengdu 610041, China
| | - Xiaojun Jin
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences (CIBCAS), Chengdu 610041, China
| |
Collapse
|
7
|
Song C, Sun S, Wang J, Gao Y, Yu G, Li Y, Liu Z, Zhang W, Zhou L. Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect. Front Microbiol 2023; 13:1084097. [PMID: 36699598 PMCID: PMC9868176 DOI: 10.3389/fmicb.2022.1084097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Fulvic acid (FA) has been shown to play a decisive role in controlling the environmental geochemical behavior of metals. As a green and natural microbial metabolite, FA is widely used in environmental remediation because of its good adsorption complexation and redox ability. This paper introduces the reaction mechanism and properties of FA with metals, and reviews the progress of research on the remediation of metal pollutant by FA through physicochemical remediation and bioremediation. FA can control the biotoxicity and migration ability of some metals, such as Pb, Cr, Hg, Cd, and As, through adsorption complexation and redox reactions. The concentration, molecular weight, and source are the main factors that determine the remediation ability of FA. In addition, the ambient pH, temperature, metal ion concentrations, and competing components in sediment environments have significant effects on the extent and rate of a reaction between metals and FA during the remediation process. Finally, we summarize the challenges that this promising environmental remediation tool may face. The research directions of FA in the field of metals ecological remediation are also prospected. This review can provide new ideas and directions for the research of remediation of metals contaminants in sediments.
Collapse
Affiliation(s)
- Chuxuan Song
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China.,Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Zhengqian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| |
Collapse
|
8
|
Apollon W, Rusyn I, González-Gamboa N, Kuleshova T, Luna-Maldonado AI, Vidales-Contreras JA, Kamaraj SK. Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153055. [PMID: 35032528 DOI: 10.1016/j.scitotenv.2022.153055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Microbial energy generation systems, i.e., bioelectrochemical systems (BESs) are promising sustainable technologies that have been used in different fields of application such as biofuel production, biosensor, nutrient recovery, wastewater treatment, and heavy metals removal. However, BESs face great challenges such as large-scale application in real time, low power performance, and suitable materials for their configuration. This review paper aimed to discuss the use of BES systems such as conventional microbial fuel cells (MFCs), as well as plant microbial fuel cell (P-MFC), sediment microbial fuel cell (S-MFC), constructed wetland microbial fuel cell (CW-MFC), osmotic microbial fuel cell (OsMFC), photo-bioelectrochemical fuel cell (PBFC), and MFC-Fenton systems in the zero waste sustainable recovery process. Firstly, the configuration and electrode materials used in BESs as the main sources to improve the performance of these technologies are discussed. Additionally, zero waste recovery process from solid and wastewater feedstock, i.e., energy recovery: electricity generation (from 12 to 26,680 mW m-2) and fuel generation, i.e., H2 (170 ± 2.7 L-1 L-1 d-1) and CH4 (107.6 ± 3.2 mL-1 g-1), nutrient recovery of 100% (PO43-P), and 13-99% (NH4+-N), heavy metal removal/recovery: water recovery, nitrate (100%), sulfate (53-99%), and sulfide recovery/removal (99%), antibiotic, dye removal, and other product recovery are critically analyzed in this review paper. Finally, the perspective and challenges, and future outlook are highlighted. There is no doubt that BES technologies are an economical option for the simultaneous zero waste elimination and energy recovery. However, more research is required to carry out the large-scale application of BES, as well as their commercialization.
Collapse
Affiliation(s)
- Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico.
| | - Iryna Rusyn
- Department of Ecology and Sustainaible Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera st., 12, Lviv 79013, Ukraine
| | - Nancy González-Gamboa
- Renewable Energy Unit, Yucatan Center for Scientist Research, Carretera Sierra Papacal-Chuburná Puerto Km 5, CP 97302 Sierra Papacal, Yucatan, Mexico
| | - Tatiana Kuleshova
- Agrophysical Research Institute, Department of Plant Lightphysiology and Agroecosystem Bioproductivity, 195220 Saint-Petersburg 14, Grazhdanskiy pr., Russia
| | - Alejandro Isabel Luna-Maldonado
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Juan Antonio Vidales-Contreras
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Autonomous University of Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, General Escobedo, Nuevo León 66050, Mexico
| | - Sathish-Kumar Kamaraj
- TecNM-Instituto Tecnológico El Llano Aguascalientes (ITEL), Laboratorio de Medio Ambiente Sostenible, Km.18 Carretera Aguascalientes-San Luis Potosí, El Llano Ags. C.P. 20330, Mexico.
| |
Collapse
|