1
|
Wang D, Zhou X, Fu Q, Li Y, Ni BJ, Liu X. Understanding bacterial ecology to combat antibiotic resistance dissemination. Trends Biotechnol 2025:S0167-7799(24)00394-9. [PMID: 39855970 DOI: 10.1016/j.tibtech.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/29/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025]
Abstract
The dissemination of antibiotic resistance from environmental sources is a growing concern. Despite the widespread occurrence of antibiotic resistance transmission events, there are actually multiple obstacles in the ecosystem that restrict the flow of bacteria and genes, in particular nonnegligible biological barriers. How these ecological factors help combat the dissemination of antibiotic resistance and relevant antibiotic resistance-diminishing organisms (ARDOs) deserves further exploration. This review summarizes the factors that influence the growth, metabolism, and environmental adaptation of antibiotic-resistant bacteria (ARB) and restrict the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). Additionally, this review discusses the achievements in the application of ARDOs to improve biotechnology for wastewater and solid waste remediation while highlighting current challenges limiting their broader implementation.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xiangming Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qizi Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Yingbin Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xuran Liu
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
2
|
Simbanegavi TT, Makuvara Z, Marumure J, Alufasi R, Karidzagundi R, Chaukura N, Musvuugwa T, Okiobe ST, Rzymski P, Gwenzi W. Are earthworms the victim, facilitator or antidote of antibiotics and antibiotic resistance at the soil-animal-human interface? A One-Health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173882. [PMID: 38866146 DOI: 10.1016/j.scitotenv.2024.173882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The transfer of antibiotics and antibiotic resistance (AR) to the soil systems poses ecological hazards to various organisms, including earthworms. Understanding the complex interactions between earthworms, antibiotics, and AR in the soil system requires a comprehensive assessment. Hence, the present review investigates the behaviour, fate, impacts, and mechanisms involved in the interaction of earthworms with antibiotics and AR. The antibiotics and AR detected in earthworms and their associated media, such as vermicompost, are presented, but several other antibiotics and AR widely detected in soils remain understudied. As receptors and bioassay organisms, earthworms are adversely affected by antibiotics and AR causing (1) acute and chronic toxicity, and (2) emergence of AR in previously susceptible earthworm gut microbiota, respectively. The paper also highlights that, apart from this toxicity, earthworms can also mitigate against antibiotics, antibiotic-resistant bacteria and antibiotic-resistance genes by reducing bacterial diversity and abundance. The behaviour and fate processes, including biodegradation pathways, biomarkers of antibiotics and AR in earthworms, are discussed. In addition, the factors controlling the behaviour and fate of antibiotics and AR and their interactions with earthworms are discussed. Overall, earthworms mitigate antibiotics and AR via various proximal and distal mechanisms, while dual but contradictory functions (i.e., mitigatory and facilitatory) were reported for AR. We recommend that future research based on the One-World-One-Health approach should address the following gaps: (1) under-studied antibiotics and AR, (2) degradation mechanisms and pathways of antibiotics, (3) effects of environmentally relevant mixtures of antibiotics, (4) bio-augmentation in earthworm-based bioremediation of antibiotics, (5) long-term fate of antibiotics and their metabolites, (6) bio-transfers of antibiotics and AR by earthworms, (7) development of earthworm biomarkers for antibiotics and AR, (8) application of earthworm-based bioremediation of antibiotics and AR, (9) cascading ecological impacts of antibiotics and AR on earthworms, and (10) pilot-scale field applications of earthworm-based bioremediation systems.
Collapse
Affiliation(s)
- Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119, Mount Pleasant, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8301, South Africa
| | - Tendai Musvuugwa
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley 8301, South Africa
| | - Simon Thierry Okiobe
- Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Formerly Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany; Formerly Alexander von Humboldt Fellow and Guest Professor, Grassland Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
| |
Collapse
|
3
|
Liu P, Sun M, Xia S, Ju J, Mao W, Zhao H, Yanbin Hao. Earthworms and lactic acid bacteria (LAB) cooperate to promote the biodegradation of tetracycline residues in livestock manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:166-175. [PMID: 38905906 DOI: 10.1016/j.wasman.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Tetracycline is an antibiotic with extensive veterinary use in the livestock industry. However, their widespread application poses risks to soil health as residue in livestock feces, and their removal is crucial for sustainable soil-ecosystem development. Physical and chemical approaches to extract tetracycline may have adverse effects on soil ecosystems, but no studies have thus far examined the potential for biological methods, such as collective degradation action of soil fauna. Thus, this study aimed to investigate the synergistic effects of lactic acid bacteria (LAB) and earthworms (Eisenia fetida) on biodegradation of tetracycline residues in sheep manure. We assessed earthworm biomass, tetracycline residue, and bacterial communities in both earthworm intestines and vermicompost. Earthworm biomass and tetracycline degradation efficiency increased significantly with LAB addition, with a degradation rate of up to 80.16%. This increase may be attributable to LAB acting as electron donors to spur tetracycline degradation. Additionally, we noted that tetracycline presence significantly influenced bacterial communities in earthworm intestines and vermicompost, elevating the abundance of potential pathogenic bacteria (e.g., Flavobacterium, Gammaproteobacteria, and Enterobacteriaceae). This finding suggests that heightened environmental stress from antibiotics could actually facilitate the growth of less prevalent bacteria, including potential pathogens. In conclusion, our study provides evidence supporting the effectiveness of LAB and earthworms in degrading tetracycline residues. In particular, LAB appears to mitigate stress from tetracycline exposure in earthworms, thus increasing their vermicomposting efficacy. Our work has important implications for soil management, with the potential to enhance pollution clean-up rates while minimizing negative side-effects to soil microbial communities.
Collapse
Affiliation(s)
- Ping Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou, China 225009
| | - Minghui Sun
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009
| | - Siqi Xia
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009
| | - Jing Ju
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou, China 225009
| | - Wei Mao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009
| | - Haitao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou China 225009; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Yangzhou, China 225009.
| | - Yanbin Hao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou China 225127; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 10049, China; Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
4
|
Papazlatani C, Garbeva P, Huerta Lwanga E. Effect of microplastic pollution on the gut microbiome of anecic and endogeic earthworms. FEMS Microbiol Lett 2024; 371:fnae040. [PMID: 38849299 PMCID: PMC11232513 DOI: 10.1093/femsle/fnae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024] Open
Abstract
Microplastic (MP) pollution constitutes an emerging type of pollution threatening both aquatic and terrestrial ecosystems. The impact on aquatic ecosystems has been extensively studied, but the effect on terrestrial ecosystems and their inhabitants is mostly underexplored. In this study, we explored the effect of MP pollution on gut bacterial microbiome of endogeic (Aporrectodea caliginosa) and anecic (Lumbricus terrestris) earthworms. The experiments were performed in sandy soil with 0.2% of low-density polyethylene MPs (LDPE MPs). We observed that the endogeic earthworms had 100% survival, while anecic earthworms survived 25 days in the control (i.e. in absence of MPs) and 21 days in the treatment with LDPE MPs. The main driver of shifts in the diversity and composition of the bacterial communities in the gut of tested earthworms was the lifestyle of the worms, followed by the presence of MPs. The bacterial microbiome diversity was significantly different among the two types of earthworms, and the highest bacterial diversity was found in the gut of the endogeic earthworms. The effect of MPs on gut bacterial microbiome was clearly observed in the changes in the relative abundance of several phyla and families of the bacterial communities in both types of earthworms, although it was most evident in the anecic earthworms. The Actinobacteriota, Proteobacteria, and Firmicutes were the main groups enhanced in the MP treatments, suggesting enrichment of the bacterial communities with potential plastic degraders.
Collapse
Affiliation(s)
- Christina Papazlatani
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University and Research, PO Box 47, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Xing M, Zhao R, Yang G, Li Z, Sun Y, Xue Z. Elimination of antibiotic-resistant bacteria and resistance genes by earthworms during vermifiltration treatment of excess sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7853-7871. [PMID: 38170354 DOI: 10.1007/s11356-023-31287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Vermifiltration (VF) and a conventional biofilter (BF, no earthworm) were investigated by metagenomics to evaluate the removal rates of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and class 1 integron-integrase (intI1), as well as the impact mechanism in combination with the microbial community. According to the findings of qPCR and metagenomics, the VF facilitated greater removal rates of ARGs (78.83% ± 17.37%) and ARB (48.23% ± 2.69%) than the BF (56.33% ± 14.93%, 20.21% ± 6.27%). Compared to the control, the higher biological activity of the VF induced an increase of over 60% in the inhibitory effect of earthworm coelomic fluid on ARB. The removal rates of ARGs by earthworm guts also reached over 22%. In addition, earthworms enhanced the decomposition of refractory organics, toxic, and harmful organics, which led to a lower selective pressure on ARGs and ARB. It provides a strategy for reducing resistant pollution in sewage treatment plants and recognizing the harmless stability of sludge.
Collapse
Affiliation(s)
- Meiyan Xing
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China.
| | - Ran Zhao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| | - Gege Yang
- Tongji Architectural Design (Group) Co., Ltd, Shanghai, 200092, China
| | - Zhan Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| | - Yuzhu Sun
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| | - Zitao Xue
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, No. 1239, Siping Road, Shanghai, 200092, China
| |
Collapse
|
6
|
Xu Q, Shi Y, Ke L, Qian L, Zhou X, Shao X. Ciprofloxacin enhances cadmium toxicity to earthworm Eisenia fetida by altering the gut microorganism composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122106. [PMID: 37364754 DOI: 10.1016/j.envpol.2023.122106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The concurrent existence of cadmium (Cd) and ciprofloxacin (CIP) in agricultural soils is very common, but presents a challenge to soil organisms. As more attention has been paid to the effect of toxic metals on the migration of antibiotic resistance genes, the critical role of the gut microbiota in CIP-modifying Cd toxicity in earthworms remains unclear. In this study, Eisenia fetida was exposed to Cd and CIP alone or in combination at environmentally relevant concentrations. Cd and CIP accumulation in earthworm increased as their respective spiked concentrations increased. In fact, Cd accumulation increased by 39.7% when 1 mg/kg CIP was added; however, the addition of Cd did not affect CIP uptake. Compared with exposure to Cd alone, a greater ingestion of Cd following combined exposure to Cd and 1 mg/kg CIP resulted in greater oxidative stress and energy metabolism disturbances in earthworms. The reactive oxygen species (ROS) contents and apoptosis rate of coelomocytes were more sensitive to Cd than these biochemical indicators. In fact, 1 mg/kg Cd induced the derivation of ROS. Similarly, the toxicity of Cd (5 mg/kg) to coelomocytes was promoted by CIP (1 mg/kg), ROS content in coelomocytes and the apoptosis rate increased by 29.2% and 113.1%, respectively, due to increased Cd accumulation. Further investigation of the gut microorganisms revealed that the decreased abundance of Streptomyces strains (known as Cd accumulation taxa) could be a critical factor for enhanced Cd accumulation and greater Cd toxicity to earthworms following exposure to both Cd and CIP; this was because this microorganism group was eliminated by the simultaneous ingestion of CIP. This study stressed the role of gut microorganisms in altering the toxicity of Cd and CIP combined contamination in soil organisms. More attention should be paid to the ecological risks of such combined contamination in soils.
Collapse
Affiliation(s)
- Qiuyun Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lingjie Ke
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Qian
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuan Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuqing Shao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Chao H, Balcazar JL, Wu Y, Cai A, Ye M, Sun M, Hu F. Phages in vermicomposts enrich functional gene content and facilitate pesticide degradation in soil. ENVIRONMENT INTERNATIONAL 2023; 179:108175. [PMID: 37683504 DOI: 10.1016/j.envint.2023.108175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Organic fertilizer microbiomes play substantial roles in soil ecological functions, including improving soil structure, crop yield, and pollutant dissipation. However, limited information is available about the ecological functions of phages and phage-encoded auxiliary metabolic genes (AMGs) in orga9nic fertilizers. Here we used a combination of metagenomics and phage transplantation trials to investigate the phage profiles and their potential roles in pesticide degradation in four organic fertilizers from different sources. Phage annotation results indicate that the two vermicomposts made from swine (PV) and cattle (CV) dung had more similar phage community structures than the swine (P) and cattle (C) manures. After vermicomposting, the organic fertilizers (PV and CV) exhibited enriched phage-host pairings and phage AMG diversity in relative to the two organic fertilizers (P and C) without composting. In addition, the number of broad-host-range phages in the vermicomposts (182) was higher than that in swine (153) and cattle (103) manures. Notably, phage AMGs associated with metabolism and pesticide biodegradation were detected across the four organic fertilizers. The phage transplantation demonstrated that vermicompost phages were most effective at facilitating the degradation of pesticide precursor p-nitrochlorobenzene (p-NCB) in soil, as compared to swine and cattle manures (P < 0.05). Taken together, our findings highlight the significance of phages in vermicompost for biogeochemical cycling and biodegradation of pesticide-associated chemicals in contaminated soils.
Collapse
Affiliation(s)
- Huizhen Chao
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China
| | - Jose Luis Balcazar
- Catalan Institute for Water Research (ICRA), Girona 17003, Spain; University of Girona, Girona 17004, Spain
| | - Yunling Wu
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China
| | - Anjuan Cai
- Jiangsu Environmental Engineering Technology Co., Ltd., 210019, China
| | - Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingming Sun
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China.
| | - Feng Hu
- Soil Ecology Lab, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization & Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China
| |
Collapse
|
8
|
Lin Z, Chen Y, Li G, Wei T, Li H, Huang F, Wu W, Zhang W, Ren L, Liang Y, Zhen Z, Zhang D. Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163410. [PMID: 37059136 DOI: 10.1016/j.scitotenv.2023.163410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Tetracycline pollution is common in Chinese arable soils, and vermicomposting is an effective approach to accelerate tetracycline bioremediation. However, current studies mainly focus on the impacts of soil physicochemical properties, microbial degraders and responsive degradation/resistance genes on tetracycline degradation efficiencies, and limited information is known about tetracycline speciation in vermicomposting. This study explored the roles of epigeic E. fetida and endogeic A. robustus in altering tetracycline speciation and accelerating tetracycline degradation in a laterite soil. Both earthworms significantly affected tetracycline profiles in soils by decreasing exchangeable and bound tetracycline but increasing water soluble tetracycline, thereby facilitating tetracycline degradation efficiencies. Although earthworms increased soil cation exchange capacity and enhanced tetracycline adsorption on soil particles, the significantly elevated soil pH and dissolved organic carbon benefited faster tetracycline degradation, attributing to the consumption of soil organic matter and humus by earthworms. Different from endogeic A. robustus which promoted both abiotic and biotic degradation of tetracycline, epigeic E. foetida preferently accelerated abiotic tetracyline degradation. Our findings described the change of tetracycline speciation during vermicompsiting process, unraveled the mechanisms of different earthworm types in tetracycline speciation and metabolisms, and offered clues for effective vermiremediation application at tetracycline contaminated sites.
Collapse
Affiliation(s)
- Zhong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yanqiu Liang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
9
|
Zhang W, Wang J, Zhu L, Wang J, Mao S, Yan X, Wen S, Wang L, Dong Z, Kim YM. New insights into the effects of antibiotics and copper on microbial community diversity and carbon source utilization. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01491-1. [PMID: 36939996 DOI: 10.1007/s10653-023-01491-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Residual antibiotics (ABs) and heavy metals (HMs) are continuously released from soil, reflecting their intensive use and contamination of water and soil, posing an environmental problem of great concern. Relatively few studies exist of the functional diversity of soil microorganisms under the combined action of ABs and HMs. To address this deficiency, BIOLOG ECO microplates and the Integrated Biological Responses version 2 (IBRv2) method were used to comprehensively explore the effects of single and combined actions of copper (Cu) and enrofloxacin (ENR), oxytetracycline (OTC), and sulfadimidine (SM2) on the soil microbial community. The results showed that the high concentration (0.80 mmol/kg) compound group had a significant effect on average well color development (AWCD) and OTC showed a dose-response relationship. The results of IBRv2 analysis showed that the single treatment group of ENR or SM2 had a significant effect on soil microbial communities, and the IBRv2 of E1 was 5.432. Microbes under ENR, SM2, and Cu stress had more types of available carbon sources, and all treatment groups were significantly more enriched with microorganisms having D-mannitol and L-asparagine as carbon sources. This study confirms that the combined effects of ABs and HMs can inhibit or promote the function of soil microbial communities. In addition, this paper will provide new insights into IBRv2 as an effective method to evaluate the impacts of contaminants on soil health.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China.
| | - Lusheng Zhu
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Jun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Shushuai Mao
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Xiaojing Yan
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Shengfang Wen
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Lanjun Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Zikun Dong
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Taian, 271018, People's Republic of China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-Gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
10
|
Zhu G, Chao H, Sun M, Jiang Y, Ye M. Toxicity sharing model of earthworm intestinal microbiome reveals shared functional genes are more powerful than species in resisting pesticide stress. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130646. [PMID: 36587599 DOI: 10.1016/j.jhazmat.2022.130646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Earthworm intestinal bacteria and indigenous soil bacteria work closely during various biochemical processes and play a crucial role in maintaining the internal stability of the soil environment. However, the response mechanism of these bacterial communities to external pesticide disturbance is unknown. In this study, soil and earthworm gut contents were metagenomically sequenced after exposure to various concentrations of nitrochlorobenzene (0-1026.7 mg kg-1). A high degree of similarity was found between the microbial community composition and abundance in the worm gut and soil, both of which decreased significantly (P < 0.05) under elevated pesticide stress. The toxicity sharing model (TSM) showed that the toxicity sharing capacity was 97.4-125.7 % and 100.4-130.2 % for Egenes (genes in the worm gut) and Emet(degradation genes in the worm gut) in the earthworm intestinal microbiome, respectively. This indicated that the earthworm intestinal microbiome assisted in relieving the pesticide toxicity of the indigenous soil microbiome. This study showed that the TSM could quantitatively describe the toxic effect of pesticides on the earthworm intestinal microbiome. It provides a new analytical model for investigating the ecological alliance between earthworm intestinal microbiome and indigenous soil microbiome under pesticide stress while contributing a more profound understanding of the potential to use earthworms to mitigate pesticide pollution in soils and develop earthworm-based soil remediation techniques.
Collapse
Affiliation(s)
- Guofan Zhu
- National Engineering Laboratort of Soil Nutrients Management, Pollution Control and Remediation Technoligies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
| | - Mao Ye
- National Engineering Laboratort of Soil Nutrients Management, Pollution Control and Remediation Technoligies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
11
|
Kan ZR, Zhou J, Li FM, Sheteiwy MS, Qi J, Chen C, Yang H. Straw incorporation interacting with earthworms mitigates N 2O emissions from upland soil in a rice-wheat rotation system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160338. [PMID: 36414051 DOI: 10.1016/j.scitotenv.2022.160338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Intensive attentions have been paid to the positive effects on nitrous oxide (N2O) production under straw return or the presence of earthworms. Straw return as a sustainable practice can promote earthworm growth, how the interactions between straw and earthworms affect N2O production is still not well known. A split-plot field experiment (straw return as main plot and earthworm addition as subplot) was performed to quantify the interactive effects of straw and earthworm on N2O emissions from a wheat field and to determine the underlying mechanisms from nitrification and denitrification processes. The results showed that straw return significantly increased N2O emissions by 41.0 % under no earthworm addition but decreased it by 19.0 % under earthworm addition compared with straw removal (P < 0.05). The significant interaction between straw and earthworm benefits the mitigation of N2O emissions. Random forest model showed that denitrification and nitrification were dominant processes to affect N2O emissions at the jointing and booting growth stages of wheat, respectively. The interaction between straw and earthworm significantly decreased the abundances of N2O-producing bacterial genes such as nirS and nirK at the jointing stages, and AOB at the booting stages. The contrasting mechanisms in regulating N2O emissions at different growth stages should be considered in nitrogen recycling models to accurately predict available N and N2O dynamics. Our findings suggest that N2O emissions under straw return can be weakened with the increasing earthworm populations under the scenario of widely used conservation practices (e.g., straw return and no-till) due to significant interaction between straw and earthworms.
Collapse
Affiliation(s)
- Zheng-Rong Kan
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiajia Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng-Min Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Jianying Qi
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Changqing Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Wyszkowska J, Borowik A, Kucharski J. The Role of Grass Compost and Zea Mays in Alleviating Toxic Effects of Tetracycline on the Soil Bacteria Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7357. [PMID: 35742602 PMCID: PMC9223702 DOI: 10.3390/ijerph19127357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/26/2022]
Abstract
Given their common use for disease treatment in humans, and particularly in animals, antibiotics pose an exceptionally serious threat to the soil environment. This study aimed to determine the response of soil bacteria and oxidoreductases to a tetracycline (Tc) contamination, and to establish the usability of grass compost (G) and Zea mays (Zm) in mitigating adverse Tc effects on selected microbial properties of the soil. The scope of microbiological analyses included determinations of bacteria with the conventional culture method and new-generation sequencing method (NGS). Activities of soil dehydrogenases and catalase were determined as well. Tc was found to reduce counts of organotrophic bacteria and actinobacteria in the soils as well as the activity of soil oxidoreductases. Soil fertilization with grass compost (G) and Zea mays (Zm) cultivation was found to alleviate the adverse effects of tetracycline on the mentioned group of bacteria and activity of oxidoreductases. The metagenomic analysis demonstrated that the bacteria belonging to Acidiobacteria and Proteobacteria phyla were found to prevail in the soil samples. The study results recommend soil fertilization with G and Zm cultivation as successful measures in the bioremediation of tetracycline-contaminated soils and indicate the usability of the so-called core bacteria in the bioaugmentation of such soils.
Collapse
Affiliation(s)
- Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland; (A.B.); (J.K.)
| | | | | |
Collapse
|
13
|
Zheng X, Chao H, Wu Y, Wang X, Sun M, Hu F. Contrasted effects of Metaphire guillelmi on tetracycline diffusion and dissipation in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114776. [PMID: 35219207 DOI: 10.1016/j.jenvman.2022.114776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Earthworms are important in soil bioremediation because of their capability of pollutant degradation. However, the trade-off between pollutant dissemination and degradation arising from earthworm activities remains unclear, as well as the potential biodegradation mechanism. Herein, an earthworm avoidance experiment was established to investigate Metaphire guillelmi-mediated tetracycline (TC) diffusion and degradation. The results showed that above 1600 mg kg-1 TC pollution in soil induced avoidance behaviour of earthworms (p < 0.05), below which the random worm behaviour accelerated TC diffusion by 8.2% at most (p < 0.05), resulting in elevated levels of antibiotic-resistant bacteria and genes in the soil. Nevertheless, earthworms enhanced TC degradation regardless of whether their avoidance behaviour occurred (14.6-25.8%, p < 0.05). Compared with in soil, metabolic pathways affiliated with xenobiotic degradation and metabolism in the intestines were enriched (LDA >3). Given the abundant glutathione S-transferases in the intestines and their close relationship with Δ degradation, they may play a key role in intestinal TC biodegradation. In general, earthworms had good tolerance to soil TC contamination and their impact on promoting TC degradation outweighed that accelerating TC diffusion. This work provides a comprehensive view of earthworms as a potential remediation method for TC-contaminated soil.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunling Wu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinwei Wang
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Plant Immunity, Jiangsu Collaborative Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Plant Immunity, Jiangsu Collaborative Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Chao H, Sun M, Wu Y, Xia R, Yuan S, Hu F. Quantitative relationship between earthworms' sensitivity to organic pollutants and the contaminants' degradation in soil: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128286. [PMID: 35086042 DOI: 10.1016/j.jhazmat.2022.128286] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Using earthworms to remove soil organic pollutants is a common bioremediation method. However, it remains challenging to evaluate and predict their effect on removing soil organic pollutants based on earthworm toxicology and pollutant degradation rates. Peer-reviewed journal articles on ecotoxicology and bioremediation from the years 1974-2020 (cutoff date September 2020) were selected for meta-analysis to quantify the effect size of earthworms on organic pollutant degradation. The meta-analysis shows that the average effect size of earthworms on organic pollutant degradation is 128.5% (p < 0.05). Soils with high soil organic matter or clay textures are more conducive to earthworm-mediated removal of organic pollutants. Structural equation modeling reveals that earthworms' sensitivity to contaminant exposure may be a greater limiting factor on pollutant degradation than environmental factors. In addition, the quantitative relationship existed between LC50 and the pollutants' degradation that an elevated LC50 threshold resulted in at least 1.5 times increase in the pollutants' degradation size. This correlation was dually confirmed via meta-analysis and the validation trial. The results of this study contribute to a more profound understanding of the potential to use earthworms to mitigate organic pollution in soils and develop earthworm-based soil remediation techniques on a global scale.
Collapse
Affiliation(s)
- Huizhen Chao
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Plant Immunity, Jiangsu Collaborative Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yunling Wu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Xia
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shujian Yuan
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Plant Immunity, Jiangsu Collaborative Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|