1
|
Hou L, Xiong W, Chen M, Xu J, Johnson AC, Zhan A, Jin X. Pesticide Pollution Reduces the Functional Diversity of Macroinvertebrates in Urban Aquatic Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8568-8577. [PMID: 40232133 DOI: 10.1021/acs.est.5c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Urbanization accelerates innovation and economic growth but imposes significant ecological challenges, particularly to aquatic biodiversity and ecosystem functionality. Among urban stressors, pesticide-driven chemical pollution represents a critical, yet under-recognized, global threat. Quantifying the causes and consequences of pesticides on biodiversity loss and ecosystem degradation is vital for ecological risk assessment and management, offering insights to promote sustainable societal development. This study evaluated anthropogenic stressors and macroinvertebrate communities at 42 sites across two major drainages in Beijing using chemical analysis and environmental DNA (eDNA), focusing on macroinvertebrate responses to pesticide exposure in the context of multiple anthropogenic stressors. Pesticides significantly impacted the α- and β-functional diversity of macroinvertebrates, accounting for 18.46 and 14.6% of the total observed variation, respectively, underscoring the role of functional groups in pesticide risk assessment. Land use and flow quantity directly influenced pesticide levels, which in turn affected macroinvertebrate functional diversity, while basic water quality had a less pronounced effect. These results provide empirical evidence of pesticide pollution's impact on macroinvertebrate functional diversity at the watershed scale under field conditions in a highly urbanized area. The findings highlight the importance of considering multiple stressors and sensitive taxa in pesticide risk assessment and management for urban aquatic ecosystems.
Collapse
Affiliation(s)
- Lin Hou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xiong
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Chen
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Andrew C Johnson
- Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, U.K
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, Kunming Economic and Technological Development District, 2 Puxin Road, Kunming, Yunnan 650214, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| |
Collapse
|
2
|
Moody EK, Anania K, Boersma KS, Butts TJ, Corman JR, Cruz S, Farrell WR, Fonseca KN, Krist AC, Larson EI, Lewanski A, Liriano C, Pignatelli AJ, Poetzl A, Rugenski AT, Stiglitz C, Villanueva A. Linking functional responses and effects with stoichiometric traits. Ecology 2025; 106:e70080. [PMID: 40260749 DOI: 10.1002/ecy.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 04/24/2025]
Abstract
Trait-based approaches to study biodiversity responses to changing environmental conditions have become popular because these approaches provide context to how and why certain taxa shift in abundance within an assemblage. Trait-based approaches also offer the potential to link shifts in assemblage composition to effects on ecosystem functions like rates of primary production, detrital decomposition, and nutrient uptake. However, focusing on response traits in multidimensional functional diversity studies limits our ability to make these linkages. We developed a multidimensional analytical and visual stoichiometric diversity framework that links organismal responses to and effects on environmental change using stoichiometric traits. We define these traits as the acquisition, assimilation, allocation, and excretion of key chemical elements by members of an assemblage. We discuss the considerations for using stoichiometric traits in a trait-based framework and apply the framework to case studies of temporal variation in stream benthic invertebrate assemblages and spatial variation in urban woody vegetation assemblages. These examples illustrate the utility of the stoichiometric diversity framework for testing stoichiometric hypotheses and suggest promising linkages between assemblage shifts and shifts in ecosystem function.
Collapse
Affiliation(s)
- Eric K Moody
- Department of Biology, Middlebury College, Middlebury, Vermont, USA
| | - Katie Anania
- School of Art, Art History, and Design, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kate S Boersma
- Department of Biology, University of San Diego, San Diego, California, USA
| | - Tyler J Butts
- Center for Limnology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessica R Corman
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Spencer Cruz
- Department of Zoology and Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, Wyoming, USA
| | - W Reilly Farrell
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kauan N Fonseca
- Programa de Pós-Graduação em Ecologia e Evolução, Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amy C Krist
- Department of Zoology and Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, Wyoming, USA
| | - Erin I Larson
- Alaska Center for Conservation Science, University of Alaska Anchorage, Anchorage, Alaska, USA
- Institute of Culture and Environment, Alaska Pacific University, Anchorage, Alaska, USA
| | - Alex Lewanski
- Department of Zoology and Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, Wyoming, USA
| | | | - Anthony J Pignatelli
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | - Anni Poetzl
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Cooper Stiglitz
- School of Art, Art History, and Design, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Alitzel Villanueva
- Department of Biology, Middlebury College, Middlebury, Vermont, USA
- Department of Biology, California State University Northridge, Northridge, California, USA
| |
Collapse
|
3
|
Twining CW, Blanco A, Dutton C, Kainz MJ, Harvey E, Kowarik C, Kraus JM, Martin-Creuzburg D, Parmar TP, Razavi NR, Richoux N, Saboret G, Sarran C, Schmidt TS, Shipley JR, Subalusky AL. Integrating the Bright and Dark Sides of Aquatic Resource Subsidies-A Synthesis. Ecol Lett 2025; 28:e70109. [PMID: 40197707 DOI: 10.1111/ele.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Aquatic and terrestrial ecosystems are linked through the reciprocal exchange of materials and organisms. Aquatic-to-terrestrial subsidies are relatively small in most terrestrial ecosystems, but they can provide high contents of limiting resources that increase consumer fitness and ecosystem production. However, they also may carry significant contaminant loads, particularly in anthropogenically impacted watersheds. Global change processes, including land use change, climate change and biodiversity declines, are altering the quantity and quality of aquatic subsidies, potentially shifting the balance of costs and benefits of aquatic subsidies for terrestrial consumers. Many global change processes interact and impact both the bright and dark sides of aquatic subsidies simultaneously, highlighting the need for future integrative research that bridges ecosystem as well as disciplinary boundaries. We identify key research priorities, including increased quantification of the spatiotemporal variability in aquatic subsidies across a range of ecosystems, greater understanding of the landscape-scale extent of aquatic subsidy impacts and deeper exploration of the relative costs and benefits of aquatic subsidies for consumers.
Collapse
Affiliation(s)
- Cornelia W Twining
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Andreu Blanco
- Centro de Investigación Mariña - Future Oceans Lab, Universidade de Vigo, Vigo, Spain
| | | | - Martin J Kainz
- Research Lab for Aquatic Ecosystem Research and Health, Danube University Krems, Krems an der Donau, Austria
- WasserCluster Lunz-Biological Station, Lunz am See, Austria
| | - Eric Harvey
- Centre de Recherche Sur les Interactions Bassins Versants-Écosystèmes Aquatiques, Université du Québec à Trois-Rivières, Trois-Rivieres, Canada
| | - Carmen Kowarik
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
| | - Johanna M Kraus
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Dominik Martin-Creuzburg
- Department of Aquatic Ecology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| | - Tarn Preet Parmar
- Department of Aquatic Ecology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| | - N Roxanna Razavi
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, New York City, New York, USA
| | - Nicole Richoux
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Gregoire Saboret
- Department of Surface Waters, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Charlie Sarran
- Centre de Recherche Sur les Interactions Bassins Versants-Écosystèmes Aquatiques, Université du Québec à Trois-Rivières, Trois-Rivieres, Canada
| | - Travis S Schmidt
- U.S. Geological Survey, Wyoming-Montana Water Science Center, Helena, Montana, USA
| | - J Ryan Shipley
- WSL Swiss Federal Institute of Forest, Snow, and Landscape Research, Birmensdorf, Switzerland
| | | |
Collapse
|
4
|
Miller SA, Faunce KE, Barber LB, Fleck JA, Burns DW, Jasmann JR, Hladik ML. Factors contributing to pesticide contamination in riverine systems: The role of wastewater and landscape sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:174939. [PMID: 39059670 DOI: 10.1016/j.scitotenv.2024.174939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Wastewater treatment plant (WWTP) discharges can be a source of organic contaminants, including pesticides, to rivers. An integrated model was developed for the Potomac River watershed (PRW) to determine the amount of accumulated wastewater percentage of streamflow (ACCWW) and calculate predicted environmental concentrations (PECs) for 14 pesticides in non-tidal National Hydrography Dataset Plus Version 2.1 stream segments. Predicted environmental concentrations were compared to measured environmental concentrations (MECs) from 32 stream sites that represented a range of ACCWW and land use to evaluate model performance and to assess possible non-WWTP loading sources. Statistical agreement between PECs and MECs was strongest for insecticides, followed by fungicides and herbicides. Principal component analysis utilizing optical fluorescence and ancillary water quality data identified wastewater and urban runoff sources. Pesticides that indicated relatively larger sources from WWTPs included dinotefuran, fipronil, carbendazim, thiabendazole, and prometon whereas imidacloprid, azoxystrobin, propiconazole, tebuconazole, and diuron were more related to urban runoff. In addition, PECs generally comprised a low proportion of MECs, which indicates possible dominant loading sources beyond WWTP discharges. Cumulative potential toxicity was higher for sites with greater ACCWW and/or located in developed areas. Imidacloprid, fipronil, and carbendazim accounted for the largest portion of predicted potential toxicity across sites. The chronic aquatic life toxicity benchmarks for freshwater invertebrates were exceeded for 82 % of the imidacloprid detections (n = 28) and 47 % of the fipronil detections (n = 19). These results highlight the ecological implications of pesticide contamination from WWTP discharges and also the potential legacy effects from accumulated soil and groundwater sources. Pesticide management strategies that mitigate both current and historical impacts may improve the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Samuel A Miller
- U.S. Geological Survey, 1730 E Parham Road, Richmond, VA 23228, USA.
| | - Kaycee E Faunce
- U.S. Geological Survey, 1730 E Parham Road, Richmond, VA 23228, USA.
| | - Larry B Barber
- U.S. Geological Survey, 3215 Marine Street, Boulder, CO 80303, USA.
| | - Jacob A Fleck
- U.S. Geological Survey, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA.
| | - Daniel W Burns
- U.S. Geological Survey, 1730 E Parham Road, Richmond, VA 23228, USA.
| | - Jeramy R Jasmann
- U.S. Geological Survey, 3215 Marine Street, Boulder, CO 80303, USA.
| | - Michelle L Hladik
- U.S. Geological Survey, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA.
| |
Collapse
|
5
|
Smucker NJ, Pilgrim EM, Nietch CT, Gains-Germain L, Carpenter C, Darling JA, Yuan LL, Mitchell RM, Pollard AI. Using DNA metabarcoding to characterize national scale diatom-environment relationships and to develop indicators in streams and rivers of the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173502. [PMID: 38815829 PMCID: PMC11247516 DOI: 10.1016/j.scitotenv.2024.173502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Recent advancements in DNA techniques, metabarcoding, and bioinformatics could help expand the use of benthic diatoms in monitoring and assessment programs by providing relatively quick and increasingly cost-effective ways to quantify diatom diversity in environmental samples. However, such applications of DNA-based approaches are relatively new, and in the United States, unknowns regarding their applications at large scales exist because only a few small-scale studies have been done. Here, we present results from the first nationwide survey to use DNA metabarcoding (rbcL) of benthic diatoms, which were collected from 1788 streams and rivers across nine ecoregions spanning the conterminous USA. At the national scale, we found that diatom assemblage structure (1) was strongly associated with total phosphorus and total nitrogen concentrations, conductivity, and pH and (2) had clear patterns that corresponded with differences in these variables among the nine ecoregions. These four variables were strong predictors of diatom assemblage structure in ecoregion-specific analyses, but our results also showed that diatom-environment relationships, the importance of environmental variables, and the ranges of these variables within which assemblage changes occurred differed among ecoregions. To further examine how assemblage data could be used for biomonitoring purposes, we used indicator species analysis to identify ecoregion-specific taxa that decreased or increased along each environmental gradient, and we used their relative abundances of gene reads in samples as metrics. These metrics were strongly correlated with their corresponding variable of interest (e.g., low phosphorus diatoms with total phosphorus concentrations), and generalized additive models showed how their relationships compared among ecoregions. These large-scale national patterns and nine sets of ecoregional results demonstrated that diatom DNA metabarcoding is a robust approach that could be useful to monitoring and assessment programs spanning the variety of conditions that exist throughout the conterminous United States.
Collapse
Affiliation(s)
- Nathan J Smucker
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
| | - Erik M Pilgrim
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Christopher T Nietch
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | | | | | - John A Darling
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27703, USA
| | - Lester L Yuan
- United States Environmental Protection Agency, Office of Water, Washington, D.C. 20004, USA
| | - Richard M Mitchell
- United States Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, D.C. 20004, USA
| | - Amina I Pollard
- United States Environmental Protection Agency, Office of Water, Washington, D.C. 20004, USA
| |
Collapse
|
6
|
Markert N, Guhl B, Feld CK. Linking wastewater treatment plant effluents to water quality and hydrology: Effects of multiple stressors on fish communities. WATER RESEARCH 2024; 260:121914. [PMID: 38880012 DOI: 10.1016/j.watres.2024.121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Wastewater treatment plants (WWTPs) are essential for maintaining a good water quality of surface waters. However, WWTPs are also associated with water quality deterioration and hydro-morphological alteration. Riverine communities respond to these stressors with changes in their community structure, abundance and diversity. In this study, we used a dataset of 94 monitoring sites across North Rhine-Westphalia, Germany to investigate the influence of WWTPs on the water quality and hydro-morphological quality in river sections downstream of WWTP effluents. More specifically, we analyzed the effects of the percentage of WWTP effluents (in relation to median base flow) on four stressor groups (physico-chemistry, micropollutants, hydrological and morphological alteration) using Linear Mixed Models (LMM). Furthermore, we assessed the impact of a selection of twelve ecologically relevant stressor variables reflecting water quality deterioration and hydro-morphological alteration on reference fish communities using Canonical Correspondence Analysis (CCA). The percentage of WWTP effluents was correlated with water quality, especially with toxic units of a wide range of pharmaceuticals including diclofenac, venlafaxine and sulfamethoxazole (R² up to 0.54) as well as specific pesticides (e.g., terbutryn: R² = 0.33). The correlation of percent WWTP effluents with hydro-morphological alteration was weaker and most pronounced for the frequency of high flow (R² = 0.24) and flow variability (R² = 0.19). About 40 % of the variance in the fish community structure were explained by 12 stressor variables in the CCA models. Water quality and hydrological, but not morphological stressors showed strong albeit highly variable effects on individual fish species. The results indicate that water quality degradation and hydrological alteration are important factors determining the ecological status of fish communities. In this context, WWTP effluents can impose relevant point sources of pollution that affect water quality but also cause alterations of the hydrological regime. Further management measures addressing both stressor groups are needed to improve the ecological status.
Collapse
Affiliation(s)
- Nele Markert
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany; North Rhine-Westphalian Office of Nature, Environment and Consumer Protection (LANUV NRW), Düsseldorf 40208, Germany.
| | - Barbara Guhl
- North Rhine-Westphalian Office of Nature, Environment and Consumer Protection (LANUV NRW), Düsseldorf 40208, Germany
| | - Christian K Feld
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| |
Collapse
|
7
|
Iwasaki Y, Suemori T, Kobayashi Y. Predicting macroinvertebrate average score per taxon (ASPT) at water quality monitoring sites in Japanese rivers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28538-28548. [PMID: 38561531 DOI: 10.1007/s11356-024-33053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Biomonitoring with bioindicators such as river macroinvertebrates is fundamental for assessing the status of freshwater ecosystems. In Japan, water quality and biomonitoring surveys are conducted separately, leading to a lack of nationwide information on their relationships and the biological status of water quality monitoring (WQM) sites. To understand the biological status of WQM sites across Japan, we developed a multiple linear regression model to estimate the average score per taxon (ASPT) using river macroinvertebrate data surveyed at a total of 237 "aligned" sites based on the co-occurrence of biomonitoring and WQM sites. The resulting regression model with eight predictors, such as biological oxygen demand, the proportion of urban areas in the catchment, could predict ASPT with reasonable accuracy (e.g., an error of ±1 for 96% of the aligned data). Using this model, we estimated ASPT values at 2925 WQM sites in rivers nationwide, categorizing them into four levels of river environment quality: "very good" (29% of WQM sites), "good" (50%), "fairly good" (14%), and "not good" (8%). Furthermore, we observed statistically significant correlations (p < 0.05; 0.4 ≤ r ≤ 0.7) between ASPT and all eight macroinvertebrate metrics examined, such as mayfly and stonefly richness, providing ecological implications of changes in ASPT.
Collapse
Affiliation(s)
- Yuichi Iwasaki
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| | - Tomomi Suemori
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Yuta Kobayashi
- Field Science Center, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-tyo, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
8
|
Nowell LH, Moran PW, Waite IR, Schmidt TS, Bradley PM, Mahler BJ, Van Metre PC. Multiple lines of evidence point to pesticides as stressors affecting invertebrate communities in small streams in five United States regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169634. [PMID: 38272727 DOI: 10.1016/j.scitotenv.2023.169634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Multistressor studies were performed in five regions of the United States to assess the role of pesticides as stressors affecting invertebrate communities in wadable streams. Pesticides and other chemical and physical stressors were measured in 75 to 99 streams per region for 4 weeks, after which invertebrate communities were surveyed (435 total sites). Pesticides were sampled weekly in filtered water, and once in bed sediment. The role of pesticides as a stressor to invertebrate communities was assessed by evaluating multiple lines of evidence: toxicity predictions based on measured pesticide concentrations, multivariate models and other statistical analyses, and previously published mesocosm experiments. Toxicity predictions using benchmarks and species sensitivity distributions and statistical correlations suggested that pesticides were present at high enough concentrations to adversely affect invertebrate communities at the regional scale. Two undirected techniques-boosted regression tree models and distance-based linear models-identified which pesticides were predictors of (respectively) invertebrate metrics and community composition. To put insecticides in context with known, influential covariates of invertebrate response, generalized additive models were used to identify which individual pesticide(s) were important predictors of invertebrate community condition in each region, after accounting for natural covariates. Four insecticides were identified as stressors to invertebrate communities at the regional scale: bifenthrin, chlordane, fipronil and its degradates, and imidacloprid. Fipronil was particularly important in the Southeast region, and imidacloprid, bifenthrin, and chlordane were important in multiple regions. For imidacloprid, bifenthrin, and fipronil, toxicity predictions were supported by mesocosm experiments that demonstrated adverse effects on naïve aquatic communities when dosed under controlled conditions. These multiple lines of evidence do not prove causality-which is challenging in the field under multistressor conditions-but they make a strong case for the role of insecticides as stressors adversely affecting invertebrate communities in streams within the five sampled regions.
Collapse
Affiliation(s)
- Lisa H Nowell
- U.S. Geological Survey, California Water Science Center, Placer Hall, 6000 J St., Sacramento, CA 95819, USA.
| | - Patrick W Moran
- U.S. Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma, WA 98402, USA
| | - Ian R Waite
- U.S. Geological Survey, Oregon Water Science Center, 601 SW 2nd Ave. Suite 1950, Portland, Oregon 97201, USA
| | - Travis S Schmidt
- U.S. Geological Survey, Wyoming-Montana Water Science Center, 3162 Bozeman Ave., Helena, MT 59601, USA
| | - Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, 720 Gracern Rd., Suite 129, Columbia, SC 29210, USA
| | - Barbara J Mahler
- U.S. Geological Survey, Oklahoma-Texas Water Science Center, 1505 Ferguson Lane, Austin, TX 78754, USA
| | - Peter C Van Metre
- U.S. Geological Survey, Oklahoma-Texas Water Science Center, 1505 Ferguson Lane, Austin, TX 78754, USA
| |
Collapse
|
9
|
McLellan EL, Suttles KM, Bouska KL, Ellis JH, Flotemersch JE, Goff M, Golden HE, Hill RA, Hohman TR, Keerthi S, Keim RF, Kleiss BA, Lark TJ, Piazza BP, Renfro AA, Robertson DM, Schilling KE, Schmidt TS, Waite IR. Improving ecosystem health in highly altered river basins: a generalized framework and its application to the Mississippi-Atchafalaya River Basin. FRONTIERS IN ENVIRONMENTAL SCIENCE 2024; 12:1-19. [PMID: 38516348 PMCID: PMC10953731 DOI: 10.3389/fenvs.2024.1332934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Continued large-scale public investment in declining ecosystems depends on demonstrations of "success". While the public conception of "success" often focuses on restoration to a pre-disturbance condition, the scientific community is more likely to measure success in terms of improved ecosystem health. Using a combination of literature review, workshops and expert solicitation we propose a generalized framework to improve ecosystem health in highly altered river basins by reducing ecosystem stressors, enhancing ecosystem processes and increasing ecosystem resilience. We illustrate the use of this framework in the Mississippi-Atchafalaya River Basin (MARB) of the central United States (U.S.), by (i) identifying key stressors related to human activities, and (ii) creating a conceptual ecosystem model relating those stressors to effects on ecosystem structure and processes. As a result of our analysis, we identify a set of landscape-level indicators of ecosystem health, emphasizing leading indicators of stressor removal (e.g., reduced anthropogenic nutrient inputs), increased ecosystem function (e.g., increased water storage in the landscape) and increased resilience (e.g., changes in the percentage of perennial vegetative cover). We suggest that by including these indicators, along with lagging indicators such as direct measurements of water quality, stakeholders will be better able to assess the effectiveness of management actions. For example, if both leading and lagging indicators show improvement over time, then management actions are on track to attain desired ecosystem condition. If, however, leading indicators are not improving or even declining, then fundamental challenges to ecosystem health remain to be addressed and failure to address these will ultimately lead to declines in lagging indicators such as water quality. Although our model and indicators are specific to the MARB, we believe that the generalized framework and the process of model and indicator development will be valuable in an array of altered river basins.
Collapse
Affiliation(s)
| | | | - Kristen L. Bouska
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, United States
| | - Jamelle H. Ellis
- Theodore Roosevelt Conservation Partnership, Washington, DC, United States
| | - Joseph E. Flotemersch
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Madison Goff
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, United States
| | - Heather E. Golden
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, United States
| | - Ryan A. Hill
- U.S. Environmental Protection Agency, Office of Research and Development, Corvallis, OR, United States
| | - Tara R. Hohman
- Audubon Upper Mississippi River, Audubon Center at Riverlands, West Alton, MO, United States
| | | | - Richard F. Keim
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA, United States
| | - Barbara A. Kleiss
- Department of River Coastal Science and Engineering, Tulane University, New Orleans, LA, United States
| | - Tyler J. Lark
- Center for Sustainability and the Global Environment, University of Wisconsin, Madison, WI, United States
| | | | | | - Dale M. Robertson
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, WI, United States
| | - Keith E. Schilling
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, United States
| | - Travis S. Schmidt
- U.S. Geological Survey, Wyoming-Montana Water Science Center, Helena, MT, United States
| | - Ian R. Waite
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, United States
| |
Collapse
|
10
|
Schulz R, Bundschuh M, Entling MH, Jungkunst HF, Lorke A, Schwenk K, Schäfer RB. A synthesis of anthropogenic stress effects on emergence-mediated aquatic-terrestrial linkages and riparian food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168186. [PMID: 37914130 DOI: 10.1016/j.scitotenv.2023.168186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Anthropogenic stress alters the linkage between aquatic and terrestrial ecosystems in various ways. Here, we review the contemporary literature on how alterations in aquatic systems through environmental pollution, invasive species and hydromorphological changes carry-over to terrestrial ecosystems and the food webs therein. We consider both the aquatic insect emergence and flooding as pathways through which stressors can propagate from the aquatic to the terrestrial system. We specifically synthesize and contextualize results on the roles of pollutants in the emergence pathway and their top-down consequences. Our review revealed that the emergence and flooding pathway are only considered in isolation and that the overall effects of invasive species or pollutants on food webs at the water-land interface require further attention. While very few recent studies looked at invasive species, a larger number of studies focused on metal transfer compared to pesticides, pharmaceuticals or PCBs, and multiple stress studies up to now left aquatic-terrestrial linkages unconsidered. Recent research on pollutants and emergence used aquatic-terrestrial mesocosms to elucidate the effects of aquatic stressors such as the mosquito control agent Bti, metals or pesticides to understand the effects on riparian spiders. Quality parameters, such as the structural and functional composition of emergent insect communities, the fatty acid profiles, yet also the composition of pollutants transferred to land prove to be important for the effects on riparian spiders. Process-based models including quality of emergence are useful to predict the resulting top-down directed food web effects in the terrestrial recipient ecosystem. In conclusion, we present and recommend a combination of empirical and modelling approaches in order to understand the complexity of aquatic-terrestrial stressor propagation and its spatial and temporal variation.
Collapse
Affiliation(s)
- Ralf Schulz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany.
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Martin H Entling
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Hermann F Jungkunst
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Andreas Lorke
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Klaus Schwenk
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| |
Collapse
|
11
|
Markert N, Guhl B, Feld CK. Water quality deterioration remains a major stressor for macroinvertebrate, diatom and fish communities in German rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167994. [PMID: 37875194 DOI: 10.1016/j.scitotenv.2023.167994] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
About 60 % of Europe's rivers fail to meet ecological quality standards derived from biological criteria. The causes are manifold, but recent reports suggest a dominant role of hydro-morphological and water quality-related stressors. Yet, in particular micropollutants and hydrological stressors often tend to be underrepresented in multiple-stressor studies. Using monitoring data from four Federal States in Germany, this study investigated the effects of 19 stressor variables from six stressor groups (nutrients, salt ions, dissolved oxygen/water temperature, mixture toxicity of 51 micropollutants, hydrological alteration and morphological habitat quality) on three biological assemblages (fishes, macroinvertebrates, benthic diatoms). Biological effects were analyzed for 35 community metrics and quantified using Random Forest (RF) analyses to put the stressor groups into a hierarchical context. To compare metric responses, metrics were grouped into categories reflecting important characteristics of biological communities, such as sensitivity, functional traits, diversity and community composition as well as composite indices that integrate several metrics into one single index (e.g., ecological quality class). Water quality-related stressors - but not micropollutants - turned out to dominate the responses of all assemblages. In contrast, the effects of hydro-morphological stressors were less pronounced and stronger for hydrological stressors than for morphological stressors. Explained variances of RF models ranged 23-64 % for macroinvertebrates, 16-40 % for benthic diatoms and 18-48 % for fishes. Despite a high variability of responses across assemblages and stressor groups, sensitivity metrics tended to reveal stronger responses to individual stressors and a higher explained variance in RF models than composite indices. The results of this study suggest that (physico-chemical) water quality deterioration continues to impact biological assemblages in many German rivers, despite the extensive progress in wastewater treatment during the past decades. To detect water quality deterioration, monitoring schemes need to target relevant physico-chemical stressors and micropollutants. Furthermore, monitoring needs to integrate measures of hydrological alteration (e.g., flow magnitude and dynamics). At present, hydro-morphological surveys rarely address the degree of hydrological alteration. In order to achieve a good ecological status, river restoration and management needs to address both water quality-related and hydro-morphological stressors. Restricting analyses to just one single organism group (e.g., macroinvertebrates) or only selected metrics (e.g., ecological quality class) may hamper stressor identification and its hierarchical classification and, thus may mislead river management.
Collapse
Affiliation(s)
- Nele Markert
- North Rhine-Westphalian Office of Nature, Environment and Consumer Protection (LANUV NRW), 40208 Düsseldorf, Germany; University Duisburg-Essen, Faculty of Biology, Aquatic Ecology, Universitätsstr. 5, 45141 Essen, Germany.
| | - Barbara Guhl
- North Rhine-Westphalian Office of Nature, Environment and Consumer Protection (LANUV NRW), 40208 Düsseldorf, Germany
| | - Christian K Feld
- University Duisburg-Essen, Faculty of Biology, Aquatic Ecology, Universitätsstr. 5, 45141 Essen, Germany; University Duisburg-Essen, Centre for Water and Environmental Research (ZWU), Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
12
|
Schäfer RB, Jackson M, Juvigny-Khenafou N, Osakpolor SE, Posthuma L, Schneeweiss A, Spaak J, Vinebrooke R. Chemical Mixtures and Multiple Stressors: Same but Different? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1915-1936. [PMID: 37036219 DOI: 10.1002/etc.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross-fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at suborganismal level have been developed, recent classification systems for multiple stressors account for environmental context. Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors, chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor dynamics. We suggest that process-based and data-driven models are particularly promising to tackle the challenge of prediction of effects of chemical mixtures and nonchemical stressors on (meta-)communities and (meta-)food webs. We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol Chem 2023;42:1915-1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ralf B Schäfer
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | | | - Noel Juvigny-Khenafou
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Stephen E Osakpolor
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Leo Posthuma
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Anke Schneeweiss
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Jürg Spaak
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Rolf Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Heß S, Hof D, Oetken M, Sundermann A. Effects of multiple stressors on benthic invertebrates using Water Framework Directive monitoring data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162952. [PMID: 36948311 DOI: 10.1016/j.scitotenv.2023.162952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023]
Abstract
Multiple stressors affect freshwater systems and cause a deficient ecological status according to the European Water Framework Directive (WFD). To select effective mitigation measures and improve the ecological status, knowledge on the stressor hierarchy and individual and joined effects is necessary. However, compared to common stressors like nutrient enrichment and morphological degradation, the relative importance of micropollutants such as pesticides and pharmaceuticals is largely unaddressed. We used WFD monitoring data from Saxony (Germany) to investigate the importance of 85 environmental variables (including 34 micropollutants) for 18 benthic invertebrate metrics at 108 sites. The environmental variables were assigned to five groups (natural factors, nutrient enrichment, metals, micropollutants and morphological degradation) and were ranked according to their relative importance as group and individually within and across groups using Principal Component Analyses (PCAs) and Boosted Regression Trees (BRTs). Overall, natural factors contributed the most to the total explained deviance of the models. This variable group represented not only typological differences between sampling sites but also a gradient of human impact by strongly anthropogenically influenced variables such as electric conductivity and dissolved oxygen. These large-scale effects can mask the individual importance of the other variable groups, which may act more specifically at a subset of sites. Accordingly, micropollutants were not represented by a few dominant variables but rather a diverse palette of different chemicals with similar contribution. As a group, micropollutants contributed similarly as metals, nutrient enrichment and morphological degradation. However, the importance of micropollutants might be underestimated due to limitations of the current chemical monitoring practices.
Collapse
Affiliation(s)
- Sebastian Heß
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571 Gelnhausen, Germany; Goethe University Frankfurt, Faculty of Biology, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Delia Hof
- Goethe University Frankfurt, Faculty of Biology, Department of Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Matthias Oetken
- Goethe University Frankfurt, Faculty of Biology, Department of Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Andrea Sundermann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystr. 12, 63571 Gelnhausen, Germany; Goethe University Frankfurt, Faculty of Biology, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Stoczynski L, Scott MC, Bower L, Peoples BK. Effects of environment and metacommunity delineation on multiple dimensions of stream fish beta diversity. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1077994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
IntroductionBeta diversity represents changes in community composition among locations across a landscape. While the effects of human activities on beta diversity are becoming clearer, few studies have considered human effects on the three dimensions of beta diversity: taxonomic, functional, and phylogenetic. Including anthropogenic factors and multiple dimensions of biodiversity may explain additional variation in stream fish beta diversity, providing new insight into how metacommunities are structured within different spatial delineations.MethodsIn this study, we used a 350 site stream fish abundance dataset from South Carolina, United States to quantify beta diversity explainable by spatial, natural environmental, and anthropogenic variables. We investigated three spatial delineations: (1) a single whole-state metacommunity delineated by political boundaries, (2) two metacommunities delineated by a natural geomorphic break separating uplands from lowlands, and (3) four metacommunities delineated by natural watershed boundaries. Within each metacommunity we calculated taxonomic, functional, and phylogenetic beta diversity and used variation partitioning to quantify spatial, natural environmental, and anthropogenic contributions to variations in beta diversity.ResultsWe explained 25–81% of the variation in stream fish beta diversity. The importance of these three factors in structuring metacommunities differed among the diversity dimensions, providing complementary perspectives on the processes shaping beta diversity in fish communities. The effect of spatial, natural environmental, and anthropogenic factors varied among the spatial delineations, which indicate conclusions drawn from variation partitioning may depend on the spatial delineation chosen by researchers.DiscussionOur study highlights the importance of considering human effects on metacommunity structure, quantifying multiple dimensions of beta diversity, and careful consideration of user-defined metacommunity boundaries in beta diversity analyses.
Collapse
|
15
|
Sarkis N, Geffard O, Souchon Y, Chandesris A, Ferréol M, Valette L, François A, Piffady J, Chaumot A, Villeneuve B. Identifying the impact of toxicity on stream macroinvertebrate communities in a multi-stressor context based on national ecological and ecotoxicological monitoring databases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160179. [PMID: 36395849 DOI: 10.1016/j.scitotenv.2022.160179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
In situ bioassays are used to measure the harmful effects induced by mixtures of toxic chemicals in watercourses. In France, national-scale biomonitoring data are available including invertebrate surveys and in-field chemical toxicity measures with caged gammarids to assess environmental toxicity of mixtures of chemicals. The main objective of our study is to present a proof-of-concept approach identifying possible links between in-field chemical toxicity, stressors and the ecological status. We used two active biomonitoring databases comprising lethal toxicity (222 in situ measures of gammarid mortality) and sublethal toxicity (101 in situ measures of feeding inhibition). We measured the ecological status of each active biomonitoring site using the I2M2 metric (macroinvertebrate-based multimetric index), accounted for known stressors of nutrients and organic matter, hydromorphology and chemical toxicity. We observed a negative relationship between stressors (hydromorphology, nutrients and organic matter, and chemical toxicity) and the good ecological status. This relationship was aggravated in watercourses where toxicity indicators were degraded. We validated this hypothesis for instance with nutrients and organic matter like nitrates or hydromorphological conditions like percentage of vegetation on banks. Future international assesments concerning the role of in-field toxic pollution on the ecological status in a multi-stressor context are now possible via the current methodology.
Collapse
Affiliation(s)
- Noëlle Sarkis
- INRAE, UR RiverLy, EcoFlowS, F-69625 Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Yves Souchon
- INRAE, UR RiverLy, EcoFlowS, F-69625 Villeurbanne, France
| | | | | | | | - Adeline François
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | - Jérémy Piffady
- INRAE, UR RiverLy, EcoFlowS, F-69625 Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625 Villeurbanne, France
| | | |
Collapse
|
16
|
Fanelli RM, Cashman MJ, Porter AJ. Identifying Key Stressors Driving Biological Impairment in Freshwater Streams in the Chesapeake Bay Watershed, USA. ENVIRONMENTAL MANAGEMENT 2022; 70:926-949. [PMID: 36207606 PMCID: PMC9622507 DOI: 10.1007/s00267-022-01723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Biological communities in freshwater streams are often impaired by multiple stressors (e.g., flow or water quality) originating from anthropogenic activities such as urbanization, agriculture, or energy extraction. Restoration efforts in the Chesapeake Bay watershed, USA seek to improve biological conditions in 10% of freshwater tributaries and to protect the biological integrity of existing healthy watersheds. To achieve these goals, resource managers need to better understand which stressors are most likely driving biological impairment. Our study addressed this knowledge gap through two approaches: 1) reviewing and synthesizing published multi-stressor studies, and 2) examining 303(d) listed impairments linked to biological impairment as identified by jurisdiction regulatory agencies (the states within the watershed and the District of Columbia). Results identified geomorphology (i.e., physical habitat), salinity, and toxic contaminants as important for explaining variability in benthic community metrics in the literature review. Geomorphology (i.e., physical habitat and sediment), salinity, and nutrients were the most reported stressors in the jurisdictional impairment analysis. Salinity is likely a major stressor in urban and mining settings, whereas geomorphology was commonly reported in agricultural settings. Toxic contaminants, such as pesticides, were rarely measured; more research is needed to quantify the extent of their effects in the region. Flow alteration was also highlighted as an important urban stressor in the literature review but was rarely measured in the literature or reported by jurisdictions as a cause of impairment. These results can be used to prioritize stressor monitoring by managers, and to improve stressor identification methods for identifying causes of biological impairment.
Collapse
Affiliation(s)
- Rosemary M Fanelli
- U.S. Geological Survey, South Atlantic Water Science Center, Raleigh, NC, USA.
| | - Matthew J Cashman
- U.S. Geological Survey, Maryland-D.C.-Delaware Water Science Center, Baltimore, MD, USA
| | - Aaron J Porter
- U.S. Geological Survey, Virginia-West Virginia Water Science Center, Richmond, VA, USA
| |
Collapse
|
17
|
Smucker NJ, Pilgrim EM, Wu H, Nietch CT, Darling JA, Molina M, Johnson BR, Yuan LL. Characterizing temporal variability in streams supports nutrient indicator development using diatom and bacterial DNA metabarcoding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154960. [PMID: 35378187 PMCID: PMC9169572 DOI: 10.1016/j.scitotenv.2022.154960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 05/26/2023]
Abstract
Interest in developing periphytic diatom and bacterial indicators of nutrient effects continues to grow in support of the assessment and management of stream ecosystems and their watersheds. However, temporal variability could confound relationships between indicators and nutrients, subsequently affecting assessment outcomes. To document how temporal variability affects measures of diatom and bacterial assemblages obtained from DNA metabarcoding, we conducted weekly periphyton and nutrient sampling from July to October 2016 in 25 streams in a 1293 km2 mixed land use watershed. Measures of both diatom and bacterial assemblages were strongly associated with the percent agriculture in upstream watersheds and total phosphorus (TP) and total nitrogen (TN) concentrations. Temporal variability in TP and TN concentrations increased with greater amounts of agriculture in watersheds, but overall diatom and bacterial assemblage variability within sites-measured as mean distance among samples to corresponding site centroids in ordination space-remained consistent. This consistency was due in part to offsets between decreasing variability in relative abundances of taxa typical of low nutrient conditions and increasing variability in those typical of high nutrient conditions as mean concentrations of TP and TN increased within sites. Weekly low and high nutrient diatom and bacterial metrics were more strongly correlated with site mean nutrient concentrations over the sampling period than with same day measurements and more strongly correlated with TP than with TN. Correlations with TP concentrations were consistently strong throughout the study except briefly following two major precipitation events. Following these events, biotic relationships with TP reestablished within one to three weeks. Collectively, these results can strengthen interpretations of survey results and inform monitoring strategies and decision making. These findings have direct applications for improving the use of diatoms and bacteria, and the use of DNA metabarcoding, in monitoring programs and stream site assessments.
Collapse
Affiliation(s)
- Nathan J Smucker
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
| | - Erik M Pilgrim
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Huiyun Wu
- Oak Ridge Institute for Science and Education, P.O. Box 117, Oak Ridge, Tennessee 37831 USA c/o United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Christopher T Nietch
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - John A Darling
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Marirosa Molina
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA
| | - Brent R Johnson
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Lester L Yuan
- United States Environmental Protection Agency, Office of Water, Washington, DC 20460, USA
| |
Collapse
|