1
|
Hu J, Liu Y, Zhao Y, Gan Y, Hill RL, Zhang H. The fate and ecological risk of mefentrifluconazole in the water-sediment system: A systematic analysis at the enantiomer level. ENVIRONMENTAL RESEARCH 2025; 278:121682. [PMID: 40280391 DOI: 10.1016/j.envres.2025.121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Triazole fungicides occupy a significant position in the global fungicidal market. Mefentrifluconazole (MFZ) is a new-generation chiral triazole fungicide with broad applications. It can effectively control several rice fungal diseases; thus, its wide application increases its risk of entering the water and sediment in ecosystems. In this study, the stereoselective fate and risk of MFZ in the water-sediment system were investigated. The results showed stereoselective differences in the acute toxicity and fate of MFZ enantiomers (S-MFZ and R-MFZ) in the water-sediment system, with S-MFZ being more toxic and persistent. Both R-MFZ and S-MFZ induced significant decreases in the oxidation-reduction potential (ORP) value and organic matter (OM) content of the sediment. Additionally, soil enzyme activity in the sediments changed in varying degrees during exposure. Further microbiome sequencing results showed that both R-MFZ and S-MFZ induced changes in the composition of sediment microbial communities and decreased species diversity, which, in turn, affected the metabolic processes of microorganisms and the function of glycosyltransferase (GT) enzymes, especially S-MFZ. Correlation analysis showed that stereoselectivity in the interaction between the MFZ enantiomers and GT enzymes induced a difference in the synthesis of lipopolysaccharides; thus, affecting the abundances of the relevant bacterial genera and carbohydrate metabolic pathways. Exposure to MFZ enantiomers induced an increase in the abundance of anaerobic bacteria, such as Methylophilus and Rhodoferax, which exacerbated the anaerobic environment of the sediment system, leading to acidification and accelerated nutrient decomposition.
Collapse
Affiliation(s)
- Jin Hu
- Ludong University, Yantai, 264025, China
| | - Yingjie Liu
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou, 450007, China
| | - Ying Zhao
- Ludong University, Yantai, 264025, China
| | - Yantai Gan
- Ludong University, Yantai, 264025, China
| | - Robert Lee Hill
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | | |
Collapse
|
2
|
Zhao DX, Bai Z, Yuan YW, Li SA, Wei YL, Yuan HS. Ectomycorrhizal fungal community varies across broadleaf species and developmental stages. Sci Rep 2025; 15:6955. [PMID: 40011535 PMCID: PMC11865525 DOI: 10.1038/s41598-025-91411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
Ectomycorrhizal fungi (EMF) play pivotal roles in determining temperate forest ecosystem processes. We tracked root EMF community succession across saplings, juveniles, and adults of three temperate broadleaf trees (Acer mono, Betula platyphylla, and Quercus mongolica) in Northeast China. Adult stages showed higher alpha diversity but lower community dissimilarity compared to earlier stages. In particular, the EMF alpha diversity of Quercus mongolica marginally increased along with host developmental stages and ranked as sapling < juvenile < adult. Unlike those of Acer mono and Quercus mongolica, the EMF community composition of Betula platyphylla showed greater variation between the sapling and juvenile stages than between the sapling and adult stages. Cooccurrence networks revealed increasing interconnectivity with host maturity, dominated by positive correlations (> 99%). LEfSe was employed to identify stage- and/or host-specific EMF indicators. This study highlighted the assembly of EMF community during the development of broadleaf trees in temperate forests, thereby advancing understanding of the succession and coevolution of symbiotic relationships.
Collapse
Affiliation(s)
- Dong-Xue Zhao
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhen Bai
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, P. R. China
| | - Yi-Wei Yuan
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, P. R. China
| | - Si-Ao Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, P. R. China
- University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Lian Wei
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, P. R. China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, P. R. China.
| |
Collapse
|
3
|
Mitcov A, Ko D, Ko K, Kim J, Oh NH, Kim HS, Choe H, Chung H. Composition of soil fungal communities and microbial activity along an elevational gradient in Mt. Jiri, Republic of Korea. PeerJ 2025; 13:e18762. [PMID: 39839660 PMCID: PMC11748422 DOI: 10.7717/peerj.18762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
Approximately 64% of the Republic of Korea comprises mountainous areas, which as cold and high-altitude regions are gravely affected by climate change. Within the mountainous and the alpine-subalpine ecosystems, microbial communities play a pivotal role in biogeochemical cycling and partly regulate climate change through such cycles. We investigated the composition and function of microbial communities, with a focus on fungal communities, in Republic of Korea's second tallest mountain, Mt. Jiri, along a four-point-altitude gradient: 600-, 1,000-, 1,200-, and 1,400-m. Soil pH and elevation were negatively correlated, with soils becoming more acidic at higher altitude. Of the five soil enzyme activities analyzed, cellobiohydrolase, β-1,4-glucosidase, and β-1,4-xylosidase activity showed differences among the elevation levels, with lower activity at 600 m than that at 1,400 m. Soil microbial biomass correlated positively with increasing elevation and soil water content. The decrease in β-1,4-N-acetylglucosaminidase suggests a reduction in fungal biomass with increasing altitude, while factors other than elevation may influence the increase in activity of the cellobiohydrolase, β-1,4-glucosidase and β-1,4-xylosidase. Fungal alpha diversity did not exhibit an elevational trend, whereas beta diversity formed two clusters (600-1,000 m and 1,200-1,400 m). Community composition was similar among the elevations, with Basidiomycota being the most predominant phylum, followed by Ascomycota. Conversely, among the fungal communities at 1,000 m, Ascomycota was the most dominant, possibly due to increased pathotroph percentage. Elevational gradients induce changes in soil properties, vegetation, and climate factors such as temperature and precipitation, all of which impact soil microbial communities and altogether create a mutually reinforcing system. Hence, inspection of elevation-based microbial communities can aid in inferring ecosystem properties, specifically those related to nutrient cycling, and can partly help assess the oncoming direct and indirect effects of climate change.
Collapse
Affiliation(s)
- Ana Mitcov
- Department of Environmental Engineering, Konkuk University, Seoul, Republic of Korea
| | - Daegeun Ko
- Department of Environmental Engineering, Konkuk University, Seoul, Republic of Korea
| | - Kwanyoung Ko
- Department of Environmental Engineering, Konkuk University, Seoul, Republic of Korea
- Nanobio Measurement Group, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Jaeho Kim
- Department of Environmental Engineering, Konkuk University, Seoul, Republic of Korea
| | - Neung-Hwan Oh
- Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
- Environmental Planning Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeyeong Choe
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Haegeun Chung
- Department of Environmental Engineering, Konkuk University, Seoul, Republic of Korea
- Department of Civil and Environmental Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Hou Y, Xu Q, Yang Y, Jia R, Huang X, Zhou L, Li B, Zhu J. Dynamic Impact of One-Year Integrated Rice-Crayfish Farming on Bacterioplankton Communities in Paddy Water. BIOLOGY 2024; 13:1059. [PMID: 39765726 PMCID: PMC11673395 DOI: 10.3390/biology13121059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
As global food security issues become increasingly severe, an important innovation in agricultural production patterns, namely integrated rice-fish farming, has been widely implemented around the world, especially in Asia. To assess the impact of integrated rice-crayfish (Procambarus clarkii) farming (IRCF) on agricultural ecosystems, we used Illumina high-throughput 16S rRNA gene sequencing to analyze differences in diversity, composition, co-occurrence network, and assembly process of planktonic bacterial communities in paddy water between traditional rice farming (TRM) and IRCF. Environmental factors and planktonic bacterial communities were evaluated during the tillering, jointing, flowering, and grain-filling stages on August 24, September 5, September 24, and October 16, respectively. Our findings revealed that, throughout the entire cultivation period, IRCF had no notable impacts on bacterioplankton community diversity in paddy water, but it changed the composition and relative abundance of the dominant bacterioplankton. Specifically, IRCF promoted the Chloroflexota during the tillering stage but reduced its presence during the grain-filling stage. It also significantly decreased the Bacillota during the jointing stage while notably enhancing Actinomycetota during the flowering stage. Furthermore, IRCF markedly improved the robustness and negative/positive cohesion within bacterioplankton co-occurrence networks during jointing and grain-filling stages. IRCF altered the assembly processes shaping planktonic bacterial communities, promoting a greater dominance of stochastic processes during the tillering, jointing, and flowering stages and a diminished dominance during the grain-filling stage. IRCF dramatically changed aquatic environmental factors, particularly during the jointing stage, by substantially increasing the TN, ammonium, nitrate, and phosphate levels in paddy water. These nutrient levels were closely correlated with the dynamics of the planktonic bacterial communities. Our findings underscore the considerable potential of IRCF in enhancing the stability of bacterioplankton communities and promoting rice growth while also providing valuable data and theoretical insights into the microbiological ecological impacts of IRCF on the agroecosystem.
Collapse
Affiliation(s)
- Yiran Hou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Y.H.); (Q.X.); (R.J.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China;
| | - Qiancheng Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Y.H.); (Q.X.); (R.J.)
| | - Yanhong Yang
- Honghe Hani and Yi Autonomous Prefecture Fisheries Management Station, Mengzi 661100, China; (Y.Y.); (X.H.)
| | - Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Y.H.); (Q.X.); (R.J.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China;
| | - Xiongjian Huang
- Honghe Hani and Yi Autonomous Prefecture Fisheries Management Station, Mengzi 661100, China; (Y.Y.); (X.H.)
| | - Linjun Zhou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China;
| | - Bing Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Y.H.); (Q.X.); (R.J.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China;
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (Y.H.); (Q.X.); (R.J.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China;
| |
Collapse
|
5
|
Wei ZY, Feng M, Zhang DX, Jiang CY, Deng Y, Wang ZJ, Feng K, Song Y, Zhou N, Wang YL, Liu SJ. Deep insights into the assembly mechanisms, co-occurrence patterns, and functional roles of microbial community in wastewater treatment plants. ENVIRONMENTAL RESEARCH 2024; 263:120029. [PMID: 39299446 DOI: 10.1016/j.envres.2024.120029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The understanding of activated sludge microbial status and roles is imperative for improving and enhancing the performance of wastewater treatment plants (WWTPs). In this study, we conducted a deep analysis of activated sludge microbial communities across five compartments (inflow, effluent, and aerobic, anoxic, anaerobic tanks) over temporal scales, employing high-throughput sequencing of 16S rRNA amplicons and metagenome data. Clearly discernible seasonal patterns, exhibiting cyclic variations, were observed in microbial diversity, assembly, co-occurrence network, and metabolic functions. Notably, summer samples exhibited higher α-diversity and were distinctly separated from winter samples. Our analysis revealed that microbial community assembly is influenced by both stochastic processes (66%) and deterministic processes (34%), with winter samples demonstrating more random assembly compared to summer. Co-occurrence patterns were predominantly mutualistic, with over 96% positive correlations, and summer networks were more organized than those in winter. These variations were significantly correlated with temperature, total phosphorus and sludge volume index. However, no significant differences were found among microbial community across five compartments in terms of β diversity. A core community of keystone taxa was identified, playing key roles in eight nitrogen and eleven phosphorus cycling pathways. Understanding the assembly mechanisms, co-occurrence patterns, and functional roles of microbial communities is essential for the design and optimization of biotechnological treatment processes in WWTPs.
Collapse
Affiliation(s)
- Zi-Yan Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Min Feng
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Ding-Xi Zhang
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhu-Jun Wang
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs & School of Rural Revitalization), Hainan University, Haikou, China
| | - Kai Feng
- Key Laboratory of Environmental Biotechnology of CAS, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yang Song
- PetroChina Planning and Engineering Institute, Beijing, China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Lin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
6
|
Tu X, Yin B, Kang J, Wu Z, Guo Y, Ao G, Sun Y, Ge J, Ping W. Potassium persulfate enhances humification of chicken manure and straw composting: The perspective of rare and abundant microbial community structure and ecological interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175162. [PMID: 39084372 DOI: 10.1016/j.scitotenv.2024.175162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Improper disposal of organic solid waste results in serious environmental pollution. Aerobic composting provides an environmentally friendly treatment method, but improving humification of raw materials remains a challenge. This study revealed the effect of different concentrations of potassium persulfate (PP) on humification of chicken manure and straw aerobic composting and the underlying microbial mechanisms. The results showed that when 0.6 % PP was added (PPH group), humus and the degree of polymerization were 80.77 mg/g and 2.52, respectively, which were significantly higher than those in 0.3 % PP (PPL group). As the concentration of PP was increased, the composition of rare taxa (RT) changed and improved in evenness, while abundant taxa (AT) was unaffected. Additionally, the density (0.037), edges (3278), and average degree (15.21) in the co-occurrence network decreased compared to PPL, while the average path (4.021) and modularity increased in PPH. This resulted in facilitating the turnover of matter, information, and energy among the microbes. Interestingly, cooperative behavior between microorganisms during the maturation period (24-60 d) occurred in PPH, but competitive relationships dominated in PPL. Cooperative behavior was positively correlated with humus (p < 0.05). Because the indices, such as higher degree, betweenness centrality, eigenvector centrality, and closeness centrality of the AT, were located in the microbial network center compared to RT, they were unaffected by the concentration of PP. The abundance of carbohydrate and amino acid metabolic pathways, which play an important role in humification, were higher in PPH. These findings contribute to understanding the relative importance of composition, interactions, and metabolic functionality of RT and AT on humification during chicken manure and straw aerobic composting under different concentrations of PP, as well as provide a basic reference for use of various conditioning agents to promote humification of organic solid waste.
Collapse
Affiliation(s)
- Xiujun Tu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bo Yin
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yuhao Guo
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Guoxu Ao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
7
|
Meng L, Liang L, Shi Y, Yin H, Li L, Xiao J, Huang N, Zhao A, Xia Y, Hou J. Biofilms in plastisphere from freshwater wetlands: Biofilm formation, bacterial community assembly, and biogeochemical cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134930. [PMID: 38901258 DOI: 10.1016/j.jhazmat.2024.134930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Microorganisms can colonize to the surface of microplastics (MPs) to form biofilms, termed "plastisphere", which could significantly change their physiochemical properties and ecological roles. However, the biofilm characteristics and the deep mechanisms (interaction, assembly, and biogeochemical cycles) underlying plastisphere in wetlands currently lack a comprehensive perspective. In this study, in situ biofilm formation experiments were performed in a park with different types of wetlands to examine the plastisphere by extrinsic addition of PVC MPs in summer and winter, respectively. Results from the spectroscopic and microscopic analyses revealed that biofilms attached to the MPs in constructed forest wetlands contained the most abundant biomass and extracellular polymeric substances. Meanwhile, data from the high-throughput sequencing showed lower diversity in plastisphere compared with soil bacterial communities. Network analysis suggested a simple and unstable co-occurrence pattern in plastisphere, and the null model indicated increased deterministic process of heterogeneous selection for its community assembly. Based on the quantification of biogeochemical cycling genes by high-throughput qPCR, the relative abundances of genes involving in carbon degradation, carbon fixation, and denitrification were significantly higher in plastisphere than those of soil communities. This study greatly enhanced our understanding of biofilm formation and ecological effects of MPs in freshwater wetlands.
Collapse
Affiliation(s)
- Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Ministry of Education, Hangzhou 310058, China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Longrui Liang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yansong Shi
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Haitao Yin
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Li Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiamu Xiao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nannan Huang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Angang Zhao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yangrongchang Xia
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jingwen Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Zhao W, Soininen J, Hu A, Liu J, Li M, Wang J. The structure of bacteria-fungi bipartite networks along elevational gradients in contrasting climates. Mol Ecol 2024; 33:e17442. [PMID: 38953280 DOI: 10.1111/mec.17442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/20/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Climate change is altering species distribution and modifying interactions in microbial communities. Understanding microbial community structure and their interactions is crucial to interpreting ecosystem responses to climate change. Here, we examined the assemblages of stream bacteria and fungi, and the associations between the two groups along elevational gradients in two regions with contrasting precipitation and temperature, that is the Galong and Qilian mountains of the Tibetan Plateau. In the wetter and warmer region, the species richness significantly increased and decreased with elevation for bacteria and fungi, respectively, while were nonsignificant in the drier and colder region. Their bipartite network structure was also different by showing significant increases in connectance and nestedness towards higher elevations only in the wetter and warmer region. In addition, these correlation network structure generally exhibited similar positive association with species richness in the wetter and warmer region and the drier and colder region. In the wetter and warmer region, climatic change along elevation was more important in determining connectance and nestedness, whereas microbial species richness exerted a stronger influence on network structure and robustness in the drier and colder region. These findings indicate substantial forthcoming changes in microbial diversity and network structure in warming climates, especially in wetter and warmer regions on Earth, advancing the understanding of microbial bipartite interactions' response to climate change.
Collapse
Affiliation(s)
- Wenqian Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| | - Ang Hu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jinfu Liu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Mingjia Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jianjun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
9
|
He L, Sun X, Li S, Zhou W, Yu J, Zhao G. Biogeographic and co-occurrence network differentiation of fungal communities in warm-temperate montane soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174911. [PMID: 39038676 DOI: 10.1016/j.scitotenv.2024.174911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Studying the biogeographic patterns of fungal communities across altitudinal and soil depth gradients is essential for understanding how environmental variations shape the diversity and functionality of these complex ecological assemblages. Here, we evaluated the response and assembly patterns of fungal communities to altitude and soil depth, and the co-occurrence patterns influencing soil fungal metabolic preferences on Dongling Mountain. We observed significant variations in fungal β-diversity, driven by elevation and soil depth, with climatic parameters (MAT and MAP) and nutrient concentrations (TOC, TP, and TN) serving as prominent influencers. Additionally, we found that the multiple substrate-induced respiration rate of fungi degrading various carbon substrates was diminished in high-altitude and subsurface soils compared to low-altitude and surface soils. Stochastic processes play a more important role in controlling fungal community assembly than deterministic processes, with dispersal limitation emerging as the main driver of community assembly. While greater network complexity was evident in the topsoil compared to the subsoil, both layers harbored altitude-sensitive OTUs (asOTUs) that belonging to distinct modules. Moreover, fungal groups sensitive to the same altitude exhibited similar metabolic preferences. The asOTUs designated for lower altitude areas favored unstable carbon substrates (glucose and sucrose), while those designated as higher altitude areas exhibited a preference for recalcitrant carbon (xylan and lignin). This evidence suggests that soil fungal communities respond to environmental changes by trading off their life strategies and metabolic characteristics.
Collapse
Affiliation(s)
- Libing He
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Suyan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Wenzhi Zhou
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jiantao Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guanyu Zhao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
10
|
Li Y, Shi X, Zeng M, Qin P, Fu M, Luo S, Tang C, Mo C, Yu F. Effect of polyethylene microplastics on antibiotic resistance genes: A comparison based on different soil types and plant types. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134581. [PMID: 38743972 DOI: 10.1016/j.jhazmat.2024.134581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/13/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Microplastics (MPs) and antibiotic resistance genes (ARGs) are two types of contaminants that are widely present in the soil environment. MPs can act as carriers of microbes, facilitating the colonization and spread of ARGs and thus posing potential hazards to ecosystem safety and human health. In the present study, we explored the microbial networks and ARG distribution characteristics in different soil types (heavy metal (HM)-contaminated soil and agricultural soil planted with different plants: Bidens pilosa L., Ipomoea aquatica F., and Brassica chinensis L.) after the application of MPs and evaluated environmental factors, potential microbial hosts, and ARGs. The microbial communities in the three rhizosphere soils were closely related to each other, and the modularity of the microbial networks was greater than 0.4. Moreover, the core taxa in the microbial networks, including Actinobacteriota, Proteobacteria, and Myxococcota, were important for resisting environmental stress. The ARG resistance mechanisms were dominated by antibiotic efflux in all three rhizosphere soils. Based on the annotation results, the MP treatments induced changes in the relative abundance of microbes carrying ARGs, and the G1-5 treatment significantly increased the abundance of MuxB in Verrucomicrobia, Elusimicrobia, Actinobacteria, Planctomycetes, and Acidobacteria. Path analysis showed that changes in MP particle size and dosage may indirectly affect soil enzyme activities by changing pH, which affects microbes and ARGs. We suggest that MPs may provide surfaces for ARG accumulation, leading to ARG enrichment in plants. In conclusion, our results demonstrate that MPs, as potentially persistent pollutants, can affect different types of soil environments and that the presence of ARGs may cause substantial environmental risks.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China
| | - Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China
| | - Meng Zeng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Peiqing Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Mingyue Fu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Shiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Chijian Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Cuiju Mo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China; College of Environment and Resources, Guangxi Normal University, Guilin, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin, China.
| |
Collapse
|
11
|
Dan H, Song X, Xiang G, Song C, Dai H, Shao Y, Huang D, Luo H. The response pattern of the microbial community structure and metabolic profile of jiupei to Bacillus subtilis JP1 addition during baijiu fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5021-5030. [PMID: 38296914 DOI: 10.1002/jsfa.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Baijiu brewing is a complex and multifaceted multimicrobial co-fermentation process, in which various microorganisms interact to form an interdependent micro-ecosystem, subsequently influencing metabolic activities and compound production. Among these microorganisms, Bacillus, an important bacterial genus in the liquor brewing process, remains unclear in its role in shaping the brewing microbial community and its functional metabolism. RESULTS A baijiu fermentation system was constructed using B. subtilis JP1 isolated from native jiupei (grain mixture) combined with daqu (a saccharifying agent) and huangshui (a fermentation byproduct). Based on high-throughput amplicon sequencing analysis, it was evident that B. subtilis JP1 significantly influences bacterial microbial diversity and fungal community structure in baijiu fermentation. Of these, Aspergillus and Monascus emerge as the most markedly altered microbial genera in the jiupei community. Based on co-occurrence networks and bidirectional orthogonal partial least squares discriminant analysis models, it was demonstrated that the addition of B. subtilis JP1 intensified microbial interactions in jiupei fermentation, consequently enhancing the production of volatile flavor compounds such as heptanoic acid, butyl hexanoate and 3-methylthiopropanol in jiupei. CONCLUSION B. subtilis JP1 significantly alters the microbial community structure of jiupei, enhancing aroma formation during fermentation. These findings will contribute to a broader application in solid-state fermentation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hulin Dan
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xuemiao Song
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | - Gangxing Xiang
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
| | | | | | - Yan Shao
- Luzhou Laojiao Co. Ltd, Luzhou, China
| | - Dan Huang
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong, China
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Yibin, China
| |
Collapse
|
12
|
Wu H, Gao T, Dini-Andreote F, Xiao N, Zhang L, Kimirei IA, Wang J. Biotic and abiotic factors interplay in structuring the dynamics of microbial co-occurrence patterns in tropical mountainsides. ENVIRONMENTAL RESEARCH 2024; 250:118517. [PMID: 38401680 DOI: 10.1016/j.envres.2024.118517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Ecological interactions are important for maintaining biodiversity and ecosystem functions. Particularly in stream biofilms, little is known about the distributional patterns of different taxonomic groups and their potential interactions along elevational gradients. Here, we investigated the bacterial and fungal community structures of stream biofilms across elevational gradients on Mount Kilimanjaro, and explored patterns of their distribution, diversity, community structures, and taxa co-occurrence. We found that fungal and bacterial richness were more convergent at higher elevations, while their community structures became significantly more divergent. Inferred network complexity and stability significantly decreased with increasing elevation for fungi, while an opposite trend was observed for bacteria. Further quantitative analyses showed that network structures of bacteria and fungi were more divergent as elevation increased. This pattern was strongly associated with shifts in abiotic factors, such as mean annual temperatures, water PO43--P, and stream width. By constructing bipartite networks, we showed the fungal-bacterial network to be less redundant, more clustering, and unstable with increasing elevation. Abiotic factors (e.g., temperatures and stream width) and microbial community properties (i.e., structure and composition) significantly explained the dynamic changes in fungal-bacterial network properties. Taken together, this study provides evidence for the interplay of biotic and abiotic factors structuring potential microbial interactions in stream biofilms along a mountainside elevational gradient.
Collapse
Affiliation(s)
- Hao Wu
- College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianheng Gao
- College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nengwen Xiao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ismael Aaron Kimirei
- Tanzania Fisheries Research Institute, Headquarter, Dar Es Salaam, P.O. Box 9750, Tanzania
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
13
|
Liu Y, Zhang B, Yao Y, Wang B, Cao Y, Shen Y, Jia X, Xu F, Song Z, Zhao C, Gao H, Guo P. Insight into the plant-associated bacterial interactions: Role for plant arsenic extraction and carbon fixation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164960. [PMID: 37348724 DOI: 10.1016/j.scitotenv.2023.164960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
This study investigated the interactions between rhizosphere and endosphere bacteria during phytoextraction and how the interactions affect arsenic (As) extraction and carbon (C) fixation of plants. Pot experiments, high-throughput sequencing, metabonomics, and network analysis were integrated. Results showed that positive correlations dominated the interconnections within modules (>95 %), among modules (100 %), and among keystone taxa (>72 %) in the bacterial networks of plant rhizosphere, root endosphere, and shoot endosphere. This confirmed that cooperative interactions occurred between bacteria in the rhizosphere and endosphere during phytoextraction. Modules and keystone taxa positively correlating with plant As extraction and C fixation were identified, indicating that modules and keystone taxa promoted plant As extraction and C fixation simultaneously. This is mainly because modules and keystone taxa in plant rhizosphere, root endosphere, and shoot endosphere carried arsenate reduction and C fixation genes. Meanwhile, they up-regulated the significant metabolites related to plant As tolerance. Additionally, shoot C fixation increased peroxidase activity and biomass thereby facilitating plant As extraction was confirmed. This study revealed the mechanisms of plant-associated bacterial interactions contributing to plant As extraction and C fixation. More importantly, this study provided a new angle of view that phytoextraction can be applied to achieve multiple environmental goals, such as simultaneous soil remediation and C neutrality.
Collapse
Affiliation(s)
- Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| | - Ye Yao
- College of Physics, Jilin University, Changchun 130012, PR China
| | - Bo Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Yiqi Cao
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Xiaohui Jia
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Fukai Xu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Ziwei Song
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Chengpeng Zhao
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - HongJie Gao
- Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
14
|
Du G, Deng Y, Pan L, Han X, Tang G, Yu S. Preliminary analysis of mucosal and salivary bacterial communities in oral lichen planus. Oral Dis 2023; 29:2710-2722. [PMID: 36587396 DOI: 10.1111/odi.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To characterize the bacterial community from different oral niches (buccal mucosa and saliva) in oral lichen planus (OLP) patients. SUBJECTS AND METHODS This preliminary study analyzed site-specific (mucosa and saliva) microbial landscape of 20 OLP patients and 10 healthy controls. RESULTS The microbial diversity was similar between OLP patients and healthy controls in both salivary and mucosal communities. However, the topological properties of co-occurrence networks of salivary and mucosal microbiome were different between healthy controls and OLP patients. SparCC analysis inferred three and five keystone taxa in the salivary and mucosal microbial networks of healthy controls, respectively. However, in the salivary and mucosal bacterial networks of OLP patients, only one hub OTU and three OTUs were identified as keystone taxa, respectively. In addition, analysis of community cohesion revealed that mucosal microbial community in OLP patients had lower stability than that in healthy controls. In final, correlation assay showed that the clinical severity of OLP was positively associated with the relative abundance of Rothia in saliva but negatively associated with that of Porphyromonas on mucosa. CONCLUSIONS The salivary and mucosal bacterial communities of OLP patients differ in terms of composition, the genera associated with OLP severity, and co-occurrence patterns.
Collapse
Affiliation(s)
- Guanhuan Du
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yiwen Deng
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lei Pan
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xiaozhe Han
- Department of Oral Science and Translational Research, Nova Southeastern University College of Dental Medicine, Fort Lauderdale, Florida, USA
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shiyan Yu
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Yan S, Ren X, Zheng L, Wang X, Liu T. A systematic analysis of residue and risk of cyantraniliprole in the water-sediment system: Does metabolism reduce its environmental risk? ENVIRONMENT INTERNATIONAL 2023; 179:108185. [PMID: 37688810 DOI: 10.1016/j.envint.2023.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
As a representative variety of diamide insecticides, cyantraniliprole has broad application prospects. In this study, the fate and risk of cyantraniliprole and its main metabolite J9Z38 in a water-sediment system were investigated. The present result showed that more J9Z38 was adsorbed in the sediment at the end of exposure. However, the bioaccumulation capacity of cyantraniliprole in zebrafish was higher than that of J9Z38. Cyantraniliprole had stronger influence on the antioxidant system and detoxification system of zebrafish than J9Z38. Moreover, cyantraniliprole induced more significant oxidative stress effect and more differentially expressed genes (DEGs) in zebrafish. Cyantraniliprole had significantly influence on the expression of RyR-receptor-related genes, which was confirmed by resolving their binding modes with key receptor proteins using AlphaFold2 and molecular docking techniques. In the sediment, both cyantraniliprole and J9Z38 had inhibitory effects on microbial community structure diversity and metabolic function, especially cyantraniliprole. The methane metabolism pathway, mediated by methanogens such as Methanolinea, Methanoregula, and Methanosaeta, may be the main pathway of degradation of cyantraniliprole and J9Z38 in sediments. The present results demonstrated that metabolism can reduce the environmental risk of cyantraniliprole in water-sediment system to a certain extent.
Collapse
Affiliation(s)
- Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangyu Ren
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lei Zheng
- State Environmental Protection Key Laboratory of Dioxin Pollution, National Research Center of Environmental Analysis and Measurement, Sino-Japan Friendship Center for Environmental Protection, Beijing 100029, China.
| | - Xiuguo Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Tong Liu
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
16
|
Liu Z, Fang J, Song B, Yang Y, Yu Z, Hu J, Dong K, Takahashi K, Adams JM. Stochastic processes dominate soil arbuscular mycorrhizal fungal community assembly along an elevation gradient in central Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158941. [PMID: 36152859 DOI: 10.1016/j.scitotenv.2022.158941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi play an important role in facilitating ecosystem function and stability. Yet, their community response patterns and ecological assembly processes along elevational gradients which cross a range of climates and soil conditions remain elusive. We used Illumina MiSeq sequencing to examine trends in soil AM fungal community along an elevational gradient from 100 m to 2300 m in central Japan. A total of 750 operational taxonomic units (OTUs) affiliated to 12 AM fungal genera were identified from soil samples, and the AM fungal community composition differed strongly with elevation, with variance explained more by climate, followed by soil and plant factors. The AM fungal α-diversity, network connectivity and complexity between AM fungal taxa and also with plant communities all exhibited a maximum at the mid-elevation of 800 m and then declined, principally influenced by soil pH and precipitation. Stochastic processes dominated AM fungal community assembly across the whole elevation gradient, with homogenizing dispersal being the main process. Only when AM fungal communities were contrasted across a relatively broad range of elevations, did variable selection (deterministic process) became significant, and even then in a mixed role with stochasticity. While OTUs of AM fungi are clearly adapted to particular environmental ranges, stochasticity due to rapid dispersal has a major role in determining their occurrence, suggesting that AM fungi may possess generalized and interchangeable niches, and can adjust their distribution rapidly - at least on the scale of a single mountain. This finding emphasizes that the roles of AM fungi in plant ecology may be non-specific and easily substituted, and furthermore that there is rapid local scale dispersal, which may allow plants to maintain effective AM associations under environmental change.
Collapse
Affiliation(s)
- Zihao Liu
- School of Geography and Oceanography, Nanjing University, Nanjing, China
| | - Jie Fang
- School of Geography and Oceanography, Nanjing University, Nanjing, China
| | - Bin Song
- School of Geography and Oceanography, Nanjing University, Nanjing, China
| | - Ying Yang
- School of Geography and Oceanography, Nanjing University, Nanjing, China
| | - Zhi Yu
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Junli Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Ke Dong
- Life Science Major, Kyonggi University, Suwon, South Korea.
| | - Koichi Takahashi
- Department of Biological Sciences, Shinshu University, Matsumoto, Japan.
| | - Jonathan M Adams
- School of Geography and Oceanography, Nanjing University, Nanjing, China.
| |
Collapse
|
17
|
Dai W, Zhang P, Yang F, Wang M, Yang H, Li Z, Wang M, Liu R, Huang Y, Wu S, He G, Zhou J, Wei C. Effects of composite materials and revegetation on soil nutrients, chemical and microbial properties in rare earth tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157854. [PMID: 35940274 DOI: 10.1016/j.scitotenv.2022.157854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The mining of ionic rare earth elements in Ganzhou left large area of barren tailings with severe vegetation destruction in pressing needs of remediation. However, the remediating effects of soil additives combined with revegetation on the preservation of nutrients in the tailings and microbial communities were rarely studied. For this purpose, pilot experiments were implemented in a field, with the control group (CK) only cultivating plants without adding materials, and three treatments including peanut straw biochar composite (T1), phosphorus‑magnesium composite (T2) and modified zeolite composite (T3) along with the cultivation of Medicago sativa L., Paspalum vaginatum Sw. and Lolium perenne L. Soil pH and organic matter in CK significantly decreased from 4.90 to 4.17 and from 6.62 g/kg to 3.87 g/kg after six months, respectively (p ≤ 0.05), while all the treatments could effectively buffer soil acidification (over 5.74) and delay the loss of soil organic matter. Soil cation exchange capacity was still below the detection limit in all the groups except T2. The results of rainfall runoff monitoring indicated that compared with CK, only T2 could significantly reduce the runoff loss of soil NO3- and SO42- by 45.61 %-75.78 % and 64.03 %-76.12 %, respectively (p ≤ 0.05). Compared with CK, the bacterial diversity in T2 and T3 significantly increased 21.18 % and 28.15 %, respectively (p ≤ 0.05), while T1 didn't change the bacterial or fungal diversity (p > 0.05). Co-occurrence network analysis showed that compared with CK, the whole microbial communities interacted more closely in the three treatments. Functional prediction of the microbial communities revealed all the treatments were dominated by carbon transforming bacteria and saprotrophic fungi except T2. This study demonstrated that the composite materials combined with revegetation couldn't retain soil nitrogen compounds and sulfate in rare earth tailings in the long term.
Collapse
Affiliation(s)
- Weijie Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Huixian Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhiying Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Renlu Liu
- School of Life Sciences, Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, Jinggangshan University, Jian 343009, China
| | - Yuanying Huang
- National Research Center for Geoanalysis, Beijing 100037, China; Key Laboratory of Ministry of Natural Resources for Eco-geochemistry, Beijing 100037, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Genhe He
- School of Life Sciences, Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, Jinggangshan University, Jian 343009, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chaoyang Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
18
|
Wu Y, Sun J, Yu P, Zhang W, Lin Y, Ma D. The rhizosphere bacterial community contributes to the nutritional competitive advantage of weedy rice over cultivated rice in paddy soil. BMC Microbiol 2022; 22:232. [PMID: 36180838 PMCID: PMC9523940 DOI: 10.1186/s12866-022-02648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Background Weedy rice competes for nutrients and living space with cultivated rice, which results in serious reductions in rice production. The rhizosphere bacterial community plays an important role in nutrient competition between species. It is therefore important to clarify the differences in the diversities of the inter rhizosphere bacterial community between cultivated rice and weedy rice. The differences in compositions and co-occurrence networks of the rhizosphere bacterial community of cultivated rice and weedy rice are largely unknown and thus the aim of our study. Results In our study, the different rhizosphere bacterial community structures in weedy rice (AW), cultivated rice (AY) and cultivated rice surrounded by weedy rice (WY) were determined based on 16S rRNA gene sequencing. The majority of the WY rhizosphere was enriched with unique types of microorganisms belonging to Burkholderia. The rhizosphere bacterial community showed differences in relative abundance among the three groups. Network analysis revealed a more complex co-occurrence network structure in the rhizosphere bacterial community of AW than in those of AY and WY due to a higher degree of Microbacteriaceae and Micrococcaceae in the network. Both network analysis and functional predictions reveal that weedy rice contamination dramatically impacts the iron respiration of the rhizosphere bacterial community of cultivated rice. Conclusions Our study shows that there are many differences in the rhizosphere bacterial community of weedy rice and cultivated rice. When cultivated rice was disturbed by weedy rice, the rhizosphere bacterial community and co-occurrence network also changed. The above differences tend to lead to a nutritional competitive advantage for weedy rice in paddy soils. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02648-1.
Collapse
Affiliation(s)
- Yue Wu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Pengcheng Yu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Weiliang Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Youze Lin
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
19
|
Liao Y, Jiang Z, Li S, Dang Z, Zhu X, Ji G. Archaeal and bacterial ecological strategies in sediment denitrification under the influence of graphene oxide and different temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156549. [PMID: 35688242 DOI: 10.1016/j.scitotenv.2022.156549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
As an emerging material, graphene oxide (GO) has been widely used in recent years and will inevitably enter into natural water bodies, and it may have an impact on lake microbial communities owing to its potential toxicity and denitrification-enhancing ability. This study simulated the effect of 0.1 g/L GO on denitrification in lake sediments under summer (28 °C) and winter temperatures (8 °C). GO promoted carbon source metabolism and denitrification. Phylogenetic bin-based null model analysis suggested that GO significantly altered the contribution of heterogeneous selection in bacterial and archaeal community assembly. The co-occurrence network indicated that bacterial communities responded to the enhancement of heterogeneous selection by strategies of enhancing positive correlation and shared niche, whereas archaeal communities adopted strategies of enhancing negative correlation and competition. Bacterial networks also emerged with more non-hub connector species that could drive changes in community structure. Our study contributed to the understanding of different ecological strategies adopted by bacterial and archaeal communities in response to changes in ecological selection driven by GO.
Collapse
Affiliation(s)
- Yinhao Liao
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhuo Jiang
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Shengjie Li
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Zhengzhu Dang
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Xianfang Zhu
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Guodong Ji
- Key laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Shao C, Zhao W, Li N, Li Y, Zhang H, Li J, Xu Z, Wang J, Gao T. Gut Microbiome Succession in Chinese Mitten Crab Eriocheir sinensis During Seawater-Freshwater Migration. Front Microbiol 2022; 13:858508. [PMID: 35432227 PMCID: PMC9005979 DOI: 10.3389/fmicb.2022.858508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
Biological migration is usually associated with disturbances and environmental changes that are key drivers in determining the diversity, community compositions, and function of gut microbiome. However, little is known about how gut microbiome is affected by disturbance such as salinity changes during migration from seawater to freshwater. Here, we tracked the gut microbiome succession of Chinese mitten crabs (Eriocheir sinensis) during their migrations from seawater to freshwater and afterward using 16S rDNA sequencing for 127 days, and explored the temporal patterns in microbial diversity and the underlying environmental factors. The species richness of gut microbiome showed a hump-shaped trend over time during seawater–freshwater migration. The community dissimilarities of gut microbiome increased significantly with day change. The turnover rate of gut microbiome community was higher during seawater–freshwater transition (1–5 days) than that in later freshwater conditions. Salinity was the major factor leading to the alpha diversity and community dissimilarity of gut microbiome during seawater–freshwater transition, while the host selection showed dominant effects during freshwater stage. The transitivity, connectivity, and average clustering coefficient of gut microbial co-occurrence networks showed decreased trends, while modularity increased during seawater–freshwater migration. For metabolic pathways, “Amino Acid Metabolism” and “Lipid Metabolism” were higher during seawater–freshwater transition than in freshwater. This study advances our mechanistic understanding of the assembly and succession of gut microbiota, which provides new insights into the gut ecology of other aquatic animals.
Collapse
Affiliation(s)
- Chenxi Shao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Wenqian Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Nannan Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Yinkang Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Huiming Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Jingjing Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Zhiqiang Xu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Tianheng Gao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
21
|
New Insight into the Coupled Grain–Disaster–Economy System Based on a Multilayer Network: An Empirical Study in China. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2022. [DOI: 10.3390/ijgi11010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural disasters occur frequently causing huge economic losses and reduced grain production. Therefore, it is important to thoroughly explore the spatial correlations between grain, disaster, and the economy. Based on inter-provincial panel data in China in 2019, this study integrates complex network and co-occurrence theory into a coupled grain–disaster–economy (GDE) multilayer network, which provides a new perspective to further explore the spatial correlation between these three systems. We identify the spatial coupled characteristics of the GDE multilayer network using three aspects: degree, centrality, and community detection. The research results show the following: (1) Provinces in the major grain-producing regions have a stronger role in allocating and controlling grain resources, and the correlation between grain and disasters in these provinces is stronger and more prone to disasters. Whereas provinces in the Beijing–Tianjin–Hebei economic zone, and the Yangtze River Delta and Pearl River Delta economic zones, such as Beijing, Tianjin, Jiangsu, Shanghai, and Zhejiang, have a high level of economic development, thereby a stronger ability to allocate economic resources. (2) The economic subsystem assumes a more important, central role compared with the grain and disaster subsystems in the formation and development of the coupled GDE multilayer network, with a stronger coordination for the co-development between the complex grain, disaster, and economy systems in the nodal provinces of the network. (3) The community modularity of the coupled GDE multilayer network is significantly higher than that of the three single-layer networks, indicating a more reasonable community division after coupling the three subsystems. The identification of the spatial characteristics of GDE using multilayer network analysis offers a new perspective on taking various measures to improve the joint sustainable development of grain, disaster, and the economy in different regions of China according to local conditions.
Collapse
|
22
|
Yu Z, Zou S, Li N, Kerfahi D, Lee C, Adams J, Kwak HJ, Kim J, Lee S, Dong K. Elevation-related climatic factors dominate soil free-living nematode communities and their co-occurrence patterns on Mt. Halla, South Korea. Ecol Evol 2021; 11:18540-18551. [PMID: 35003691 PMCID: PMC8717350 DOI: 10.1002/ece3.8454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Nematodes play vital roles in soil ecosystems. To understand how their communities and coexistence patterns change along the elevation as well as to determine the best explanatory factors underlying these changes, we investigated free-living soil nematodes on Mt. Halla, South Korea, using an amplicon sequencing approach targeting the 18S rRNA gene. Our results showed that there was significant variation in the community diversity and composition of soil nematodes in relation to elevation. The network interactions between soil nematodes were more intensive at the lower elevations. Climatic variables were responsible explaining the elevational variation in community composition and co-occurrence pattern of the nematode community. Our study indicated that climatic factors served as the critical environmental filter that influenced not only the community structure but also the potential associations of soil nematodes in the mountain ecosystem of Mt. Halla. These findings enhance the understanding of the community structure and co-occurrence network patterns and mechanisms of soil nematode along elevation, and the response of soil nematodes to climate change on the vertical scale of mountain ecosystems.
Collapse
Affiliation(s)
- Zhi Yu
- Department of Integrative BiotechnologySungkyunkwan UniversitySuwonSouth Korea
| | - Shuqi Zou
- Department of Integrative BiotechnologySungkyunkwan UniversitySuwonSouth Korea
| | - Nan Li
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu GulfGuangxi Key Laboratory of Earth Surface Processes and Intelligent SimulationNanning Normal UniversityNanningChina
| | - Dorsaf Kerfahi
- Department of Biological SciencesSchool of Natural SciencesKeimyung UniversityDaeguKorea
| | - Changbae Lee
- Department of Forestry, Environment and SystemsKookmin UniversitySeoulSouth Korea
| | - Jonathan Adams
- School of Geographic and Oceanographic SciencesNanjing UniversityNanjingChina
| | - Hyun Jeong Kwak
- Department of Biological SciencesKyonggi UniversitySuwon‐siSouth Korea
| | - Jinsoo Kim
- Department of Biological SciencesKyonggi UniversitySuwon‐siSouth Korea
| | - Sang‐Seob Lee
- Department of Integrative BiotechnologySungkyunkwan UniversitySuwonSouth Korea
| | - Ke Dong
- Department of Biological SciencesKyonggi UniversitySuwon‐siSouth Korea
| |
Collapse
|