1
|
Wang Y, Liu Q, Xie CH, Zhao RT, Tang QX, Han DF, Xia YN, Cui JX, Yan CR, He WQ. Bridging the knowledge gap: From poly(butylene adipate-co-terephthalatebutylene) degradation to CO 2-generating mineralization under the synergistic effect of bacteria and fungi. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138643. [PMID: 40381352 DOI: 10.1016/j.jhazmat.2025.138643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising polymer with excellent mechanical properties and biodegradability. However, knowledge gaps between its degradation and mineralization processes in soil hampers its environmental impact and application potential. In this study, we elucidated the degradation process of PBAT, starting with the degradation of high-molecular-weight polymers into 30 intermediates, before ultimately mineralized into CO2. Bacteria and fungi drove the degradation and mineralization of these intermediates. We discovered that PBAT was synergistically degraded by combinations of 27 bacterial and fungal biomarkers rather than by single biomarkers dominated by Bacteroidota, Acidobacteriota, and Ascomycota. These combinations of related functional genes perform various functions at every stage of PBAT degradation, including breaking down molecular structures, degrading intermediates, and mineralization. Bacterial biomarkers showed greater diversity than fungal biomarkers in degrading PBAT. Our findings provide useful insights into the degradation of PBAT in soil and a foundation for systematically evaluating and controlling the environmental behavior and safety of PBAT in soil.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | - Chang-Hong Xie
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Ruo-Tong Zhao
- College of Resources and Environmental Sciences, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 910013, China
| | - Qiu-Xiang Tang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, No. 311 Nongda East Road, Urumqi 830052, China
| | - Dong-Fei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99 Xuefu Road, Suzhou 215009, China
| | - Yi-Ning Xia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ji-Xiao Cui
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, No. 195 Ningbian East Road, Changji 831100, China
| | - Chang-Rong Yan
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | - Wen-Qing He
- Key Laboratory of Prevention and Control of Residual Pollution in Agricultural Film, Ministry of Agriculture and Rural Affairs, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, No. 195 Ningbian East Road, Changji 831100, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100081, China.
| |
Collapse
|
2
|
Jia J, Zhang B, Li A, Wang W, Xiao B, Gao X, Yuan H, Han Y, Zhao X, Naidu R. Optimized bacterial consortium-based strategies for bioremediation of PAHs-contaminated soils: insights into microbial communities, and functional responses. ENVIRONMENTAL RESEARCH 2025; 279:121718. [PMID: 40306457 DOI: 10.1016/j.envres.2025.121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/11/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Microbial technologies hold great promise for in situ remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. However, the selection of enhancement measures and corresponding remediation strategies remains insufficiently understood. In this study, a series of enhancement treatments, including bacterial consortium inoculation (comprising Achromobacter denitrificans BP1, Rhodococcus aetherivorans BW2, and Lysinibacillus sp. BS3), nutrient addition, and bio-ventilation, were implemented to develop effective in situ remediation strategies for PAHs-contaminated soil. Over a 60-day incubation, the enhancement treatments achieved phenanthrene (PHE) degradation efficiencies of 68.0-94.7 % and benzo[a]pyrene (BaP) degradation efficiencies of 12.9-82.4 %. Degradation rates across soil layers followed the pattern: upper layer > lower layer > middle layer. Enhancement treatments significantly boosted soil dehydrogenase (DH) and fluorescein diacetate (FDAH) activities. Among these, the sequential consortium inoculation with nutrient addition treatment (T6) demonstrated the highest degradation efficacy. In the treatment T6, the relative abundance of consortium genera was significantly increased, playing critical roles in PAHs degradation. The connectivity and stability of the soil bacterial network were enhanced, providing greater resilience to pollutants. Quantitative PCR analysis showed that the enhancement strategy increased RHDα-GN gene abundance by 1.98-fold at the initial and maintained a positive correlation with PAHs residues throughout the process (p < 0.05), and the phe gene exhibited a continuous upward trend during remediation, ultimately reaching 1.61-1.96 times its initial abundance. Overall, this study provides a strong candidate of integrated enhancement strategies to advance in situ bioremediation of PAH-contaminated sites.
Collapse
Affiliation(s)
- Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China.
| | - Ben Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Aoran Li
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Weiran Wang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Bing Xiao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Xiaolong Gao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Haokun Yuan
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Yuxin Han
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Xiwang Zhao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia
| |
Collapse
|
3
|
Huang Q, Dai Y, Yang G, Zhuang L, Luo C, Li J, Zhang G. New insights into autochthonous fungal bioaugmentation mechanisms for recalcitrant petroleum hydrocarbon components using stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178082. [PMID: 39700984 DOI: 10.1016/j.scitotenv.2024.178082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Autochthonous fungal bioaugmentation (AFB) is a promising strategy for the microbial remediation of petroleum hydrocarbon (PH)-contaminated soils. However, the mechanisms underlying AFB, particularly for degrading recalcitrant PH components, are not fully understood. This study employed stable isotope probing (SIP) and high-throughput sequencing to investigate the AFB mechanisms of two hydrocarbon-degrading fungi, Fusarium solani LJD-11 and Aspergillus fumigatus LJD-29, focusing on three challenging PH components: n-Hexadecane (n-Hex), Benzo[a]pyrene (BaP), and Dibenzothiophene (DBT). Our findings indicate that both fungal strains significantly enhanced pollutant removal rates, with combined application yielding optimal results. AFB treatment reduced the microbial diversity index and altered the soil microbial community, especially affecting fungal populations. A significant correlation between the microbial diversity index and degradation efficiency suggests that greater diversity enhances pollutant removal. SIP analysis showed that LJD-11 and LJD-29 could directly assimilate n-Hex and DBT, but not BaP. Correlation analyses between functional microorganisms and other biological indicators suggest that the removal of pollutants is also attributable to indigenous functional bacteria. Additionally, non-inoculated functional fungi present in the soil play a crucial role in BaP degradation. These findings reveal distinct degradation pathways for the three pollutants. The addition of carrier substrate reduced the complexity of the network, while AFB treatment restored it. In addition, the combined fungal treatment resulted in higher network parameters, leading to a more complex and stable network structure. These results provide insights into the mechanisms of AFB for degrading recalcitrant PH components, underscoring its potential for in situ bioremediation of petroleum-contaminated soils.
Collapse
Affiliation(s)
- Qihui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo 315000, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
4
|
Qu X, Niu Q, Sheng C, Xia M, Zhang C, Qu X, Yang C. Co-toxicity and co-contamination remediation of polycyclic aromatic hydrocarbons and heavy metals: Research progress and future perspectives. ENVIRONMENTAL RESEARCH 2024; 263:120211. [PMID: 39442665 DOI: 10.1016/j.envres.2024.120211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) has attracted wide attention due to their high toxicity, mutagenicity, carcinogenicity and teratogenicity. A thorough understanding of the progress of the relevant studies about their co-toxicity and co-contamination remediation is of great importance to prevent environmental risk and develop new efficient remediation methods. This paper summarized the factors resulting in different co-toxic effects, the interaction mechanism influencing co-toxicity and the development of remediation technologies for the co-contamination. Also, the inadequacies of the previous studies related to the co-toxic effect and the remediation methods were pointed out, while the corresponding solutions were proposed. The specific type and concentration of PAHs and HMs, the specific type of their action object and environmental factors could affect their co-toxicity by influencing each other's transmembrane process, detoxification process and increasing reactive oxygen species (ROS) and some other mechanisms that need to be further studied. The specific action mechanisms of the concentration, environmental factors and the specific type of PAHs and HMs, their effect on each other's transmembrane processes, investigations at the cellular and molecular levels, non-targeted metabolomics analysis, as well as long-term ecological effects were proposed to be further explored in order to obtain more information about the co-toxicity. The combination of two or more methods, especially combining bioremediation with other methods, is a potential development field for the remediation of co-contamination. It can make full use of the advantages of each remediation method, to achieve an increase of remediation efficiency and a decrease of both remediation cost and ecological risk. This review intends to further improve the understanding on co-toxicity and provide references for the development and innovation of remediation technologies for the co-contamination of PAHs and HMs.
Collapse
Affiliation(s)
- Xiyao Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China.
| | - Cheng Sheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Mengmeng Xia
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chengxu Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Xiaolin Qu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, PR China
| |
Collapse
|
5
|
Mao S, Ma S, Zhao Q, Hu Q, Zhou Y, Zhang M, Zeng Z, Yu C. Carbohydrate based biostimulation regulates the structure, function and remediation of Cr(VI) pollution by SRBs flora. ENVIRONMENTAL RESEARCH 2024; 263:120088. [PMID: 39389197 DOI: 10.1016/j.envres.2024.120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Sulfate reducing bacteria (SRBs) have promising applications as important microorganisms in the microbial approach to remediation of soil heavy metal pollution. However, fewer studies have been conducted on the differences in community structure, community function, heavy metal remediation capacity and effects with SRBs cultured from different carbohydrate. In this study, we investigated the structure and function of different SRBs flora, the reduction mechanism of Cr(VI) and remediation effect on Cr(VI) contaminated soil through high throughput sequencing, ICP-OES analysis and a series of soil remediation experiments. The results showed that there were significant differences in the community structure and function of SRBs flora cultured with different carbohydrate, and glycerine cultivated community with high SRBs abundance, diverse community structure, complete community function, which realizing the best SRBs flora performance. This SRBs flora under the optimal carbon/sulfur ratio, Fe(II), and sodium chloride conditions of 2, 50-500 mg/L, and 0-2.5 %, respectively and the highest sulfate and Cr(VI) reduction rates reached 84.2 % and 73.6 %, respectively, which the hydrogen sulfide pathway was the dominant pathway for Cr(VI) reduction. The SRBs flora cultured with glycerine, lactate, and butyrate obtained a good community structure sulfate and Cr(VI) reduction rates in contaminated soils, which the restored seed germination function and significantly blocked the migration of Cr(VI) into plants. The study provides new technical idea to regulate the structure and function of SRBs flora by means of selecting carbohydrate for the efficient remediation of soil Cr(VI) pollution.
Collapse
Affiliation(s)
- Shuaixian Mao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Suya Ma
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Qiancheng Zhao
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Qiaoyu Hu
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Ying Zhou
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Minghan Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Zhiyong Zeng
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
6
|
Xiang Y, Yu Y, Wang J, Li W, Rong Y, Ling H, Chen Z, Qian Y, Han X, Sun J, Yang Y, Chen L, Zhao C, Li J, Chen K. Neural network establishes co-occurrence links between transformation products of the contaminant and the soil microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171287. [PMID: 38423316 DOI: 10.1016/j.scitotenv.2024.171287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
It remains challenging to establish reliable links between transformation products (TPs) of contaminants and corresponding microbes. This challenge arises due to the sophisticated experimental regime required for TP discovery and the compositional nature of 16S rRNA gene amplicon sequencing and mass spectrometry datasets, which can potentially confound statistical inference. In this study, we present a new strategy by combining the use of 2H-labeled Stable Isotope-Assisted Metabolomics (2H-SIAM) with a neural network-based algorithm (i.e., MMvec) to explore links between TPs of pyrene and the soil microbiome. The links established by this novel strategy were further validated using different approaches. Briefly, a metagenomic study provided indirect evidence for the established links, while the identification of pyrene degraders from soils, and a DNA-based stable isotope probing (DNA-SIP) study offered direct evidence. The comparison among different approaches, including Pearson's and Spearman's correlations, further confirmed the superior performance of our strategy. In conclusion, we summarize the unique features of the combined use of 2H-SIAM and MMvec. This study not only addresses the challenges in linking TPs to microbes but also introduces an innovative and effective approach for such investigations. Environmental Implication: Taxonomically diverse bacteria performing successive metabolic steps of the contaminant were firstly depicted in the environmental matrix.
Collapse
Affiliation(s)
- Yuhui Xiang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Yansong Yu
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Jiahui Wang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Weiwei Li
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, PR China
| | - Yu Rong
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, PR China
| | - Haibo Ling
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, PR China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha 16500, Czech Republic
| | - Yiguang Qian
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Xiaole Han
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Jie Sun
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Liang Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Chao Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Ke Chen
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
7
|
Garg D, Patel N, Rawat A, Rosado AS. Cutting edge tools in the field of soil microbiology. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100226. [PMID: 38425506 PMCID: PMC10904168 DOI: 10.1016/j.crmicr.2024.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
The study of the whole of the genetic material contained within the microbial populations found in a certain environment is made possible by metagenomics. This technique enables a thorough knowledge of the variety, function, and interactions of microbial communities that are notoriously difficult to research. Due to the limitations of conventional techniques such as culturing and PCR-based methodologies, soil microbiology is a particularly challenging field. Metagenomics has emerged as an effective technique for overcoming these obstacles and shedding light on the dynamic nature of the microbial communities in soil. This review focuses on the principle of metagenomics techniques, their potential applications and limitations in soil microbial diversity analysis. The effectiveness of target-based metagenomics in determining the function of individual genes and microorganisms in soil ecosystems is also highlighted. Targeted metagenomics, including high-throughput sequencing and stable-isotope probing, is essential for studying microbial taxa and genes in complex ecosystems. Shotgun metagenomics may reveal the diversity of soil bacteria, composition, and function impacted by land use and soil management. Sanger, Next Generation Sequencing, Illumina, and Ion Torrent sequencing revolutionise soil microbiome research. Oxford Nanopore Technology (ONT) and Pacific Biosciences (PacBio)'s third and fourth generation sequencing systems revolutionise long-read technology. GeoChip, clone libraries, metagenomics, and metabarcoding help comprehend soil microbial communities. The article indicates that metagenomics may improve environmental management and agriculture despite existing limitations.Metagenomics has revolutionised soil microbiology research by revealing the complete diversity, function, and interactions of microorganisms in soil. Metagenomics is anticipated to continue defining the future of soil microbiology research despite some limitations, such as the difficulty of locating the appropriate sequencing method for specific genes.
Collapse
Affiliation(s)
- Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Niketan Patel
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
- Computational Bioscience Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
| | - Anamika Rawat
- Center of Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
- Computational Bioscience Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
| |
Collapse
|
8
|
Xia J, Ge C, Yao H. Identification of functional microflora underlying the biodegradation of sulfadiazine-contaminated substrates by Hermetia illucens. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132892. [PMID: 37922583 DOI: 10.1016/j.jhazmat.2023.132892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The increasing discharge of antibiotic residues into the natural environment, stemming from both human activities and animal farming, has detrimental effects on natural ecosystems and serves as a significant driving force for the spread of antibiotic resistance. Biodegradation is an important method for the elimination of antibiotics from contaminated substrates, but the identifying in situ microbial populations involved in antibiotic degradation is challenging. Here, DNA stable isotope probing (DNA-SIP) was employed to identify active sulfadiazine (SDZ) degrading microbes in the gut of black soldier fly larvae (BSFLs). At an initial SDZ concentration of 100 mg kg-1, the highest degradation efficiency reached 73.99% after 6 days at 28 °C. DNA-SIP revealed the incorporation of 13C6 from labeled SDZ in 9 genera, namely, Clostridum sensu stricto 1, Nesterenkonia, Bacillus, Halomonas, Dysgonomonas, Caldalkalibacillus, Enterococcus, g_unclassified_f_Xanthomonadaceae and g_unclassified_f_Micrococcaceae. Co-occurrence network analysis revealed that a significant positive correlation existed among SDZ degrading microbes in the gut microbiota, e.g., between Clostridium sensu stricto 1 and Nesterenkonia. Significant increases in carbohydrate metabolism, membrane transport and translation were crucial in the biodegradation of SDZ in the BSFL gut. These results elucidate the structure of SDZ-degrading microbial communities in the BSFL gut and in situ degradation mechanisms.
Collapse
Affiliation(s)
- Jing Xia
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China.
| |
Collapse
|
9
|
Luo S, Zhen Z, Teng T, Wu W, Yang G, Yang C, Li H, Huang F, Wei T, Lin Z, Zhang D. New mechanisms of biochar-assisted vermicomposting by recognizing different active di-(2-ethylhexyl) phthalate (DEHP) degraders across pedosphere, charosphere and intestinal sphere. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131990. [PMID: 37418964 DOI: 10.1016/j.jhazmat.2023.131990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Biochar-assisted vermicomposting can significantly accelerate soil DEHP degradation, but little information is known about the underlying mechanisms as different microspheres exist in soil ecosystem. In this study, we identified the active DEHP degraders in biochar-assisted vermicomposting by DNA stable isotope probing (DNA-SIP) and surprisingly found their different compositions in pedosphere, charosphere and intestinal sphere. Thirteen bacterial lineages (Laceyella, Microvirga, Sphingomonas, Ensifer, Skermanella, Lysobacter, Archangium, Intrasporangiaceae, Pseudarthrobacter, Blastococcus, Streptomyces, Nocardioides and Gemmatimonadetes) were responsible for in situ DEHP degradation in pedosphere, whereas their abundance significantly changed in biochar or earthworm treatments. Instead, some other active DEHP degraders were identified in charosphere (Serratia marcescens and Micromonospora) and intestinal sphere (Clostridiaceae, Oceanobacillus, Acidobacteria, Serratia marcescens and Acinetobacter) with high abundance. In biochar-assisted vermicomposting, the majority of active DEHP degraders were found in charosphere, followed by intestinal sphere and pedosphere. Our findings for the first time unraveled the spatial distribution of active DEHP degraders in different microspheres in soil matrices, explained by DEHP dynamic adsorption on biochar and desorption in earthworm gut. Our work highlighted that charosphere and intestinal sphere exhibited more contribution to the accelerated DEHP biodegradation than pedosphere, providing novel insight into the mechanisms of biochar and earthworm in improving contaminant degradation.
Collapse
Affiliation(s)
- Shuwen Luo
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Tingting Teng
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Weilong Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Guiqiong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
10
|
Dai Y, Li J, Yang X, Wang S, Zhao X, Wang Y, Zhang D, Luo C, Zhang G. New insight into the mechanisms of autochthonous fungal bioaugmentation of phenanthrene in petroleum contaminated soil by stable isotope probing. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131271. [PMID: 36989785 DOI: 10.1016/j.jhazmat.2023.131271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Autochthonous fungal bioaugmentation (AFB) is considered a reliable bioremediation approach for polycyclic aromatic hydrocarbon (PAH) contamination, but little is known about its mechanisms in contaminated soils. Here, a microcosm experiment was performed to explore the AFB mechanisms associated with two highly efficient phenanthrene degrading agents of fungi (with laccase-producing Scedosporium aurantiacum GIG-3 and non-laccase-producing Aspergillus fumigatus LJD-29), using stable-isotope-probing (SIP) and high-throughput sequencing. The results showed that each fungus markedly improved phenanthrene removal, and microcosms with both fungi exhibited the best phenanthrene removal performance among all microcosms. Additionally, AFB markedly shifted the composition of the microbial community, particularly the phenanthrene-degrading bacterial taxa. Interestingly, based on SIP results, strains GIG-3 and LJD-29 did not assimilate phenanthrene directly during AFB, but instead played key roles in the preliminary decomposition of phenanthrene though secretion of different extracellular enzymes to oxidize the benzene ring (GIG-3 bioaugmentation with laccase, and LJD-29 bioaugmentation with manganese and lignin peroxidases). In addition, all functional degraders directly involved in phenanthrene assimilation were indigenous bacteria, while native fungi rarely participated in the direct phenanthrene mineralization. Our findings provide a new mechanism of AFB with multiple fungi, and support AFB as a promising strategy for the in situ bioremediation of PAH-contaminated soil.
Collapse
Affiliation(s)
- Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Xiumin Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shuang Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
11
|
García-García R, Bocanegra-García V, Vital-López L, García-Mena J, Zamora-Antuñano MA, Cruz-Hernández MA, Rodríguez-Reséndiz J, Mendoza-Herrera A. Assessment of the Microbial Communities in Soil Contaminated with Petroleum Using Next-Generation Sequencing Tools. APPLIED SCIENCES 2023; 13:6922. [DOI: 10.3390/app13126922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Microbial communities are known to play a principal role in petroleum degradation. This study tries to determine the composition of bacteria in selected crude oil-contaminated soil from Tabasco and Tamaulipas states, Mexico. We determined the microbial populations living under these conditions. We evaluated the structure and diversity of bacterial communities in the contaminated soil samples. The most abundant phylum is proteobacteria. Next Generation Sequencing (NGS) analysis of the sampled soils from both states revealed that this phylum has the most relative abundance among the identified bacteria phyla. The heatmap represented the relative percentage of each genus within each sample and clustered the four samples into two groups. Moreover, this allowed us to identify many genera in alkaline soil from Tamaulipas, such as Skermanella sp., Azospirillum sp. and Unclassified species from the Rhodospirillaceae family in higher abundance. Meanwhile, in acidic soil from Tabasco, we identified Thalassospira, Unclassified members of the Sphingomonadaceae family and Unclassified members of the Alphaproteobacteria class with higher abundance. Alpha diversity analysis showed a low diversity (Shannon and Simpson index); Chao observed species in both Regions. These results suggest that the bacteria identified in these genera may possess the ability to degrade petroleum, and further studies in the future should elucidate their role in petroleum degradation.
Collapse
Affiliation(s)
- Raul García-García
- Division of Chemistry and Renewable Energy, Universidad Tecnologica de San Juan del Rio (UTSJR), San Juan del Rio 76900, Queretaro, Mexico
| | - Virgilio Bocanegra-García
- Laboratorio Interacción Ambiente-Microorganismo, Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa 88710, Tamaulipas, Mexico
| | - Lourdes Vital-López
- Carrera de Mantenimiento Industrial, Universidad Tecnológica de Tamaulipas Norte, Reynosa 88680, Tamaulipas, Mexico
| | - Jaime García-Mena
- Department of Genetics and Molecular Biology, Cinvestav, Av. IPN# 2508, Col. Zacatenco, Mexico City 07360, Mexico
| | - Marco Antonio Zamora-Antuñano
- Engineering Area and Centro de Investigación, Innovación y Desarrollo Tecnológico de UVM (CIIDETEC-UVM), Universidad del Valle de Mexico (UVM), Santiago de Queretaro 76230, Queretaro, Mexico
| | - María Antonia Cruz-Hernández
- Laboratorio Interacción Ambiente-Microorganismo, Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa 88710, Tamaulipas, Mexico
| | | | - Alberto Mendoza-Herrera
- Laboratorio Interacción Ambiente-Microorganismo, Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Reynosa 88710, Tamaulipas, Mexico
| |
Collapse
|
12
|
Zhang B, Xu W, Ma Y, Gao X, Ming H, Jia J. Effects of bioaugmentation by isolated Achromobacter xylosoxidans BP1 on PAHs degradation and microbial community in contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117491. [PMID: 36801800 DOI: 10.1016/j.jenvman.2023.117491] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic pollutants ubiquitous and persistent in soil. In order to provide a viable solution for bioremediation of PAHs-contaminated soil, a strain of Achromobacter xylosoxidans BP1 with superior PAHs degradation ability was isolated from contaminated soil at a coal chemical site in northern China. The degradation of phenanthrene (PHE) and benzo[a]pyrene (BaP) by strain BP1 was investigated in three different liquid phase cultures, and the removal rates of PHE and BaP by strain BP1 were 98.47% and 29.86% after 7 days under the conditions of PHE and BaP as the only carbon source, respectively. In the medium with the coexistence of PHE and BaP, the removal rates of BP1 were 89.44% and 9.42% after 7 days, respectively. Then, strain BP1 was investigated for its feasibility in remediating PAH-contaminated soil. Among the four PAHs-contaminated soils treated differently, the treatment inoculated with BP1 exhibited higher removal rates of PHE and BaP (p < 0.05), especially the CS-BP1 treatment (inoculation of BP1 into unsterilized PAHs-contaminated soil) showed 67.72%, 13.48% removal of PHE and BaP, respectively, over 49 days of incubation. Bioaugmentation also significantly increased the activity of dehydrogenase and catalase in the soil (p<0.05). Furthermore, the effect of bioaugmentation on the removal of PAHs was investigated by measuring the activity of dehydrogenase (DH) and catalase (CAT) during incubation. Among them, the DH and CAT activities of CS-BP1 and SCS-BP1 (inoculation of BP1 into sterilized PAHs-contaminated soil) treatments inoculated with strain BP1 were significantly higher than those of treatments without BP1 addition during incubation (p < 0.01). The structure of the microbial community varied among treatments, but the Proteobacteria phylum showed the highest relative abundance in all treatments of the bioremediation process, and most of the bacteria with higher relative abundance at the genus level also belonged to the Proteobacteria phylum. Prediction of microbial functions in soil by FAPROTAX analysis showed that bioaugmentation enhanced microbial functions associated with the degradation of PAHs. These results demonstrate the effectiveness of Achromobacter xylosoxidans BP1 as a PAH-contaminated soil degrader for the risk control of PAHs contamination.
Collapse
Affiliation(s)
- Ben Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Wei Xu
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Yichi Ma
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Xiaolong Gao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Huyang Ming
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
13
|
Li Y, Gu P, Zhang W, Sun H, Wang J, Wang L, Li B, Wang L. Effects of biodegradable and non-biodegradable microplastics on bacterial community and PAHs natural attenuation in agricultural soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131001. [PMID: 36801717 DOI: 10.1016/j.jhazmat.2023.131001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities such as in situ straw incineration and the widespread use of agricultural film led to the accumulation of polycyclic aromatic hydrocarbons (PAHs) and microplastics (MPs) in agricultural soils. In this study, four biodegradable MPs (BPs), including polylactic acid (PLA), polybutylene succinate (PBS), poly-β-hydroxybutyric acid (PHB) and poly (butylene adipate-co-terephthalate) (PBAT) and non-biodegradable low-density polyethylene (LDPE) were selected as representative MPs. The soil microcosm incubation experiment was conducted to analyze MPs effects on PAHs decay. MPs did not influence PAHs decay significantly on day 15 but showed different effects on day 30. BPs reduced PAHs decay rate from 82.4% to 75.0%- 80.2% with the order of PLA < PHB < PBS < PBAT while LDPE increased it to 87.2%. MPs altered beta diversity and impacted the functions to different extents, interfering in PAHs biodegradation. The abundance of most PAHs-degrading genes was increased by LDPE and decreased by BPs. Meanwhile, PAHs speciation was influenced with bioavailable fraction elevated by LDPE, PLA and PBAT. The facilitating effect of LDPE on 30-d PAHs decay can be attributed to the enhancement of PAHs-degrading genes and PAHs bioavailability, while the inhibitory effects of BPs were mainly due to the response of the soil bacterial community.
Collapse
Affiliation(s)
- Yuting Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Peng Gu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wen Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Leilei Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Bing Li
- Key Laboratory of Agricultural Environment in Universities of Shandong, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Teng T, Liang J, Wu Z, Jin P, Zhang D. Different phenanthrene degraders between free-cell mediated and biochar-immobilization assisted soil bioaugmentation as identified by RNA-based stable isotope probing (RNA-SIP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161139. [PMID: 36572297 DOI: 10.1016/j.scitotenv.2022.161139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Bioaugmentation (BA) is an effective approach to remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soils, and biochar is frequently used to enhance PAH degradation performance. In this study, phenanthrene (PHE) degradation behavior and active degraders in a petroleum-contaminated soil were investigated and compared between free-cell mediated and biochar-immobilization assisted bioaugmentation. Biochar-immobilization assisted bioaugmentation (BA-IPB) introduced PHE degraders immobilized on biochar and effectively promoted PHE degradation, achieving higher PHE removal efficiencies within 24 h (~58 %) than free-cell mediated bioaugmentation (BA-FPB, ~39 %). Soil microbial community structure significantly changed in both BA-FPB and BA-IPB treatments. Through RNA-stable isotope probing (SIP), 14 and 11 bacterial lineages responsible for in situ PHE degradation were identified in BA-FPB and BA-IPB treatments, respectively. ASV_17 in BA-FPB treatment was Rhodococcus in the exogenous bacterial mixture; in contrast, none of exogenous bacteria were involved in PHE degradation in BA-IPB treatment. Methylobacterium (ASV_186), Xanthomonas (ASV_41), Kroppenstedtia (ASV_205), Scopulibacillus (ASV_243), Bautia (ASV_356), and Lactobacillus (ASV_376) were identified as PHE degraders for the first time. Our findings expanded the knowledge of the active PHE degraders and underlying mechanisms in bioaugmentation process, and suggested biochar-immobilization assisted bioaugmentation as a promising strategy for the bioremediation of PAH contaminated soils.
Collapse
Affiliation(s)
- Tingting Teng
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Jidong Liang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China.
| | - Zijun Wu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Pengkang Jin
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| |
Collapse
|
15
|
Bokade P, Gaur VK, Tripathi V, Bobate S, Manickam N, Bajaj A. Bacterial remediation of pesticide polluted soils: Exploring the feasibility of site restoration. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129906. [PMID: 36088882 DOI: 10.1016/j.jhazmat.2022.129906] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
For decades, reclamation of pesticide contaminated sites has been a challenging avenue. Due to increasing agricultural demand, the application of synthetic pesticides could not be controlled in its usage, and it has now adversely impacted the soil, water, and associated ecosystems posing adverse effects on human health. Agricultural soil and pesticide manufacturing sites, in particular, are one of the most contaminated due to direct exposure. Among various strategies for soil reclamation, ecofriendly microbial bioremediation suffers inherent challenges for large scale field application as interaction of microbes with the polluted soil varies greatly under climatic conditions. Methodically, starting from functional or genomic screening, enrichment isolation; functional pathway mapping, production of tensioactive metabolites for increasing the bioavailability and bio-accessibility, employing genetic engineering strategies for modifications in existing catabolic genes to enhance the degradation activity; each step-in degradation study has challenges and prospects which can be addressed for successful application. The present review critically examines the methodical challenges addressing the feasibility for restoring and reclaiming pesticide contaminated sites along with the ecotoxicological risk assessments. Overall, it highlights the need to fine-tune the available processes and employ interdisciplinary approaches to make microbe assisted bioremediation as the method of choice for reclamation of pesticide contaminated sites.
Collapse
Affiliation(s)
- Priyanka Bokade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Varsha Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Shishir Bobate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Natesan Manickam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
16
|
Sun H, Huang K, Zhang X, Ren H, Ye L. Stable isotope probing reveals specific assimilating bacteria of refractory organic compounds in activated sludge. WATER RESEARCH 2022; 212:118105. [PMID: 35074670 DOI: 10.1016/j.watres.2022.118105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Activated sludge in wastewater treatment bioreactors contains diverse bacteria, while little is known about the community structure of bacteria responsible for degradation of refractory organic compounds (ROCs). In this study, 10 ROCs frequently detected in sewage were investigated, and the potential bacteria degrading these ROCs were analyzed by DNA stable isotope probing and high-throughput sequencing. The results showed that the bacterial communities responsible for degradation of different ROCs were largely different. A total of 84 bacterial genera were found to be involved in degrading at least one of the 10 ROCs, however, only six genera (Acinetobacter, Bacteroides, Bosea, Brevundimonas, Lactobacillus and Pseudomonas) were common to all 10 ROCs. This suggests that different ROCs may have specific assimilating bacteria in the activated sludge. Our results also showed that these ROC-degrading bacteria are difficult to isolate by conventional methods and that most of them have relatively low relative abundance in municipal wastewater treatment bioreactors. Development of new technologies to increase the abundance and activity of these bacteria may significantly improve the removal efficiency of ROCs from wastewater.
Collapse
Affiliation(s)
- Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Kailong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|