1
|
Guo L, Guo W, Luan C, Luo X, Yin R, Chen J, Li G, Luo W, Qi C. The effect of auxiliary conditioning on humification of high-solids anaerobic digestion residues in aerobic composting processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125566. [PMID: 40300545 DOI: 10.1016/j.jenvman.2025.125566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
This study investigated the impact of cornstalk, bagasse, and spent mushroom substrate (SMS) as auxiliary materials on the nitrogen cycling and humification during the aerobic composting of high-solids anaerobically digested residues using high-throughput 16S rRNA sequencing and PICRUSt2 functional prediction. Results showed that cornstalk and SMS accelerated compost warming and upregulated the expression of nitrogen-cycling-related genes (e.g. ureC, narH, and narG), thereby significantly reducing (P < 0.05) N2O and NH3 emissions and increasing the NO3--N content in the compost. Furthermore, cornstalk enriched the microbial diversity and abundance of key bacteria involved in degradation and humification (e.g. Sphingobacterium and Moheibacter), which increased the humic acid content (HA) (78.4 g/kg DM). Although bagasse promoted aerobic conditions, it had less effect on nitrogen cycling and humification. The study highlights the intricate relationship between nitrogen metabolism and humification, demonstrating how selection of auxiliary materials can optimize composting for environmental sustainability.
Collapse
Affiliation(s)
- Lei Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenxuan Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunli Luan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xinyu Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Rongrong Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Zhang Z, Zu G, Liu Q, Liu Y, Xi B, Dang Q, Su J. Confirming the key factors influencing the biosynthesis and regulation of organic nitrogen in composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124436. [PMID: 39914218 DOI: 10.1016/j.jenvman.2025.124436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/23/2024] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
Organic nitrogen (ON) possesses the ability to sustain a stable nitrogen supply fertility during composting. However, research on the biosynthesis and regulation of ON remains limited. The results indicated that despite variations in microbial communities between the chicken manure composting (T group) and kitchen waste digestate composting (F group), their functional genes were remarkably similar, and the microorganisms exhibited similar functions. The microbial community structure of T group was more complex than that of F group. Network analysis identified Saccharomonospora, Corynebacterium, and Thermobifida as the core microorganisms in T group, whereas Oceanobacillus, Staphylococcus, and Fictibacillus were predominant in F group. These microorganisms play a role in the biosynthesis and regulation of various forms of ON (including amino acid nitrogen (AAN), amino sugar nitrogen (ASN), amide nitrogen (AN) and hydrolyzable unknown nitrogen (HUN)) and may contribute to differences in ON production due to the distinct nature of the materials. The core functional genes of the two groups of materials were determined by random forest model. Although differences in functional genes were present between F group and T group, the most crucial genes for ON biosynthesis in both groups were those with ammonia assimilation (such as glnE, gltB, gltD, etc.). The nitrogen transformation processes associated with these core genes can be modulated by managing the activity of multifunctional microorganisms, particularly through the control of ammonia assimilation, nitrate reduction, and ammonification, which are related to NH4+ levels. Notably, electric conductivity (EC), temperature (Tem.), pH, and NH4+ were the pivotal environmental factors influencing the biosynthesis of ON. This investigation enhances our understanding of the previously underexplored mechanisms of ON biosynthesis and regulation.
Collapse
Affiliation(s)
- Zishuai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Guofeng Zu
- Soil-Groundwater Pollution Control and Remediation Industry Alliance, Beijing, 100012, China
| | - Quanli Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yang Liu
- Zhejiang Tianpeng Agricultural Development Co., Ltd., Zhejiang, 324100, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
3
|
Wang X, You G, Liu C, Sun Y. Bioaugmentation strategies in co-composting anaerobically digested food waste with agricultural by-products: Enhancing fertilizer quality and microbial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117539. [PMID: 39700777 DOI: 10.1016/j.ecoenv.2024.117539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Effective management of urban solid waste is critical for achieving sustainable development goals. One key aspect of this challenge is the recycling of anaerobically digested residues from anaerobic digestion of food waste, which plays a pivotal role in promoting sustainability. However, there is a gap in understanding the feasibility and effectiveness of converting these digested residues into valuable fertilizers through composting. Addressing this gap, the present study explored the potential of composting anaerobically digested residue and evaluated the quality of the co-compost products. In this study, we investigated the composting process using a mixture of rice straw, food waste, sheep manure and mature composted residues (RFM group) alongside the anaerobically digested residues. The results demonstrated that the composting process quickly reached the thermophilic stage, during which NH+4-N concentrations increased and C/N ratio decrease. The RFM group exhibited the highest humic acid content compared to other groups. Additionally, microbial analysis revealed key species such as Clostridium, Moheibacter, Bacillus, Thermobacillus, and Pseudogracilibacillus as major contributors to the composting process. The germination index (GI) test indicated that the co-composted residues were non-toxic to plants, suggesting their suitability as a fertilizer. All these works indicated that the addition of rice straw, food waste, and mature composted residues to anaerobically digested materials significantly enhanced the composting process, resulting in a high-quality co-compost. This approach not only provided a promising method for recycling food waste but also contributed to the broader goal of sustainable solid waste management.
Collapse
Affiliation(s)
- Xuezhi Wang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Guyu You
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Chenchen Liu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Sun
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Ma R, Peng L, Tang R, Jiang T, Chang J, Li G, Wang J, Yang Y, Yuan J. Bioaerosol emission characteristics and potential risks during composting: Focus on pathogens and antimicrobial resistance. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136466. [PMID: 39549575 DOI: 10.1016/j.jhazmat.2024.136466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/19/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
In this study, we analyzed bioaerosol emission characteristics and potential risks of antimicrobial resistance (AMR) during composting using the impaction culture method and metagenomic sequencing. The results showed that the highly saturated water vapor in the emission gas mitigated particulate matter emission during the thermophilic period. About the bioaerosols, the airborne aerobic bacterial emissions were suppressed as composting enters the mature period, and the airborne fungi are usually present as single-cell or small-cell aggregates (< 3.3 µm). In addition, the microbial community structure in bioaerosols was stable and independent of composting time. Most importantly, the PM2.5 in bioaerosols contained large amounts of antibiotic resistance genes (ARGs), potential pathogens, and multidrug resistant pathogens, which were diverse and present in high concentrations. Among them, ARGs concentrations encoding 21 antibiotics ranged from - 4.50 to 0.70 ppm/m3 (Log10 ARGs). Among the 89 potential human pathogens detected, Escherichia coli, Salmonella enterica, Klebsiella pneumoniae, and Staphylococcus aureus were the only culturable potentially multidrug resistant pathogens carrying multiple ARGs encoding resistance at high concentrations (- 0.57 to 1.15 ppm/m3 (Log10 ARGs)), and were more likely to persist and multiply in oligotrophic environments. Our findings indicate that composting technology can transfer AMR from solid compost to gas phase and increase the risk of AMR transmission.
Collapse
Affiliation(s)
- Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Lijuan Peng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ruolan Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Tao Jiang
- School of New Energy Materials and Chemistry, Leshan Normal University, Sichuan 614000, China
| | - Jiali Chang
- School of New Energy Materials and Chemistry, Leshan Normal University, Sichuan 614000, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Sun X, Li Z, Li Z, Liu Y, Zeng J, Wang T, Ni H, Li L. Recycled calcium polypeptides modulate microbial dynamics and enhance bioconversion in kitchen waste-garden waste co-composting system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123988. [PMID: 39742751 DOI: 10.1016/j.jenvman.2024.123988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The kitchen waste and garden waste (KW-GW) co-composting system provides an effective method for recycling these two types of municipal solid waste; however, further improvements are needed to enhance bioconversion performance. This study investigates a novel composting additive, calcium polypeptides (CPPs), derived from waste animal and plant proteins, which can enhance the bioconversion capacity of biomass in the KW-GW co-composting system. As a pH regulator and an available nitrogen source, CPPs significantly increase the compost matrix pH, prolong the thermophilic phase, and reduce emissions of exhaust gases such as CH4, N2O, NH3, and H2S by 52.5%, 37.9%, 17.5%, and 41.3%, respectively. Moreover, the addition of CPPs to the compost product resulted in a 32.6% increase in humic substance content, while the germination index reached 108.5%, significantly promoting the growth of ryegrass. Microbial diversity analysis revealed that CPPs significantly altered microbial richness and diversity in the KW-GW co-composting system. During the heating phase, CPPs positively correlated with the abundance of thermophilic and lignocellulose-degrading species, such as Bacillus, Corynebacterium, and Aspergillus, along with composting temperature, pH, and electrical conductivity. Conversely, CPPs negatively correlated with the abundance of acidogenic and methanogenic species like Lactobacillus, Streptococcus, and Weissella. In the maturation phase, CPPs positively correlated with the abundance of lignocellulose-degrading and humus-forming species, including Pseudoxanthomonas, Sphingobacterium, and Aspergillus, as well as with the germination index. These results indicate that recycled CPPs improve the microenvironment, boosting biomass conversion in the KW-GW co-composting system, providing a viable approach for resourceful waste biomass reuse.
Collapse
Affiliation(s)
- Xiaowen Sun
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; School of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Zhe Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Zeng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tan Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Ni
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Li J, Huang Y, Wang J, Zhang Y, Chen Y. Vermiculite changed greenhouse gases emission and microbial community succession in vermicomposting: Particle size investigation. BIORESOURCE TECHNOLOGY 2025; 416:131769. [PMID: 39521185 DOI: 10.1016/j.biortech.2024.131769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Greenhouse gas emissions during composting inevitably cause environmental pollution. This study investigated the effects of 10 % vermiculite of four particle sizes (<1.5 mm, 1.5-3 mm, 3-5.5 mm and 5.5-8 mm) on greenhouse gas emissions during vermicomposting of corn stover and cow dung. The results revealed that vermiculite reduced CH4 and N2O emissions but increased CO2 emissions. Vermiculite with a particle size of 3-5.5 mm presented the greatest environmental benefits, increasing cumulative CO2 emissions by 19 % and reducing CH4 and N2O emissions by 49 % and 62 %, respectively. A negative correlation was found between the specific surface area of vermiculite and cumulative greenhouse gas emissions (r = -0.7949). Furthermore, vermiculite intensified microbial interactions and accelerated microbial community succession. These results have important implications for understanding how vermiculite regulates greenhouse gas emissions and microbial mechanisms during the vermicomposting process.
Collapse
Affiliation(s)
- Jiaolin Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yingxin Huang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jian Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yan Zhang
- Costal Research and Extension Center, Mississippi State University, MS 39567, United States
| | - Yuxiang Chen
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
7
|
Tian P, Yang S, Yang M, Xie D, Yu H, Wang X. Effect of iron-based nanomaterials on organic carbon dynamics and greenhouse gas emissions during composting process. ENVIRONMENTAL RESEARCH 2024; 263:120281. [PMID: 39489273 DOI: 10.1016/j.envres.2024.120281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Iron-based nanomaterials as effective additives can enhance the quality and safety of compost. However, their influence on organic carbon fractions changes and greenhouse gas emissions during composting remains unclear. This study demonstrated that iron-based nanomaterials facilitate the conversion of light organic carbon fraction into heavy organic carbon fraction, with the iron-based nanomaterials group showing a significantly higher heavy organic carbon fraction content (41.88%) compared to the control group (35.71%). This shift led to an increase in humic substance content (77.5 g/kg) and a reduction in greenhouse gas emissions, with CO2, CH4, and N2O emissions decreasing by 20.5%, 39.7%, and 55.4%, respectively. Additionally, CO2-equivalent emissions were reduced by 42.9%. Microbial analysis revealed that iron-based nanomaterials increased the abundance of Bacillus and reduced the abundance of methane-producing archaea such as Methanothermobacter and Methanomassiliicoccus. These results indicated that the role of iron-based nanomaterials in regulating reactive oxygen species production and specific microbial communities involved in humification process. This study provides a practical strategy for improving waste utilization efficiency and mitigating climate change.
Collapse
Affiliation(s)
- Pengjiao Tian
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China
| | - Shentao Yang
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China
| | - Mingxin Yang
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China
| | - Duo Xie
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China
| | - Haizhong Yu
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China
| | - Xiqing Wang
- College of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang City, Hubei Province, 441053, China.
| |
Collapse
|
8
|
Wang L, Ren Z, Xu Z, Liu L, Chang R, Li Y. Promoting effect of ammonia oxidation on sulfur oxidation during composting: Nitrate as a bridge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 191:13-22. [PMID: 39504837 DOI: 10.1016/j.wasman.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Ammonia (NH3) and hydrogen sulfide (H2S) are the main odor components in the composting process. Controlling their emissions is very important to reduce environmental pollution and improve the quality of composting products. This study explored the effects of functional bacteria on nitrogen and sulfur metabolism in the composting process of food waste (FW) by adding ammonia-oxidizing bacteria (AOB, A treatment), sulfur-oxidizing bacteria (SOB, S treatment), and combined AOB and SOB (AS treatment), respectively. The key bacterial species involved in nitrogen and sulfur transformation were identified, and the intrinsic mechanisms by which ammonia oxidation drove sulfur oxidation during composting were deciphered. Compared with control treatment (CK), the combined addition of functional microorganisms increased the maximum of soxB gene abundance by 1.72 times, thus resulting in the increase in the SO42- content by 44.00 %. AS treatment decreased the cumulative H2S emission and total sulfur (TS) loss by 40.24 % and 34.69 %, respectively, meanwhile lowering NH3 emission. Correlation network analysis showed that the simultaneous addition of AOB and SOB enhanced the correlation between microorganisms and sulfur oxidation genes, and Acinetobacter, Aeribacillus, Brevibacterium and Ureibacillus might be involved in the ammonia oxidation-promoted sulfur oxidation process. In summary, the optimized inoculation strategy of AOB and SOB could drive biological transformation of nitrogen and sulfur by regulating microbial community, ultimately reducing odor emissions and improving sulfur conservation.
Collapse
Affiliation(s)
- Lingxiao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiping Ren
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lixin Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ruixue Chang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Parab C, Yadav KD. A review on green waste composting, role of additives and composting methods for process acceleration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63473-63500. [PMID: 39495446 DOI: 10.1007/s11356-024-35429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Effective disposal of green waste has been a challenging task faced by urban bodies for a long time. Composting can be an effective method to manage green waste by recovering nutrients that can be used as organic manure. However, there are some limitations to green waste composting, such as a low degradation rate and the requirement for high manpower and space. Many researchers have studied ways to minimize the limitations of green waste composting through different approaches. These include the use of co-composting materials, inoculating agents, and process modifications such as multi-stage composting. In this review, we systematically summarized the physicochemical characteristics of green waste and green waste compost, optimum ratios of additives, and process modifications during the composting of green waste reported in various articles. This review is helpful for early-career researchers and individuals new to the field of green waste composting by providing them with key concepts and recent developments in the field. The study suggests that the sustainable selection of additives or methods for composting green waste should depend on resource availability, climatic conditions, and the characterization of the feedstock.
Collapse
Affiliation(s)
- Chandrashekhar Parab
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India.
| | - Kunwar D Yadav
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India
| |
Collapse
|
10
|
Li F, Yuan Q, Li M, Zhou J, Gao H, Hu N. Nitrogen retention and emissions during membrane-covered aerobic composting for kitchen waste disposal. ENVIRONMENTAL TECHNOLOGY 2024; 45:4397-4407. [PMID: 37615415 DOI: 10.1080/09593330.2023.2252162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
The composting performance and nitrogen transformation during membrane-covered aerobic composting of kitchen waste were investigated. The aerobic composting products of the kitchen waste had a high seed germination index of ∼180%. The application of the membrane increased the mean temperature in the early cooling stage of composting by 4.5℃, resulted in a lower moisture content, and reduced the emissions of NH3 and N2O by 48.5% and 44.1%, respectively, thereby retaining 7.9% more nitrogen in the compost. The adsorption of the condensed water layer under inner-membrane was the reason for reducing NH3 emissions, and finite element modeling revealed that the condensed water layer was present throughout the composting process with a maximum thickness of ∼2 mm in the thermophilic stage. The reduction of N2O emissions was related to the micro-positive pressure in the reactor, which promoted the distribution of oxygen, thus weakening denitrification. In addition, the membrane cover decreased the diversity of the bacterial community and increased the diversity of ammonia-oxidizing strains. This study confirmed that membrane-covered composting was suitable for kitchen waste management and could be used as a strategy to mitigate NH3 and N2O emissions.
Collapse
Affiliation(s)
- Fei Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qingbin Yuan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Meng Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Haofeng Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
11
|
Wu X, Gao R, Tian X, Hou J, Wang Y, Wang Q, Tang DKH, Yao Y, Zhang X, Wang B, Yang G, Li H, Li R. Co-composting of dewatered sludge and wheat straw with newly isolated Xenophilus azovorans: Carbon dynamics, humification, and driving pathways. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121613. [PMID: 38944964 DOI: 10.1016/j.jenvman.2024.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Composting is a biological reaction caused by microorganisms. Composting efficiency can be adequately increased by adding biochar and/or by inoculating with exogenous microorganisms. In this study, we looked at four methods for dewatered sludge waste (DSW) and wheat straw (WS) aerobic co-composting: T1 (no additive), T2 (5% biochar), T3 (5% of a newly isolated strain, Xenophilus azovorans (XPA)), and T4 (5% of biochar-immobilized XPA (BCI-XPA)). Throughout the course of the 42-day composting period, we looked into the carbon dynamics, humification, microbial community succession, and modifications to the driving pathways. Compared to T1 and T2, the addition of XPA (T3) and BCI-XPA (T4) extended the thermophilic phase of composting without negatively affecting compost maturation. Notably, T4 exhibited a higher seed germination index (132.14%). Different from T1 and T2 treatments, T3 and T4 treatments increased CO2 and CH4 emissions in the composting process, in which the cumulative CO2 emissions increased by 18.61-47.16%, and T3 and T4 treatments also promoted the formation of humic acid. Moreover, T4 treatment with BCI-XPA addition showed relatively higher activities of urease, polyphenol oxidase, and laccase, as well as a higher diversity of microorganisms compared to other processes. The Functional Annotation of Prokaryotic Taxa (FAPROTAX) analysis showed that microorganisms involved in the carbon cycle dominated the entire composting process in all treatments, with chemoheterotrophy and aerobic chemoheterotrophy being the main pathways of organic materials degradation. Moreover, the presence of XPA accelerated the breakdown of organic materials by catabolism of aromatic compounds and intracellular parasite pathways. On the other hand, the xylanolysis pathway was aided in the conversion of organic materials to dissolved organics by the addition of BCI-XPA. These findings indicate that XPA and BCI-XPA have potential as additives to improve the efficiency of dewatered sludge and wheat straw co-composting.
Collapse
Affiliation(s)
- Xuan Wu
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Runyu Gao
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Xiaorui Tian
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Jiawei Hou
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Yang Wang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Daniel Kuok Ho Tang
- The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ, 85721, USA; School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, 712100, China
| | - Yiqing Yao
- School of Mechanical & Electronic Engineering, Northwest A&F University, Yangling, 712100, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, 750021, China
| | - Bowen Wang
- Shaanxi Livestock and Poultry Breeding Generic Technology Research and Development Platform, Yangling, 712100, China; College of Economics and Management, Northwest A&F University (NWAFU), Yangling, 712100, China; Yangling Animal Husbandry Industry Innovation Center, Yangling, 712100, China; Shaanxi Animal Husbandry Industry Innovation Consortia, Yangling, 712100, China
| | - Guoping Yang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan, 750021, China
| | - Hua Li
- Shaanxi Livestock and Poultry Breeding Generic Technology Research and Development Platform, Yangling, 712100, China; College of Economics and Management, Northwest A&F University (NWAFU), Yangling, 712100, China; Yangling Animal Husbandry Industry Innovation Center, Yangling, 712100, China; Shaanxi Animal Husbandry Industry Innovation Consortia, Yangling, 712100, China.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China; The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ, 85721, USA.
| |
Collapse
|
12
|
Yin Y, Tao X, Du Y, Li M, Yang S, Zhang W, Yang C, Li H, Wang X, Chen R. Biochar improves the humification process during pig manure composting: Insights into roles of the bacterial community and metabolic functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120463. [PMID: 38430882 DOI: 10.1016/j.jenvman.2024.120463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Biochar could promote humification in composting, nevertheless, its mechanism has not been fully explored from the perspective of the overall bacterial community and its metabolism. This study investigated the effects of bamboo charcoal (BC) and wheat straw biochar (WSB) on the humic acid (HA) and fulvic acid (FA) contents during pig manure composting. The results showed that BC enhanced humification more than WSB, and significantly increased the HA content and HA/FA ratio. The bacterial community structure under BC differed from those under the other treatments, and BC increased the abundance of bacteria associated with the transformation of organic matter compared with the other treatments. Furthermore, biochar enhanced the metabolism of carbohydrates and amino acids in the thermophilic and cooling phases, especially BC. Through Mantel tests and network analysis, we found that HA was mainly related to carbon source metabolism and the bacterial community, and BC might change the interaction patterns among carbohydrates, amino acid metabolism, Bacillales, Clostridiales, and Lactobacillales with HA and FA to improve the humification process during composting. These results are important for understanding the mechanisms associated with the effects of biochar on humification during composting.
Collapse
Affiliation(s)
- Yanan Yin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China.
| | - Xiaohui Tao
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Yifei Du
- Yellow River Institute of Eco-Environmental Research, No.6 Changchun Road, Zhengzhou, 450003, PR China
| | - Mengtong Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Sai Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Wenrong Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Chao Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Haichao Li
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms Väg 9, 750 07, Uppsala, Sweden
| | - Xiaochang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, PR China
| |
Collapse
|
13
|
Zhang L, Yang Y, Bao Z, Zhang X, Yao S, Li Y, Li G, Wang D, Li Q, Yuan J. Plant-derived biochar amendment for compost maturity improvement and gaseous emission reduction in food waste composting: Insight from bacterial community and functions. CHEMOSPHERE 2024; 352:141457. [PMID: 38378050 DOI: 10.1016/j.chemosphere.2024.141457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
This study assessed the impact of different plant-derived biochar (cornstalk, rice husk, and sawdust) on bacterial community and functions for compost maturity and gaseous emissions during the composting of food waste. Results showed that all biochar strengthened organic biotransformation and caused a higher germination index on day 12 (over 100%), especially for rice husk biochar to enhance the growth of Thermobifida related to aerobic chemoheterotrophy. Rice husk biochar also achieved a relatively higher reduction efficiency of methane (85.8%) and ammonia (82.7%) emissions since its greater porous structure. Besides, the growth of Pseudomonas, Pusillimonas, and Desulfitibacter was restricted to constrict nitrate reduction, nitrite respiration, and sulfate respiration by optimized temperature and air permeability, thus reducing nitrous oxide and hydrogen sulfide emissions by 48.0-57.3% by biochar addition. Therefore, rice husk biochar experienced the optimal potential for maturity increment and gaseous emissions mitigation.
Collapse
Affiliation(s)
- Lanxia Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Ziyang Bao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Xuanshuo Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Sheng Yao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Yanming Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| | - Dingmei Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
14
|
Zhou SP, Ke X, Jin LQ, Xue YP, Zheng YG. Sustainable management and valorization of biomass wastes using synthetic microbial consortia. BIORESOURCE TECHNOLOGY 2024; 395:130391. [PMID: 38307483 DOI: 10.1016/j.biortech.2024.130391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
In response to the persistent expansion of global resource demands, considerable attention has been directed toward the synthetic microbial consortia (SMC) within the domain of microbial engineering, aiming to address the sustainable management and valorization of biomass wastes. This comprehensive review systematically encapsulates the most recent advancements in research and technological applications concerning the utilization of SMC for biomass waste treatment. The construction strategies of SMC are briefly outlined, and the diverse applications of SMC in biomass wastes treatment are explored, with particular emphasis on its potential advantages in waste degradation, hazardous substances control, and high value-added products conversion. Finally, recommendations for the future development of SMC technology are proposed, and prospects for its sustainable application are discussed.
Collapse
Affiliation(s)
- Shi-Peng Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xia Ke
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
15
|
Chang M, Zhu T, Xiao T, Wang J, Wang N, Song Y, Wang Y. Novel process for organic wastewater treatment using aerobic composting technology: Shifting from pollutant removal towards resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169522. [PMID: 38141992 DOI: 10.1016/j.scitotenv.2023.169522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
In this study, an organic wastewater treatment process based on aerobic composting technology was developed in order to explore the transition of wastewater treatment from pollutants removal to resource recovery. The novelty of the process focuses towards the microbial metabolic heat that is often ignored during the composting, and taking advantage of this heat for wastewater evaporation to achieve zero-discharge treatment. Meanwhile, this process can retain the wastewater's nutrients in the composting substrate to realize the recovery of resources. This study determined the optimum condition for the process (initial water content of 50 %, C/N ratio of 25:1, ventilation rate of 3 m3/h), and 69.9 % of the total heat generated by composting was used for wastewater treatment under the condition. The HA/FA ratio of composting substrate increased from 0.07 to 0.53 after wastewater treatment, and the retention ratio of TOC and TN was 52.3 % and 61.7 %, respectively, which proved the high recycling value of the composting products. Thermoduric and thermophilic bacteria accounted for 44.3 % of the community structure at the maturation stage, which played a pivotal role in both pollutant removal and resource recovery.
Collapse
Affiliation(s)
- Mingdong Chang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tong Zhu
- School of Mechanical Engineering and Automation, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, China; DongYuan Environment S&T, 400-19 Zhihui 2 Road, Shenyang 110004, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nana Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yang Song
- Liaoning Coning Testing Co. Ltd., No. 603, 16-6 Wensu Street, Shenyang, 110170, China
| | - Youzhao Wang
- School of Mechanical Engineering and Automation, Northeastern University, 3-11 Wenhua Road, Shenyang 110819, China.
| |
Collapse
|
16
|
Wang X, Liu N, Zeng R, Liu G, Yao H, Fang J. Change of core microorganisms and nitrogen conversion pathways in chicken manure composts by different substrates to reduce nitrogen losses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14959-14970. [PMID: 38285254 DOI: 10.1007/s11356-024-31901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
Due to the rapid development of animal husbandry, the associated environmental problems cannot be ignored, with the management of livestock and poultry manure emerging as the most prominent issue. Composting technology has been widely used in livestock and poultry manure management. A deeper understanding of the nitrogen conversion process during composting offers a theoretical foundation for selecting compost substrates. In this study, the effects of sawdust (CK) and spent mushroom compost (T1) as auxiliary materials on nitrogen as well as microbial structure in the composting process when composted with chicken manure were investigated. At the end of composting, the nitrogen loss of T1 was reduced by 17.18% relative to CK. When used as a compost substrate, spent mushroom compost accelerates the succession of microbial communities within the compost pile and alters the core microbial communities within the microbial community. Bacterial genera capable of cellulose degradation (Fibrobacter, Herbinix) are new core microorganisms that influence the assimilation of nitrate reduction during compost maturation. Using spent mushroom compost as a composting substrate increased the enzyme activity of nitrogen assimilation while decreasing the enzyme activity of the denitrification pathway.
Collapse
Affiliation(s)
- Xinyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Naiyuan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Rong Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Hao Yao
- Changsha IMADEK Intelligent Technology Co., LTD, Changsha, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| |
Collapse
|
17
|
Yin J, Xie M, Yu X, Feng H, Wang M, Zhang Y, Chen T. A review of the definition, influencing factors, and mechanisms of rapid composting of organic waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123125. [PMID: 38081379 DOI: 10.1016/j.envpol.2023.123125] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Composting is a traditional method of treating organic waste. A growing number of studies have been focusing on accelerating the process to achieve "rapid composting." However, the specific definition and influencing factors of rapid composting remain unclear. Therefore, we aimed to gather more insight into the features of rapid composting by reviewing the literature concerning organic waste composting published in the Web of Science database in the past 5 years. We selected 1615 sample studies with "composting" as the subject word and analyzed the effective composting time stated in each study. We defined rapid composting within 15 days using the median test and quartile method. Based on this definition, we summarized the influencing factors of "rapid composting," namely materials, reactors, temperature, and microorganisms. Finally, we summarized two mechanisms related to humus formation during organic waste rapid composting: high temperature-promoting maturation and microbial driving mechanisms. This literature review compiled useful references to help promote the development of rapid composting technology and related equipment.
Collapse
Affiliation(s)
- Jun Yin
- School of Environment Science & Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Mengjie Xie
- School of Environment Science & Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Xiaoqin Yu
- Zhejiang Best Energy and Environment Co., Ltd, Hangzhou, 310007, China
| | - Huajun Feng
- School of Environment Science & Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Meizhen Wang
- School of Environment Science & Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yanfeng Zhang
- Beijing Environmental Sanitation Engineering Group Limited, Beijing, 100000, China
| | - Ting Chen
- School of Environment Science & Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
18
|
Zhang Y, Liu L, Huang G, Yang C, Tian W, Ge Z, Zhang B, Wang S, Zhang H. Enhancing humification and microbial interactions during co-composting of pig manure and wine grape pomace: The role of biochar and Fe 2O 3. BIORESOURCE TECHNOLOGY 2024; 393:130120. [PMID: 38029803 DOI: 10.1016/j.biortech.2023.130120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Phenol-rich wine grape pomace (WGP) improves the conversion of pig manure (PM) into humic acid (HA) during composting. However, the impact of using combinations of Fe2O3 and biochar known to promote compost maturation remains uncertain. This research explored the individual and combined influence of biochar and Fe2O3 during the co-composting of PM and WGP. The findings revealed that Fe2O3 boosts microbial network symbiosis (3233 links), augments the HA yield to 3.38 by promoting polysaccharide C-O stretching, and improves the germination index to 124.82 %. Limited microbial interactions, increased by biochar, resulted in a lower HA yield (2.50). However, the combination weakened the stretching of aromatics and quinones, which contribute to the formation of HA, resulting in reduced the humification to 2.73. In addition, Bacillus and Actinomadura were identified as pivotal factors affecting HA content. This study highlights Fe2O3 and biochar's roles in phenol-rich compost humification, but combined use reduces efficacy.
Collapse
Affiliation(s)
- Yingchao Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Liqian Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Guowei Huang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Changhao Yang
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenxin Tian
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhenyu Ge
- Leading Bio-agricultural Co. Ltd. and Hebei Agricultural Biotechnology Innovation Center, Qinhuangdao 066004, PR China
| | - Baohai Zhang
- Hemiao Biological Technology Co., Ltd, Qinhuangdao 066000, PR China
| | - Sufeng Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, and the Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Hongqiong Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
19
|
Chang Y, Zhou K, Yang T, Zhao X, Li R, Li J, Xu S, Feng Z, Ding X, Zhang L, Shi X, Su J, Li J, Wei Y. Bacillus licheniformis inoculation promoted humification process for kitchen waste composting: Organic components transformation and bacterial metabolic mechanism. ENVIRONMENTAL RESEARCH 2023; 237:117016. [PMID: 37657603 DOI: 10.1016/j.envres.2023.117016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Kitchen waste (KW) composting always has trouble with slow humification process and low humification degree. The objective of this study was to develop potentially efficient solutions to improve the humification of KW composting, accelerate the humus synthesis and produce HS with a high polymerization degree. The impact of Bacillus licheniformis inoculation on the transformation of organic components, humus synthesis, and bacterial metabolic pathways in kitchen waste composting, was investigated. Results revealed that microbial inoculation promoted the degradation of organic constituents, especially readily degradable carbohydrates during the heating phase and lignocellulose fractions during the cooling phase. Inoculation facilitated the production and conversion of polyphenol, reducing sugar, and amino acids, leading to an increase of 20% in the content of humic acid compared to the control. High-throughput sequencing and network analysis indicated inoculation enriched the presence of Bacillus, Lactobacillus, and Streptomyces during the heating phase, while suppressing the abundance of Pseudomonas and Oceanobacillus, enhancing positive microbial interactions. PICRUSt2 analysis suggested inoculation enhanced the metabolism of carbohydrates and amino acids, promoting the polyphenol humification pathway and facilitating the formation of humus. These findings provide insights for optimizing the humification process of kitchen waste composting by microbial inoculation.
Collapse
Affiliation(s)
- Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Tianxue Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ruoqi Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Jun Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Xiaoyan Ding
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Longli Zhang
- Beijing VOTO Biotech Co.,Ltd, 100193, Beijing, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China
| | - Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, 215128, China.
| |
Collapse
|
20
|
Rao JN, Parsai T. A comprehensive review on the decentralized composting systems for household biodegradable waste management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118824. [PMID: 37696186 DOI: 10.1016/j.jenvman.2023.118824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 09/13/2023]
Abstract
Municipal solid waste primarily consists of household biodegradable waste (HBW). HBW treatment is a crucial step in many countries due to rapid urbanization. Composting is an effective technique to treat HBW. However, conventional composting systems are unable to produce matured compost (MC), as well as releasing huge amounts of greenhouse and odorous gases. Therefore, this review attempts to suggest suitable composting system to manage HBW, role of additives and bulking agents in composting process, identify knowledge gaps and recommend future research directions. Centralized composting systems are unable to produce MC due to improper sorting and inadequate aeration for composting substrate. Recently, decentralized compost systems (DCS) are becoming more popular due to effective solid waste reduction at the household and/or community level itself, thereby reducing the burden on municipalities. Solid waste sorting and aeration for the composting substrate is easy at DCS, thereby producing MC. However, Mono-composting of HBW in DCS leads to production of immature compost and release greenhouse and odorous gases due to lower free air space and carbon-to-nitrogen ratios, and higher moisture content. Mixing HBW with additives and bulking agents in DCS resulted in a proper initial substrate for composting, allowing rapid degradation of substrate due to longer duration of thermophilic phase and produce MC within a shorter duration. However, people have lack of awareness about solid waste management is the biggest challenge. More studies are needed to eliminate greenhouse and odorous gases emissions by mixing different combinations of bulking agents and additives (mainly microbial additives) to HBW in DCS.
Collapse
Affiliation(s)
- Jakki Narasimha Rao
- Research scholar, School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Tanushree Parsai
- Assistant professor, Department of Civil Engineering, Indian Institute of Technology (IIT) Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
21
|
Zhang Y, Tao J, Bai Y, Wang F, Xie B. Incomplete degradation of aromatic-aliphatic copolymer leads to proliferation of microplastics and antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2023; 181:108291. [PMID: 37907056 DOI: 10.1016/j.envint.2023.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Biodegradable plastics (BDPs) have attracted extensive attention as an alternative to conventional plastics. BDPs could be mineralized by composting, while the quality of compost affected by the presence of BDPs and the residual microplastics (MPs) has not been well evaluated. This study aimed to explore the MPs release potential and environmental implications of commercial BDPs (aromatic-aliphatic copolymer) films in uncontrolled composting. Results showed that the molecular weight of BDPs decreased by >60% within 60 d. However, the non-extracted organic matter and wet-sieving measurements indicated that MPs continuously released and accumulated during regular composting. The average MPs release potential (0.1-5 mm) was 134.6 ± 18.1 particles/mg (BDPs), which resulted in 103-104 particles/g dw in compost. The plastisphere of MPs showed a significantly higher (0.95-16.76 times) abundance of antibiotic resistance genes (ARGs), which resulted in the rising (1.34-2.24 times) of ARGs in compost heaps, in comparison to the control groups. Overall, BDPs promote the spread of ARGs through the selective enrichment of bacteria and horizontal transfer from released MPs. These findings confirmed that BDPs could enhance the release potential of MPs and the dissemination of ARGs, which would promote the holistic understanding and environmental risk of BDPs.
Collapse
Affiliation(s)
- Yuchen Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianping Tao
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yudan Bai
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Feng Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
22
|
Ding S, Jiang L, Hu J, Huang W, Lou L. Microbiome data analysis via machine learning models: Exploring vital players to optimize kitchen waste composting system. BIORESOURCE TECHNOLOGY 2023; 388:129731. [PMID: 37704090 DOI: 10.1016/j.biortech.2023.129731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Composting, reliant on microorganisms, effectively treats kitchen waste. However, it is difficult to precisely understand the specific role of key microorganisms in the composting process by relying solely on experimental research. This study aims to employ machine learning models to explore key microbial genera and to optimize composting systems. After introducing a novel microbiome preprocessing approach, Stacking models were constructed (R2 is about 0.8). The SHAP method (SHapley Additive exPlanations) identified Bacillus, Acinetobacter, Thermobacillus, Pseudomonas, Psychrobacter, and Thermobifida as prominent microbial genera (Shapley values ranging from 3.84 to 1.24). Additionally, microbial agents were prepared to target the identified key genera, and experiments demonstrated that the composting quality score was 76.06 for the treatment and 70.96 for the control. The exogenous agents enhanced decomposition and improved compost quality in later stages. In summary, this study opens up a new avenue to identifying key microorganisms and optimizing the biological treatment process.
Collapse
Affiliation(s)
- Shang Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liyan Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiyuan Hu
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Wuji Huang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liping Lou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
23
|
Zou SP, Liu RS, Luo Y, Bo CT, Tang SQ, Xue YP, Zheng YG. Effects of fungal agents and biochar on odor emissions and microbial community dynamics during in-situ treatment of food waste. BIORESOURCE TECHNOLOGY 2023; 380:129095. [PMID: 37100303 DOI: 10.1016/j.biortech.2023.129095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
The effects of the co-addition of fungal agents and biochar on physicochemical properties, odor emissions, microbial community structure, and metabolic functions were investigated during the in-situ treatment of food waste. The combined addition of fungal agents and biochar decreased cumulative NH3, H2S, and VOCs emissions by 69.37%, 67.50%, and 52.02%, respectively. The predominant phyla throughout the process were Firmicutes, Actinobacteria, Cyanobacteria, and Proteobacteria. Combined treatment significantly impacted the conversion and release of nitrogen from the perspective of the variation of nitrogen content between different forms. FAPROTAX analysis revealed that the combined application of fungal agents and biochar could effectively inhibit nitrite ammonification and reduce the emission of odorous gases. This work aims to clarify the combined effect of fungal agents and biochar on odor emission and provide a theoretical basis for developing an environmentally friendly in-situ efficient biological deodorization (IEBD) technology.
Collapse
Affiliation(s)
- Shu-Ping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ru-Sheng Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Luo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chun-Tao Bo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su-Qin Tang
- Hangzhou Environmental Group Company Limited, Hangzhou 310022, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
24
|
Duan Y, Awasthi MK, Yang J, Tian Y, Li H, Cao S, Syed A, Verma M, Ravindran B. Bacterial community dynamics and co-occurrence network patterns during different stages of biochar-driven composting. BIORESOURCE TECHNOLOGY 2023:129358. [PMID: 37336449 DOI: 10.1016/j.biortech.2023.129358] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Bacterial communities were dynamically tracked at four stages of biochar-driven sheep manure pile composting, and the co-occurrence networks with keystone taxa were established. The succession of bacterial community obvious varied during the composting process, Proteobacteria predominant in initial stage (39%) then shifted into Firmicutes in thermophilic (41%) and mesophilic (27%) stages, finally the maturation stage dominant by Bacteroidota (26%). Visualizations of bacterial co-occurrence networks demonstrate more cooperative mutualism and complex interactions in the thermophilic and mesophilic phases. Noticeably, the 7.5 and 10% biochar amended composts shown highest connections (736 and 663 total links) and positive cooperation (97.37 and 97.13% positive link) as well as higher closeness centrality and betweenness centrality of keystone taxa. Overall, appropriate biochar addition alters bacterial community succession and strengthens connection between keystone taxa and other bacteria, with 7.5 and 10% biochar amended composts has intense mutualistic symbiosis among bacterial communities.
Collapse
Affiliation(s)
- Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jianfeng Yang
- College of Resources Environment Science and Technology, Hubei University of Science and Technology, Xianning 437100, Hubei, China
| | - Yuan Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Huike Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Shan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- University Centre for Research & Development Department of Chemistry Chandigarh University Gharuan, Mohali, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| |
Collapse
|
25
|
Shi M, Song C, Xie L, Zhang G, Wei Z. Role in aromatic metabolites biodegradation and adverse implication of denitrifying microbiota in kitchen waste composting. ENVIRONMENTAL MICROBIOME 2023; 18:44. [PMID: 37254173 DOI: 10.1186/s40793-023-00496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Understanding the functional diversity, composition, and dynamics of microbiome is critical for quality in composting. Denitrifying microbiota, possessing multiple metabolic pathways simultaneously. Denitrification-based biodegradation of aromatic metabolites has been widely applied in the bioremediation of sediments. However, role in biodegradation of denitrifying microbiota in kitchen waste composting remain unclear. In this study, microbiome and metabolome were used to comprehensively decipher the relationship of denitrifying microbiota and aromatic metabolites, and its implication in kitchen waste (KW) composting. RESULTS This study was investigated by adjusting moisture content 60% as control test (CK), 70% as denitrification test (DE). In addition, one tests referred as DE + C, which received 10% of biochar to amend denitrification. Results indicated the quantities of denitrification genes narG were 1.22 × 108 copies/g in DE at the 55th day, which were significantly higher than that in CK and DE + C (P < 0.05). Similarly, the abundance of nirK gene also significantly increased in DE (P < 0.05). The relative abundance of denitrification-related microbes in DE was higher than that in CK, DE + C could weaken their abundance. Metabolomics results demonstrated that metabolites were downgraded in aromatic amino acid and catechin metabolic pathways in DE, which were identified as precursors to synthesis key product fulvic acid. The concentrations of fulvic acid dramatically decreased 21.05 mg/g in DE comparison with CK. Biochar addition alleviated the biodegradation of aromatic metabolites and reduced the utilization of fulvic acid. Integrative analyses of metabolomics and microbiome suggested that the microbiota involved in nitrite reduction pathway was vital for the biodegradation aromatic metabolites. Mantel test verified that NO3--N, moisture content, eta, environmental factors were important drivers behind the changes in the denitrifying microbiota biodegradation function. CONCLUSION The data confirm the biodegradation function of denitrifying microbiota led to the loss of core product fulvic acid in KW composting, which highlighted the adverse role and implication of denitrification for composting humification. Control of denitrification with biochar was recommended to improve composting quality.
Collapse
Affiliation(s)
- Mingzi Shi
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
- College of Life Science, Henan Agricultural University, Zhengzhou, 450000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| |
Collapse
|
26
|
Li H, Tan L, Liu W, Li X, Zhang D, Xu Y. Unraveling the effect of added microbial inoculants on ammonia emissions during co-composting of kitchen waste and sawdust: Core microorganisms and functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162522. [PMID: 36868270 DOI: 10.1016/j.scitotenv.2023.162522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Despite the role of microorganisms in nitrogen biotransformation has been extensively explored, how microorganisms mitigate NH3 emissions in the transformation of nitrogen throughout the composting system is rarely addressed. The present study explored the effect of microbial inoculants (MIs) and the contribution of different composted phases (solid, leachate, and gas) on NH3 emissions by constructing a co-composting system of kitchen waste and sawdust with and without the addition of MI. The results showed that NH3 emissions increased markedly after adding MIs, in which the contribution of leachate ammonia volatilization to NH3 emissions was most prominent. The core microorganisms of NH3 emission had a clear proliferation owing to the MIs reshaping community stochastic process. Also, MIs can strengthen the co-occurrence between microorganisms and functional genes of nitrogen to promote nitrogen metabolism. In particular, the abundances of nrfA, nrfH, and nirB genes, which could augment the dissimilatory nitrate reduction process, were increased, thus enhancing NH3 emissions. This study bolsters the fundamental, community-level understanding of nitrogen reduction treatments for agricultural.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wei Liu
- Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department F.A. Forel for Environmental and Aquatic Sciences, Section of Earth and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Switzerland.
| |
Collapse
|
27
|
Chen K, Yu C, Cai L, Zhang W, Xing Y, Yang Y. Bacterial community succession in aerobic-anaerobic-coupled and aerobic composting with mown hay affected C and N losses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27572-3. [PMID: 37204571 DOI: 10.1007/s11356-023-27572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
The primary objective of this work was to investigate how the dominant microbial species change and affect C and N losses under aerobic and aerobic-anaerobic-coupled composting of mown hay (MH, ryegrass) and corn stover (CS) mix. Results showed that C and N losses in aerobic compost of MH-CS were significantly decreased by 19.57-31.47% and 29.04-41.18%, respectively. 16S rRNA gene sequencing indicated that the bacterial microbiota showed significant differences in aerobic and aerobic-anaerobic-coupled composting. LEfSe analyses showed that aerobic composting promoted the growth of bacteria related to lignocellulosic degradation and nitrogen fixation, while aerobic-anaerobic-coupled composting promoted the growth of bacteria related to denitrification. Correlation analysis between bacterial community and environmental factors indicated that moisture content (MC) was the most important environmental factor influencing the differentiation of bacterial growth. KEGG analysis showed that aerobic composting enhanced the amino acid, carbohydrate, and other advantageous metabolic functions compared to that of aerobic-anaerobic-coupled composting. As a conclusion, the addition of 10-20% corn stover (w/w) to new-mown hay (ryegrass) appeared to inhibit anaerobic composting and prompt aerobic composting in MH-CS mix, which led to the effective utilization of mown hay as a resource for composting.
Collapse
Affiliation(s)
- Kaishan Chen
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Chenxu Yu
- Department of Agriculture and Biosystem Engineering, Iowa State University, Ames, 50010, USA
| | - Liqun Cai
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Wenming Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Yanhong Xing
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yingxiang Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
28
|
Yang Y, Chen W, Liu G, Kong Y, Wang G, Yin Z, Li G, Yuan J. Effects of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 166:104-114. [PMID: 37167708 DOI: 10.1016/j.wasman.2023.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Manure covered by organic materials during the storage has shown that it can effectively reduce emissions of greenhouse gases, but few studies have focused on the bacterial communities in manure or the coverage and mechanism responsible for reducing gas emissions. Therefore, this study investigated the impacts and mechanisms of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. Sheep manure covered by organic material reduced nitrous oxide (N2O) emissions (42.27%-42.55%) relative to uncovered control through physical adsorption and biological transformation of Acinetobacter, Corynebacterium, Brachybacterium, Dietzia and Brevibacterium. Sheep manure covered by organic materials also increased methane (CH4) emissions (16.31%-43.07%) by increasing anaerobic zones of coverage. Overall, coverings reduced carbon dioxide equivalent (CO2eq) by 29.87%-33.60%. Coverings had less effect on the bacterial diversity and community of sheep manure, and the number of bacteria shared by sheep manure and the covering material increased with storage progress, indicating that these bacteria were transferred to the covering materials with gas emissions and moisture volatilization. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) images showed that functional group intensities of the covering materials increased and the fibrous structures became more disordered during the storage period. In general, it was safe to use organic materials as coverages during sheep manure storage, which was conducive to reducing greenhouse gas emissions.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Wenjie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Guoliang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ziming Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
29
|
Liu J, Shen Y, Ding J, Luo W, Zhou H, Cheng H, Wang H, Zhang X, Wang J, Xu P, Cheng Q, Ma S, Chen K. High oil content inhibits humification in food waste composting by affecting microbial community succession and organic matter degradation. BIORESOURCE TECHNOLOGY 2023; 376:128832. [PMID: 36889602 DOI: 10.1016/j.biortech.2023.128832] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Composting is an effective technology to realize resource utilization of food waste in rural China. However, high oil content in food waste limits composting humification. This study investigated the effects of blended plant oil addition at different proportions (0, 10, 20, and 30%) on the humification of food waste composting. Oil addition at 10%-20% enhanced lignocellulose degradation by 16.6%-20.8% and promoted humus formation. In contrast, the high proportion of oil (30%) decreased the pH, increased the electrical conductivity, and reduced the seed germination index to 64.9%. High-throughput sequencing showed that high oil inhibited the growth and reproduction of bacteria (Bacillus, Fodinicurvataceae, and Methylococcaceae) and fungi (Aspergillus), attenuated their interaction, thus, reducing the conversion of organic matter, such as lignocellulose, fat, and total sugar, to humus, consequently leading to negative impacts on composting humification. The results can guide composting parameter optimization and improve effective management of rural food waste.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Yujun Shen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jingtao Ding
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Wenhai Luo
- College of Resource and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Haibin Zhou
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| | - Hongsheng Cheng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Huihui Wang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xi Zhang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Jian Wang
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Pengxiang Xu
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Qiongyi Cheng
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Shuangshuang Ma
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Kun Chen
- Institute of Energy and Environmental Protection, Academy of Agricultural Planning & Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| |
Collapse
|
30
|
Ren L, Huang X, Min H, Wang H, Xie Y, Zou H, Qiao C, Wu W. Different ratios of raw material triggered composting maturity associated with bacterial community co-occurrence patterns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62532-62543. [PMID: 36943561 DOI: 10.1007/s11356-023-26468-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Exploring the ecological function of potential core bacteria for high-efficiency composting can provide a fundamental understanding of the role of composting bacterial communities. Mushroom residue and kitchen garbage at different ratios (N1: 1/1, N2: 1/2) of dry weight were tested to investigate the key ecological role of the core bacteria responsible for producing mature compost. N1 had a peak temperature of 75.0 °C which was higher than N2 (68.3 °C). Other key composting parameters (carbon to nitrogen ratio (C/N) and germination index (GI)) also indicated that N1 achieved higher compost maturity. Rice seedlings experiments also further validated this conclusion. Putative key bacterial taxa (Thermobifida, Luteimonasd, Bacillus, etc.) were positively associated with the GI, indicating a substantial contribution to composting maturity. Co-occurrence network analysis revealed the ecological function of potentially beneficial core bacteria promoted cooperation among the bacterial community. The putative core bacteria in N1 may affect composting efficiency. Our findings reveal the mechanism of potential core bacteria throughout the compost maturity phases.
Collapse
Affiliation(s)
- Lantian Ren
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Xingchen Huang
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Hongzhi Min
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Hong Wang
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Yiqing Xie
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Haiming Zou
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China
| | - Cece Qiao
- Anhui Engineering Research Center for Smart Crop Planting and Processing Technology, Anhui Science and Technology University, 233100, Chuzhou, Anhui Province, People's Republic of China.
| | - Wenge Wu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, 230031, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
31
|
Zhong MH, Yang L, Xiong K, Yang HL, Wang XL. Exploring the mechanism of Self-Consistent balance between microbiota and high efficiency in wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 374:128785. [PMID: 36822553 DOI: 10.1016/j.biortech.2023.128785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Sewage treatment mediated by microbial organisms is a promising green trend. However, the complex balance between microbiota stability and highly efficient wastewater treatment requires investigation. This study successfully improved the effectiveness of sewage treatment by resetting the microbial community structure in the activated sludge. Truepera, Methylophaga, unclassified_Fodinicurvataceae, and unclassified_Actinomanarales were the dominant genera, while salinity and NH3-N content were identified as the key environmental factors governing the microbial structure. By optimizing the microflora structure driven by environmental factors, the key minor genera were activated and coordinated with the aforementioned genera, thereby promoting wastewater treatment. Finally, the chemical oxygen demand, NH3-N, and total phosphorus removal rates were improved to 86.8 ± 1.9%, 82.4 ± 4.1%, and 94.8 ± 3.8%, respectively. It provides a new insight to improve the wastewater treatment through setting microbiota by environmental factor driven.
Collapse
Affiliation(s)
- Ming-Hui Zhong
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Lin Yang
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Kai Xiong
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Hui-Lin Yang
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiao-Lan Wang
- School of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
32
|
Mo J, Xin L, Zhao C, Qin Y, Nan Q, Mei Q, Wu W. Reducing nitrogen loss during kitchen waste composting using a bioaugmented mechanical process with low pH and enhanced ammonia assimilation. BIORESOURCE TECHNOLOGY 2023; 372:128664. [PMID: 36702327 DOI: 10.1016/j.biortech.2023.128664] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Exploring the regulation of nitrogen transformation in bioaugmented mechanical composting (BMC) process for rural kitchen waste (KW) is essential to avoid the "not-in-my-backyard" phenomenon caused by nitrogen loss. Herein, nitrogen transformation and loss in BMC versus conventional pile composting (CPC) of KW were compared. The results showed that the total nitrogen loss in the BMC was 6.87-39.32 % lower than that in the CPC. The main pathways to prevent nitrogen loss in the BMC were reducing NH3 by avoiding a sharp increase in pH followed by transforming the preserved NH4+-N into recalcitrant nitrogen reservoir via enhanced ammonia assimilation. The enriched thermophilic bacteria with mineralization capacities (e.g., Bacillus and Corynebacterium) during rapid dehydration and heating in the BMC accumulated organic acids and easy-to-use carbon sources, which could lead to lower pH and ammonia assimilation enhancement, respectively. This study provides new ideas for formulating low-cost nitrogen conservation strategies in decentralized KW composting.
Collapse
Affiliation(s)
- Jiefei Mo
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| | - Liqing Xin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| | - Changxun Zhao
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| | - Yong Qin
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China.
| | - Qiong Nan
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| | - Qingqing Mei
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| | - Weixiang Wu
- Institute of Environment Science and Technology, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang 310058, China
| |
Collapse
|
33
|
Li M, Li S, Chen S, Meng Q, Wang Y, Yang W, Shi L, Ding F, Zhu J, Ma R, Guo X. Measures for Controlling Gaseous Emissions during Composting: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3587. [PMID: 36834281 PMCID: PMC9964147 DOI: 10.3390/ijerph20043587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Composting is a promising technology for treating organic solid waste. However, greenhouse gases (methane and nitrous oxide) and odor emissions (ammonia, hydrogen sulfide, etc.) during composting are practically unavoidable, leading to severe environmental problems and poor final compost products. The optimization of composting conditions and the application of additives have been considered to mitigate these problems, but a comprehensive analysis of the influence of these methods on gaseous emissions during composting is lacking. Thus, this review summarizes the influence of composting conditions and different additives on gaseous emissions, and the cost of each measure is approximately evaluated. Aerobic conditions can be achieved by appropriate process conditions, so the contents of CH4 and N2O can subsequently be effectively reduced. Physical additives are effective regulators to control anaerobic gaseous emissions, having a large specific surface area and great adsorption performance. Chemical additives significantly reduce gaseous emissions, but their side effects on compost application must be eliminated. The auxiliary effect of microbial agents is not absolute, but is closely related to the dosage and environmental conditions of compost. Compound additives can reduce gaseous emissions more efficiently than single additives. However, further study is required to assess the economic viability of additives to promote their large-scale utilization during composting.
Collapse
Affiliation(s)
- Minghan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Shuyan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Shigeng Chen
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Qingyu Meng
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Yu Wang
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Wujie Yang
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Lianhui Shi
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Fangjun Ding
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Jun Zhu
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Ronghui Ma
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Xinsong Guo
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| |
Collapse
|
34
|
Jia P, Huang Y, Chen M, Qi X, Hou H. Comprehensive evaluation of spent mushroom substrate-chicken manure co-composting by garden waste improvement: physicochemical properties, humification process, and the spectral characteristics of dissolved organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8987-8997. [PMID: 35606581 DOI: 10.1007/s11356-022-20879-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The performance of garden waste on spent mushroom substrate (SMS) and chicken manure (CM) co-composting efficiency and humification is unclear. Therefore, this study investigated the impact of garden waste addition on SMS-CM co-composting physicochemical properties, humification process, and the spectral characteristics of dissolved organic matter (DOM). The results showed that garden waste improved the physicochemical properties of SMS-CM co-compost, the thermophilic period was advanced 2 days, the seed germination index increased by 30.2%, and the total organic carbon and total nitrogen content increased by 8.80% and 15.0%, respectively. In addition, garden waste increased humic substances (HS) and humic acid (HA) contents by 10.62% and 34.52%, respectively; the HI, PHA and DP increased by 31.53%, 43.19% and 55.53%, respectively; and the SUVA254 and SUVA280 of DOM also increased by 6.39% and 4.39%, respectively. In particular, HA content and DOM humification increase rapidly in the first 10 days. The increase of HA accounted for 52% of the total increase during composting. Fourier-transform infrared and two-dimensional correlation analysis further confirmed that garden waste could facilitate the degradation of organic molecules, including amino acids, polysaccharides, carboxyl groups, phenols, and alcohol, and contributed to the preferential utilization of carboxyl groups and polysaccharides and thus enhanced humification.
Collapse
Affiliation(s)
- Penghui Jia
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China.
| | - Mengli Chen
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, 400045, China
| | - Xiping Qi
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| | - Hongyang Hou
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| |
Collapse
|
35
|
Jiao M, Ren X, He Y, Wang J, Hu C, Zhang Z. Humification improvement by optimizing particle size of bulking agent and relevant mechanisms during swine manure composting. BIORESOURCE TECHNOLOGY 2023; 367:128191. [PMID: 36374714 DOI: 10.1016/j.biortech.2022.128191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
For purpose of clarifying the impact on particle size of bulking agents on humification and relevant mechanisms, different length (<2 cm, 2 cm, 5 cm, 10 cm) of branch and straw were blended with swine manure individually for 100 days aerobic composting. Results demonstrated that, 2 cm and 5 cm of branch and straw promoted the highest degradation of DOC by 41.49 % and 58.42 %, and increased the humic substances by 23.81 % and 55.82 % in maturity stage, respectively, compared with other treatments. As shown in microbial consequence, the maximum relative abundance of humus funguses increased by 99.55 % and 99.92 % at phylum, and 98.95 % and 99.24 % at genus in 2 cm and 5 cm of branch and straw treatment, thus verifying the result in variation of humus content. In a word, particle size could result in obvious impact on humification, and the optimized size were about 2 cm and 5 cm of branch and straw.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yifeng He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
36
|
Liu Y, Zhang K, Zhang H, Zhou K, Chang Y, Zhan Y, Pan C, Shi X, Zuo H, Li J, Wei Y. Humic acid and phosphorus fractions transformation regulated by carbon-based materials in composting steered its potential for phosphorus mobilization in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116553. [PMID: 36283197 DOI: 10.1016/j.jenvman.2022.116553] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of different carbon-based additives including biochar, woody peat, and glucose on humic acid, fulvic acid, and phosphorus fractions in chicken manure composting and its potential for phosphorus mobilization in soil. The results showed that the addition of glucose effectively increased the total humic substance content (90.2 mg/g) of composts, and the fulvic acid content was significantly higher than other groups (P < 0.05). The addition of biochar could effectively improve the content of available phosphorus by 59.9% in composting. The addition of carbon-based materials to the composting was beneficial for the production of more stable inorganic phosphorus in the phosphorus fraction. The highest proportion of soluble inorganic phosphorus components of sodium hydroxide was found in group with woody peat addition (8.7%) and the highest proportion of soluble inorganic phosphorus components of hydrochloric acid was found in group with glucose addition (35.2%). The compost products with the addition of biochar (humic acid decreased by 17.9%) and woody peat (fulvic acid decreased by 72.6%) significantly increased soil humic acid mineralization. The compost products with the addition of biochar was suitable as active phosphate fertilizer, while the compost products with the addition of glucose was suitable as slow-release phosphate fertilizer.
Collapse
Affiliation(s)
- Yongdi Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Kui Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Kaiyun Zhou
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Yuan Chang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Yabin Zhan
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Chengjie Pan
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Suzhou, 215163, China
| | - Huiduan Zuo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China
| | - Yuquan Wei
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou, 215100, China.
| |
Collapse
|
37
|
Qi C, Yin R, Cheng J, Xu Z, Chen J, Gao X, Li G, Nghiem L, Luo W. Bacterial dynamics for gaseous emission and humification during bio-augmented composting of kitchen waste with lime addition for acidity regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157653. [PMID: 35926596 DOI: 10.1016/j.scitotenv.2022.157653] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the impacts of lime addition and further microbial inoculum on gaseous emission and humification during kitchen waste composting. High-throughput sequencing was integrated with Linear Discriminant Analysis Effect Size (LEfSe) and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to decipher bacterial dynamics in response to different additives. Results showed that lime addition enriched bacteria, such as Taibaiella and Sphingobacterium as biomarkers, to strengthen organic biodegradation toward humification. Furthermore, lime addition facilitated the proliferation of thermophilic bacteria (e.g. Bacillus and Symbiobacterium) for aerobic chemoheterotrophy, leading to enhanced organic decomposition to trigger notable gaseous emission. Such emission profile was further exacerbated by microbial inoculum to lime-regulated condition given the rapid enrichment of bacteria (e.g. Caldicoprobacter and Pusillimonas as biomarkers) for fermentation and denitrification. In addition, microbial inoculum slightly hindered humus formation by narrowing the relative abundance of bacteria for humification. Results from this study show that microbial inoculum to feedstock should be carefully regulated to accelerate composting and avoid excessive gaseous emission.
Collapse
Affiliation(s)
- Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rongrong Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
38
|
Yang YR, Guo YX, Wang QY, Hu BY, Tian SY, Yang QZ, Cheng ZA, Chen QJ, Zhang GQ. Impacts of composting duration on physicochemical properties and microbial communities during short-term composting for the substrate for oyster mushrooms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157673. [PMID: 35905953 DOI: 10.1016/j.scitotenv.2022.157673] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
A short-term composting process to prepare substrate is an effective way to cultivate oyster mushrooms (Pleurotus spp.), which can increase the yield of mushrooms and lower the rate of contamination in non-industrialized cultivation. Moreover, it is different from the traditional composting processes for fertilizers and lacks systematic study, such as microbial succession and compost quality. In this study, a series of different tests of composting duration (0, 2, 4 and 5 d) were performed. A composting duration of 4-5 d over 58 °C was suitable for mushroom cultivation based on the biological efficiency (BE) range of 69.76-73.41 % and the contamination rate of 0 %. The content of total carbon (TC) continuously decreased during composting, while the content of total nitrogen (TN) reacted in an opposite matter. The final TN and C/N ratios were 1.89 % and 28/1, respectively, which fell well within the optimal range of nutritional requirements for oyster mushroom cultivation. The composting bacteria were more diverse than the fungal species. Caldibacillus, Thermobispora, Thermopolyspora, Thermobacillus and Ureibacillus were the predominant bacterial genera during the thermophilic stage. Co-occurrence patterns of microbial communities and physicochemical properties were performed using a network analysis, which indicated that bacteria can play more efficient roles than fungi in the degradation of organic matter. The structural equation model showed that composting duration significantly affected bacterial diversity, lignocellulose degradation rates, and BE. The correlations between bioinformatics parameters with composting characters and agronomic traits were determined by the Mantel test and showed that the induction of bacterial diversity over time rapidly activated carbon metabolism during short-term composting. This study provides a new idea of agro-waste composting for mushroom cultivation.
Collapse
Affiliation(s)
- Ya-Ru Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yu-Xin Guo
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qiu-Ying Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Bo-Yang Hu
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Sen-Ya Tian
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qi-Zhi Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zi-An Cheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qing-Jun Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| | - Guo-Qing Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
39
|
Liu GH, Liu DQ, Wang P, Chen QQ, Che JM, Wang JP, Li WJ, Zhou SG. Temperature drives the assembly of Bacillus community in mangrove ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157496. [PMID: 35870580 DOI: 10.1016/j.scitotenv.2022.157496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Mangroves are located at the interface of terrestrial and marine environments, and experience fluctuating conditions, creating a need to better explore the relative role of the bacterial community. Bacillus has been reported to be the dominant group in the mangrove ecosystem and plays a key role in maintaining the biodiversity and function of the mangrove ecosystem. However, studies on bacterial and Bacillus community across four seasons in the mangrove ecosystem are scarce. Here, we employed seasonal large-scale sediment samples collected from the mangrove ecosystem in southeastern China and utilized 16S rRNA gene amplicon sequencing to reveal bacterial and Bacillus community structure changes across seasons. Compared with the whole bacterial community, we found that Bacillus community was greatly affected by season (temperature) rather than site. The key factors, NO3-N and NH4-N showed opposite interaction with superabundant taxa Bacillus taxa (SAT) and three rare Bacillus taxa including high rare taxa (HRT), moderate rare taxa (MRT) and low rare taxa (LRT). Network analysis suggested the co-occurrence of Bacillus community and Bacillus-bacteria, and revealed SAT had closer relationship compared with rare Bacillus taxa. HRT might act crucial response during the temperature decreasing process across seasons. This study fills a gap in addressing the assembly of Bacillus community and their role in maintaining microbial diversity and function in mangrove ecosystem.
Collapse
Affiliation(s)
- Guo-Hong Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Ding-Qi Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qian-Qian Chen
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jian-Mei Che
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jie-Ping Wang
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province 350002, PR China.
| |
Collapse
|
40
|
Chen L, Li W, Zhao Y, Zhang S, Meng L. Evaluation of bacterial agent/nitrate coupling on enhancing sulfur conversion and bacterial community succession during aerobic composting. BIORESOURCE TECHNOLOGY 2022; 362:127848. [PMID: 36031129 DOI: 10.1016/j.biortech.2022.127848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the coupling effects of sodium nitrate (SN) and sulfur-oxidizing bacterial agent (BA) on oxidizing reduced-state sulfur and altering the bacteria community in SN, BA, and SN + BA treatments, respectively. Results revealed that bacterial inoculation prolonged the thermophilic period, facilitated organics degradation and compost humification. Compared to the control group, SN + BA treatment reduced the cumulative H2S emissions and sulfur loss rate by 55.1 % and 15.7 %, respectively, and the nitrate reduction (used as electron donors) efficiency was enhanced by 7.8 % during the first week of composting. Bacterial inoculation altered the diversities and structure of the bacterial community by increasing the relative abundances of thermotolerant bacteria. Correlation analyses showed that the dominant phyla involved in nitrate-based sulfur-oxidizing reactions could be Firmicutes and Synergistota. These findings suggested the application viability of SN and BA to regulate the sulfur biotransformation and bacterial community in composting.
Collapse
Affiliation(s)
- Li Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yi Zhao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shumei Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
41
|
Wen X, Sun R, Cao Z, Huang Y, Li J, Zhou Y, Fu M, Ma L, Zhu P, Li Q. Synergistic metabolism of carbon and nitrogen: Cyanate drives nitrogen cycle to conserve nitrogen in composting system. BIORESOURCE TECHNOLOGY 2022; 361:127708. [PMID: 35907603 DOI: 10.1016/j.biortech.2022.127708] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
In this study, HCO3- was used as a co-substrate for cyanate metabolism to investigate its effect on nitrogen cycle in composting. The results showed that the carbamate content in experimental group (T) with HCO3- added was higher than that in control group (CP) during cooling period. Actinobacteria and Proteobacteria were the dominant phyla for cyanate metabolism, and the process was mediated by cyanase gene (cynS). The cynS abundance was 16.6% higher in T than CP. In cooling period, the nitrification gene hao in T was 8.125% higher than CP. Denitrification genes narG, narH, nirK, norB, and nosZ were 25.64%, 35.33%, 45.93%, 36.62%, and 36.12% less than CP, respectively. The nitrogen fixation gene nifH in T was consistently higher than CP in the late composting period. Conclusively, cyanate metabolism drove the nitrogen cycle by promoting nitrification, nitrogen fixation, and inhibiting denitrification, which improved nitrogen retention and compost quality.
Collapse
Affiliation(s)
- Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ru Sun
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ziyi Cao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yucheng Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Mengxin Fu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Liangcai Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
42
|
Ding S, Huang W, Xu W, Wu Y, Zhao Y, Fang P, Hu B, Lou L. Improving kitchen waste composting maturity by optimizing the processing parameters based on machine learning model. BIORESOURCE TECHNOLOGY 2022; 360:127606. [PMID: 35835416 DOI: 10.1016/j.biortech.2022.127606] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
As a novel analytical method based on big data, machine learning model can explore the relationship between different parameters and draw universal conclusions, which was used to predict composting maturity and identify key parameters in this study. The results showed that the Stacking model exhibited excellent prediction accuracy. SHapley Additive exPlanations (SHAP) and Partial Dependence Analysis (PDA) were performed to evaluate the importance of different parameters as well as their optimal interval. Optimal starting conditions should be maintained in the mesophilic state (temperature: 30-45℃, moisture content: 55-65%, pH: 6.3-8.0), and nutrients (total nitrogen > 2.3%, total organic carbon > 35%) should be adjusted in the thermophilic state. Experiments revealed that model-based optimization strategies could improve composting maturity because they could optimize compost microbial flora and perform complex carbon cycle functions. In conclusion, this study provides new insights into the enhancement of the composting process.
Collapse
Affiliation(s)
- Shang Ding
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Wuji Huang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Weijian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Yiqu Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Ping Fang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China.
| |
Collapse
|
43
|
Inhibitory Effects of the Addition of KNO 3 on Volatile Sulfur Compound Emissions during Sewage Sludge Composting. Bioengineering (Basel) 2022; 9:bioengineering9060258. [PMID: 35735501 PMCID: PMC9220069 DOI: 10.3390/bioengineering9060258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
Odor released from the sewage sludge composting process often has a negative impact on the sewage sludge treatment facility and becomes a hindrance to promoting compost technology. This study investigated the effect of adding KNO3 on the emissions of volatile sulfur compounds, such as hydrogen sulfide (H2S), dimethyl sulfide (DMS), and carbon disulfide (CS2), during sewage sludge composting and on the physicochemical properties of compost products, such as arylsulfatase activity, available sulfur, total sulfur, moisture content, and germination index. The results showed that the addition of KNO3 could inhibit the emissions of volatile sulfur compounds during composting. KNO3 can also increase the heating rate and peak temperature of the compost pile and reduce the available sulfur loss. The addition of 4% and 8% KNO3 had the best effect on H2S emissions, and it reduced the emissions of H2S during composting by 19.5% and 20.0%, respectively. The addition of 4% KNO3 had the best effect on DMS and CS2 emissions, and it reduced the emissions of DMS and CS2 by 75.8% and 63.0%, respectively. Furthermore, adding 4% KNO3 had the best effect from the perspective of improving the germination index of the compost.
Collapse
|
44
|
Liu Z, Wei Y, Li J, Ding GC. Integrating 16S rRNA amplicon metagenomics and selective culture for developing thermophilic bacterial inoculants to enhance manure composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:357-365. [PMID: 35436715 DOI: 10.1016/j.wasman.2022.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Composting is an important method for treating and recycling organic waste, and the use of microbial inoculants can increase the efficiency of composting. Herein, we illustrate an approach that integrate 16S rRNA amplicon metagenomics and selective culture of thermophilic bacteria for the development of inoculants to improve manure composting. The 16S rRNA amplicon sequencing analysis revealed that Firmicutes and Actinobacteria were dominant in the composting mixture, and that different microbial hubs succeeded during the thermophilic stage. All isolated thermophilic bacteria were affiliated with the order Bacillales, such as Geobacillus, Bacillus, and Aeribacillus. These isolated thermophilic bacteria were grouped into 11 phylotypes, which shared >99% sequence identity to 0.15% to 5.32% of 16S rRNA reads by the amplicon sequencing. Three of these phylotypes transiently enriched during the thermophilic stage. Six thermophilic bacteria were selected from the three phylotypes to obtain seven microbial inoculants. Five out of seven of the microbial inoculants enhanced the thermophilic stage of composting by 16.9% to 52.2%. Three-dimensional excitation emission matrix analysis further revealed that two inoculants (Thermoactinomyces intermedius and Ureibacillus thermophilus) stimulated humification. Additionally, the 16S rRNA amplicon sequencing analysis revealed that inoculation with thermophilic bacteria enhanced the succession of the microbial community during composting. In conclusion, 16S rRNA amplicon metagenomics is a useful tool for the development of microbial inoculants to enhance manure composting.
Collapse
Affiliation(s)
- Zixiu Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128, Jiangsu Province, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128, Jiangsu Province, China
| | - Guo-Chun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, 215128, Jiangsu Province, China.
| |
Collapse
|
45
|
Gao X, Yang F, Yan Z, Zhao J, Li S, Nghiem L, Li G, Luo W. Humification and maturation of kitchen waste during indoor composting by individual households. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152509. [PMID: 34968605 DOI: 10.1016/j.scitotenv.2021.152509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
This study evaluated the humification and maturation of kitchen waste during indoor composting by individual households. In total, 50 households were randomly selected to participate in this study using kitchen waste of their own for indoor composting using a standard 20 L sealed composter. Garden waste was also collected from their local communities and used as the bulking agent. Both effective microorganisms and lime were inoculated at 1% (wet weight) of raw composting materials to facilitate the composting initiation. Results from this study demonstrate for the first time that ordinary residents could correctly follow the instruction to operate indoor composting at household level to manage urban kitchen waste at source. Overall, 30 households provided valid and complete data to show an increase (to ~50 °C) and then decrease in temperature in response to the decline of biodegradable organic substances during indoor composting. The compost physiochemical characteristics varied significantly toward maturation with an increase in seed germination index to above 50% for most households. Furthermore, organic humification occurred continuously during indoor composting as indicated by the enhanced content of humic substances, degree of polymerization, and spectroscopic characteristics.
Collapse
Affiliation(s)
- Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feiyu Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaowei Yan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Zhao
- China Soong Ching Ling Science and Culture Centre for Young People, Beijing 100089, China
| | - Shiyu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Long Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
46
|
Qi C, Zhang Y, Jia S, Wang R, Han Y, Luo W, Li G, Li Y. Effects of digestion duration on energy efficiency, compost quality, and carbon flow during solid state anaerobic digestion and composting hybrid process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151363. [PMID: 34740669 DOI: 10.1016/j.scitotenv.2021.151363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effects of anaerobic digestion duration on methane yield, net energy production, and humification of compost during solid state anaerobic digestion (SSAD) and composting hybrid process for food waste treatment. Carbon flow and balance were used to evaluate organic methanation and humification inclination of carbon in the whole SSAD and aerobic composting system. Results showed that SSAD for 15 (AD-15) and 21 days (AD-21) could increase net energy production and degraded organic matter contained in the mixtures to achieve high biological stability. The cumulative net energy production between the AD-15 and AD-21 treatments was not significantly different, which was 8.3% higher than that in SSAD for 30 days (AD-30). Furthermore, digestate (AD-15 and AD-21) composting for 3 days reached maturity and absence of phytotoxic substances. Carbon fixed into humus of the AD-21 treatment (11.6%) was not significantly different from that of AD-15 (12.0%). However, the total amount of carbon fixed into compost in AD-15 was 6.6% higher than that in AD-21. Moreover, the CO2 -C loss of the AD-15 treatment (22.9%) was slightly higher than that of AD-21 (20.6%). Thus, AD-21 treatment achieved the most effective use of carbon during SSAD and composting hybrid process for food waste treatment. These results could provide valuable insights for the effective management of food waste in practice.
Collapse
Affiliation(s)
- Chuanren Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiran Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Sumeng Jia
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiyu Han
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University and Suzhou ViHong Biotechnology, Wuzhong District, 215128, Jiangsu Province, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Yangyang Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|