1
|
Ariana A, Cozzarelli I, Danforth C, McDevitt B, Rosofsky A, Vorhees D. Pathways for Potential Exposure to Onshore Oil and Gas Wastewater: What We Need to Know to Protect Human Health. GEOHEALTH 2025; 9:e2024GH001263. [PMID: 40182626 PMCID: PMC11966568 DOI: 10.1029/2024gh001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
Produced water is a chemically complex waste stream generated during oil and gas development. Roughly four trillion liters were generated onshore in the United States in 2021 (ALL Consulting, 2022, https://www.gwpc.org/wp-content/uploads/2021/09/2021_Produced_Water_Volumes.pdf). Efforts are underway to expand historic uses of produced water to offset freshwater needs in water-stressed regions, avoid induced seismic activity associated with its disposal, and extract commodities. Understanding the potential exposures from current and proposed produced water uses and management practices can help to inform health-protective practices. This review summarizes what is known about potential human exposure to produced water from onshore oil and gas development in the United States. We synthesize 236 publications to create a conceptual model of potential human exposure that illustrates the current state of scientific inquiry and knowledge. Exposure to produced water can occur following its release to the environment through spills or leaks during its handling and management. Exposure can also arise from authorized releases, including permitted discharges to surface water, crop irrigation, and road treatment. Knowledge gaps include understanding the variable composition and toxicity of produced water released to the environment, the performance of treatment methods, migration pathways through the environment that can result in human exposure, and the significance of the exposures for human and ecosystem health. Reducing these uncertainties may help in realizing the benefits of produced water use while simultaneously protecting human health.
Collapse
Affiliation(s)
| | | | | | - Bonnie McDevitt
- Geology, Energy & Minerals Science CenterU.S. Geological SurveyRestonVAUSA
| | | | | |
Collapse
|
2
|
Saravani MJ, Noori R, Jun C, Kim D, Bateni SM, Kianmehr P, Woolway RI. Predicting Chlorophyll- a Concentrations in the World's Largest Lakes Using Kolmogorov-Arnold Networks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1801-1810. [PMID: 39815819 DOI: 10.1021/acs.est.4c11113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Accurate prediction of chlorophyll-a (Chl-a) concentrations, a key indicator of eutrophication, is essential for the sustainable management of lake ecosystems. This study evaluated the performance of Kolmogorov-Arnold Networks (KANs) along with three neural network models (MLP-NN, LSTM, and GRU) and three traditional machine learning tools (RF, SVR, and GPR) for predicting time-series Chl-a concentrations in large lakes. Monthly remote-sensed Chl-a data derived from Aqua-MODIS spanning September 2002 to April 2024 were used. The models were evaluated based on their forecasting capabilities from March 2024 to August 2024. KAN consistently outperformed others in both test and forecast (unseen data) phases and demonstrated superior accuracy in capturing trends, dynamic fluctuations, and peak Chl-a concentrations. Statistical evaluation using ranking metrics and critical difference diagrams confirmed KAN's robust performance across diverse study sites, further emphasizing its predictive power. Our findings suggest that the KAN, which leverages the KA representation theorem, offers improved handling of nonlinearity and long-term dependencies in time-series Chl-a data, outperforming neural network models grounded in the universal approximation theorem and traditional machine learning algorithms.
Collapse
Affiliation(s)
| | - Roohollah Noori
- Graduate Faculty of Environment, University of Tehran, Tehran 1417853111, Iran
| | - Changhyun Jun
- School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongkyun Kim
- Department of Civil and Environmental Engineering, Hongik University, Mapo-gu, Seoul 2639, South Korea
| | - Sayed M Bateni
- Department of Civil, Environmental and Construction Engineering, and Water Resources Research Center, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, Pretoria 392, South Africa
| | - Peiman Kianmehr
- Department of Civil Engineering, American University in Dubai, Dubai 28282, United Arab Emirates
| | | |
Collapse
|
3
|
Liu J, Xu X, Qi Y, Lin N, Bian J, Wang S, Zhang K, Zhu Y, Liu R, Zou C. A Copula-based spatiotemporal probabilistic model for heavy metal pollution incidents in drinking water sources. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117110. [PMID: 39405977 DOI: 10.1016/j.ecoenv.2024.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Water pollution incidents pose a significant threat to the safety of drinking water supplies and directly impact the quality of life of the residents when multiple pollutants contaminate drinking water sources. The majority of drinking water sources in China are derived from rivers and lakes that are often significantly impacted by water pollution incidents. To tackle the internal mechanisms between water quality and quantity, in this study, a Copula-based spatiotemporal probabilistic model for drinking water sources at the watershed scale is proposed. A spatiotemporal distribution simulation model was constructed to predict the spatiotemporal variations for water discharge and pollution to each drinking water source. This method was then applied to the joint probabilistic assessment for the entire Yangtze River downstream watershed in Nanjing City. The results demonstrated a significant negative correlation between water discharge and pollutant concentration following a water emergency. The water quantity-quality joint probability distribution reached the highest value (0.8523) after 14 hours of exposure during the flood season, much higher than it was (0.4460) during the dry season. As for the Yangtze River downstream watershed, five key risk sources (N1-N5) and two high-exposure drinking water sources (W3-W4; AEI=1) should be paid more attention. Overall, this research highlights a comprehensive mode between water quantity and quality for drinking water sources to cope with accidental water pollution.
Collapse
Affiliation(s)
- Jing Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Xiaojuan Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Yushun Qi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Naifeng Lin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Jinwei Bian
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Saige Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, China; Advancing Systems Analysis (ASA) Program International Institute for Applied Systems Analysis, Laxenburg 2361, Austria.
| | - Kun Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Yingying Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Renzhi Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Changxin Zou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| |
Collapse
|
4
|
Tarazona Y, Wang HB, Hightower M, Xu P, Zhang Y. Benchmarking produced water treatment strategies for non-toxic effluents: Integrating thermal distillation with granular activated carbon and zeolite post-treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135549. [PMID: 39173380 DOI: 10.1016/j.jhazmat.2024.135549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The management of produced water (PW) generated during oil and gas operations requires effective treatment and comprehensive chemical and toxicological assessment to reduce the environmental risks associated with reuse or discharge. This study evaluated a treatment train that included a low-temperature thermal distillation pilot system followed by granular activated carbon (GAC) and zeolite post-treatment for processing hypersaline Permian Basin PW. Our study provides a unique and comprehensive assessment of the treatment efficiency considering a targeted chemical scheme together with whole effluent toxicity (WET) tests across four trophic levels regarding aquatic critical receptors of concern (ROC): Raphidocelis subcapitata, Vibrio fischeri, Ceriodaphnia dubia, and Danio rerio. The distillate from the thermal distillation process met various numeric discharge standards for salinity and major ions. However, it did not meet toxicity requirements established by the United States National Pollutant Discharge Elimination System program. Subsequent post-treatment using GAC and zeolite reduced the concentration of potential stressors, including volatile organics, NH3, Cd, Cr, Zn, and Mn in the final effluent to below detection limits. This resulted in a consistent toxicity reduction across all WET tests, with no observable adverse effects for R. subcapitata, C. dubia, and D. rerio (no observed effect concentration >100%), and V. fischeri effects reduced to 19%. This study realizes the feasibility of treating PW to non-toxic levels and meeting reuse and discharge requirements. It underscores the importance of implementing integrated treatment trains to remove the contaminants of concern and provides a systematic decision framework to predict and monitor environmental risks associated with PW reuse.
Collapse
Affiliation(s)
- Yeinner Tarazona
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Haoyu B Wang
- The University of Washington, Seattle, WA 98195, USA
| | - Mike Hightower
- New Mexico Produced Water Consortium, New Mexico State University, Las Cruces, NM 88003, USA
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
5
|
Eyitayo SI, Okere CJ, Hussain A, Gamadi T, Watson MC. Synergistic sustainability: Future potential of integrating produced water and CO 2 for enhanced carbon capture, utilization, and storage (CCUS). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119713. [PMID: 38042083 DOI: 10.1016/j.jenvman.2023.119713] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
Produced water (PW) and carbon dioxide (CO2) are traditionally considered waste streams the oil and gas industry and other sectors generate. However, these waste products are examples of "waste to wealth" products with a dual nature of being valuable products or disposable byproducts. PW contains various elements and compounds that can be extracted and used in the manufacturing or chemical processing industry. Concentrated brine is generated from PW and can be used as feedstock in chemical processes. On the other hand, excess CO2 produced in various industrial processes needs to be sequestered either through non-conversion processes, such as enhanced oil recovery and storage in geological formations, or through CO2 conversion processes into fuels, polymers, and chemicals. While there is growing interest in reusing these products individually, no studies have explored the opportunities for producing additional chemicals or valuable products by combining CO2 and PW waste streams (CO2-PW). This study identifies the potential resources that can be generated by combining the beneficial reuse of PW and CO2 conversion processes. CO2-PW chemical conversion presents an opportunity to expand the carbon capture, utilization, and storage (CCUS) mix while reducing the environmental impact of disposing of these byproducts. The advantages of utilizing these waste streams for diverse applications are linked with the sustainable management of PW and decarbonization, contributing positively to a more responsible approach to resource management and climate change mitigation.
Collapse
Affiliation(s)
- Stella I Eyitayo
- Bob L. Herd Department of Petroleum Engineering, Texas Tech University, TX, USA.
| | - Chinedu J Okere
- Bob L. Herd Department of Petroleum Engineering, Texas Tech University, TX, USA
| | - Athar Hussain
- Bob L. Herd Department of Petroleum Engineering, Texas Tech University, TX, USA
| | - Talal Gamadi
- Bob L. Herd Department of Petroleum Engineering, Texas Tech University, TX, USA
| | - Marshall C Watson
- Bob L. Herd Department of Petroleum Engineering, Texas Tech University, TX, USA
| |
Collapse
|
6
|
Edwards TM, Puglis HJ, Kent DB, Durán JL, Bradshaw LM, Farag AM. Ammonia and aquatic ecosystems - A review of global sources, biogeochemical cycling, and effects on fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167911. [PMID: 37871823 DOI: 10.1016/j.scitotenv.2023.167911] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
The purpose of this review is to better understand the full life cycle and influence of ammonia from an aquatic biology perspective. While ammonia has toxic properties in water and air, it also plays a central role in the biogeochemical nitrogen (N) cycle and regulates mechanisms of normal and abnormal fish physiology. Additionally, as the second most synthesized chemical on Earth, ammonia contributes economic value to many sectors, particularly fertilizers, energy storage, explosives, refrigerants, and plastics. But, with so many uses, industrial N2-fixation effectively doubles natural reactive N concentrations in the environment. The consequence is global, with excess fixed nitrogen driving degradation of soils, water, and air; intensifying eutrophication, biodiversity loss, and climate change; and creating health risks for humans, wildlife, and fisheries. Thus, the need for ammonia research in aquatic systems is growing. In response, we prepared this review to better understand the complexities and connectedness of environmental ammonia. Even the term "ammonia" has multiple meanings. So, we have clarified the nomenclature, identified units of measurement, and summarized methods to measure ammonia in water. We then discuss ammonia in the context of the N-cycle, review its role in fish physiology and mechanisms of toxicity, and integrate the effects of human N-fixation, which continuously expands ammonia's sources and uses. Ammonia is being developed as a carbon-free energy carrier with potential to increase reactive nitrogen in the environment. With this in mind, we review the global impacts of excess reactive nitrogen and consider the current monitoring and regulatory frameworks for ammonia. The presented synthesis illustrates the complex and interactive dynamics of ammonia as a plant nutrient, energy molecule, feedstock, waste product, contaminant, N-cycle participant, regulator of animal physiology, toxicant, and agent of environmental change. Few molecules are as influential as ammonia in the management and resilience of Earth's resources.
Collapse
Affiliation(s)
- Thea M Edwards
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA.
| | - Holly J Puglis
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Douglas B Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, CA, USA
| | - Jonathan López Durán
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Lillian M Bradshaw
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Aïda M Farag
- U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY, USA
| |
Collapse
|
7
|
Rao KS, Tirth V, Almujibah H, Alshahri AH, Hariprasad V, Senthilkumar N. Optimization of water reuse and modelling by saline composition with nanoparticles based on machine learning architectures. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2793-2805. [PMID: 37318924 PMCID: wst_2023_161 DOI: 10.2166/wst.2023.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water is a necessary resource that enables the existence of all life forms, including humans. Freshwater usage has become increasingly necessary in recent years. Facilities for treating seawater are less dependable and effective. Deep learning methods have the ability to improve salt particle analysis in saltwater's accuracy and efficiency, which will enhance the performance of water treatment plants. This research proposes a novel technique in optimization of water reuse with nanoparticle analysis based on machine learning architecture. Here, the optimization of water reuse is carried out based on nanoparticle solar cell for saline water treatment and the saline composition has been analyzed using a gradient discriminant random field. Experimental analysis is carried out in terms of specificity, computational cost, kappa coefficient, training accuracy, and mean average precision for various tunnelling electron microscope (TEM) image datasets. The bright-field TEM (BF-TEM) dataset attained a specificity of 75%, kappa coefficient of 44%, training accuracy of 81%, and mean average precision of 61%, whereas the annular dark-field scanning TEM (ADF-STEM) dataset produced specificity of 79%, kappa coefficient of 49%, training accuracy of 85%, and mean average precision of 66% as compared with the existing artificial neural network (ANN) approach.
Collapse
Affiliation(s)
- Koppula Srinivas Rao
- Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad, Telangana, India
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, Asir 61421, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, P.O. Box 9004, Abha, Asir 61413, Saudi Arabia
| | - Hamad Almujibah
- Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif City 21974, Saudi Arabia
| | - Abdullah H Alshahri
- Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif City 21974, Saudi Arabia
| | - V Hariprasad
- Department of Aerospace Engineering, Jain (Deemed-to-be) University, Jain Global Campus, Jakkasandra Post, Kanakapura 562112, India
| | - N Senthilkumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, India E-mail:
| |
Collapse
|
8
|
Analysis of Regulatory Framework for Produced Water Management and Reuse in Major Oil- and Gas-Producing Regions in the United States. WATER 2022. [DOI: 10.3390/w14142162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The rapid development of unconventional oil and gas (O&G) extraction around the world produces a significant amount of wastewater that requires appropriate management and disposal. Produced water (PW) is primarily disposed of through saltwater disposal wells, and other reuse/disposal methods include using PW for hydraulic fracturing, enhanced oil recovery, well drilling, evaporation ponds or seepage pits within the O&G field, and transferring PW offsite for management or reuse. Currently, 1–2% of PW in the U.S. is used outside the O&G field after treatment. With the considerable interest in PW reuse to reduce environmental implications and alleviate regional water scarcity, it is imperative to analyze the current regulatory framework for PW management and reuse. In the U.S., PW is subject to a complex set of federal, state, and sometimes local regulations to address the wide range of PW management, construction, and operation practices. Under the supervision of the U.S. Environment Protection Agency (U.S. EPA), different states have their own regulatory agencies and requirements based on state-specific practices and laws. This study analyzed the regulatory framework in major O&G-producing regions surrounding the management of PW, including relevant laws and jurisdictional illustrations of water rules and responsibilities, water quality standards, and PW disposal and current/potential beneficial reuse up to early 2022. The selected eastern states (based on the 98th meridian designated by the U.S. EPA as a tool to separate discharge permitting) include the Appalachian Basin (Marcellus and Utica shale areas of Pennsylvania, Ohio, and West Virginia), Oklahoma, and Texas; and the western states include California, Colorado, New Mexico, and Wyoming. These regions represent different regulations; climates; water quantities; quality diversities; and geologic, geographic, and hydrologic conditions. This review is particularly focused on the water quality standards, reuse practices and scenarios, risks assessment, knowledge gaps, and research needs for the potential reuse of treated PW outside of O&G fields. Given the complexity surrounding PW regulations and rules, this study is intended as preliminary guidance for PW management, and for identifying the knowledge gaps and research needs to reduce the potential impacts of treated PW reuse on the environment and public health. The regulations and experiences learned from these case studies would significantly benefit other states and countries with O&G sources for the protection of their environment and public health.
Collapse
|
9
|
Predicting Rare Earth Element Potential in Produced and Geothermal Waters of the United States via Emergent Self-Organizing Maps. ENERGIES 2022. [DOI: 10.3390/en15134555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This work applies emergent self-organizing map (ESOM) techniques, a form of machine learning, in the multidimensional interpretation and prediction of rare earth element (REE) abundance in produced and geothermal waters in the United States. Visualization of the variables in the ESOM trained using the input data shows that each REE, with the exception of Eu, follows the same distribution patterns and that no single parameter appears to control their distribution. Cross-validation, using a random subsample of the starting data and only using major ions, shows that predictions are generally accurate to within an order of magnitude. Using the same approach, an abridged version of the U.S. Geological Survey Produced Waters Database, Version 2.3 (which includes both data from produced and geothermal waters) was mapped to the ESOM and predicted values were generated for samples that contained enough variables to be effectively mapped. Results show that in general, produced and geothermal waters are predicted to be enriched in REEs by an order of magnitude or more relative to seawater, with maximum predicted enrichments in excess of 1000-fold. Cartographic mapping of the resulting predictions indicates that maximum REE concentrations exceed values in seawater across the majority of geologic basins investigated and that REEs are typically spatially co-associated. The factors causing this co-association were not determined from ESOM analysis, but based on the information currently available, REE content in produced and geothermal waters is not directly controlled by lithology, reservoir temperature, or salinity.
Collapse
|
10
|
Spatiotemporal Analysis of Produced Water Demand for Fit-For-Purpose Reuse—A Permian Basin, New Mexico Case Study. WATER 2022. [DOI: 10.3390/w14111735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study created a framework for assessing the spatial and temporal distribution of the supply and demand of four potential produced water (PW) reuse options: agriculture, dust suppression, power generation, and river flow augmentation using Eddy and Lea counties in the southeastern New Mexico Permian Basin as a case study. Improving the PW management in the oil and gas industry is important in areas with limited water resources and increasing restrictions on PW disposal. One option in the PW management portfolio is fit-for-purpose reuse, but a lack of adequate information on PW quality, volumes, and the spatiotemporal distribution of PW supply and demand precludes its reuse. Using the framework, we determined that a 1.1-mile grid cell for data aggregation is a sufficient spatial scale for capturing the granular data needed for PW management decisions. The annual available PW supply for the two counties was estimated to be 45,460,875 m3 (36,870 acre-feet). The annual cumulative estimated demand was 647,656,261 m3 (525,064 acre-feet) for the four potential use cases—far exceeding PW supply. The maps generated using the framework illustrated that much of the supply and demand are spatially dispersed. The spatiotemporal analysis framework provides a generic methodology that can be used for PW management in other basins or for assessing alternative waters at the local and regional scales where management occurs.
Collapse
|
11
|
Jiang W, Xu X, Hall R, Zhang Y, Carroll KC, Ramos F, Engle MA, Lin L, Wang H, Sayer M, Xu P. Characterization of produced water and surrounding surface water in the Permian Basin, the United States. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128409. [PMID: 35149501 DOI: 10.1016/j.jhazmat.2022.128409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
A thorough understanding of produced water (PW) quality is critical to advance the knowledge and tools for effective PW management, treatment, risk assessment, and feasibility for beneficial reuse outside the oil and gas industry. This study provides the first step to better understand PW quality to develop beneficial reuse programs that are protective of human health and the environment. In total, 46 PW samples from unconventional operations in the Permian Basin and ten surface water samples from the Pecos River in New Mexico were collected for quantitative target analyses of more than 300 constituents. Water quality analyses of Pecos River samples could provide context and baseline information for the potential discharge and reuse of treated PW in this area. Temporal PW and river water quality changes were monitored for eight months in 2020. PW samples had total dissolved solids (TDS) concentrations ranging from 100,800-201,500 mg/L. Various mineral salts, metals, oil and grease, volatile and semi-volatile organic compounds, radionuclides, ammonia, hydraulic fracturing additives, and per- and polyfluoroalkyl substances were detected at different concentrations. Chemical characterization of organic compounds found in Pecos River water showed no evidence of PW origin. Isometric log-ratio Na-Cl-Br analysis showed the salinity in the Pecos River samples appeared to be linked to an increase in natural shallow brine inputs. This study outlines baseline analytical information to advance PW research by describing PW and surrounding surface water quality in the Permian Basin that will assist in determining management strategies, treatment methods, potential beneficial reuse applications, and potential environmental impacts specific to intended beneficial use of treated PW.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Xuesong Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Ryan Hall
- NGL Partners LP, Santa Fe, NM 87501, United States
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Kenneth C Carroll
- Department of Plant and Environmental Science, New Mexico State University, Las Cruces, NM, United States
| | - Frank Ramos
- Department of Geological Sciences, New Mexico State University, Las Cruces, NM 88003, United States
| | - Mark A Engle
- Department of Earth, Environmental and Resource Sciences, The University of Texas at El Paso, El Paso, TX 79968, United States
| | - Lu Lin
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | | | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States.
| |
Collapse
|
12
|
Hu L, Jiang W, Xu X, Wang H, Carroll KC, Xu P, Zhang Y. Toxicological characterization of produced water from the Permian Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152943. [PMID: 35007582 DOI: 10.1016/j.scitotenv.2022.152943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/18/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Produced water (PW) is a hypersaline waste stream generated from the shale oil and gas industry, consisting of numerous anthropogenic and geogenic compounds. Despite prior geochemical characterization, the comprehensive toxicity assessment is lacking for evaluating treatment technologies and the beneficial use of PW. In this study, a suite of in vitro toxicity assays using various aquatic organisms (luminescent bacterium Vibrio fischeri, fish gill cell line RTgill-W1, and microalgae Scenedesmus obliquus) were developed to investigate the toxicological characterizations of PW from the Permian Basin. The exposure to PW, PW inorganic fraction (PW-IF), and PW salt control (PW-SC) at 30-50% dilutions caused significant toxicological effects in all model species, revealing the high salinity was the foremost toxicological driver in PW. In addition, the toxicity level of PW was usually higher than that of PW-IF, suggesting that organic contaminants might also play a critical role in PW toxicity. When comparing the observed toxicity with associated chemical characterizations in different PW samples, strong correlations were found between them since higher concentrations of contaminants could generally result in higher toxicity towards exposed organisms. Furthermore, the toxicity results from the pretreated PW indicated that those in vitro toxicity assays had different sensitives to the chemical components present in PW. As expected, the combination of multiple pretreatments could lead to a more significant decrease in toxicity compared to the single pretreatment since the mixture of contaminants in PW might exhibit synergistic toxicity. Overall, the current work is expected to enhance our understanding of the potential toxicological impacts of PW to aquatic ecosystems and the relationships between the chemical profiles and observed toxicity in PW, which might be conducive to the establishment of monitoring, remediation, treatment, and reuse protocols for PW.
Collapse
Affiliation(s)
- Lei Hu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Wenbin Jiang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Xuesong Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Kenneth C Carroll
- Department of Plant and Environmental Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|