1
|
Zhao S, Zheng Q, Wang H, Fan X. Nitrogen in landfills: Sources, environmental impacts and novel treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171725. [PMID: 38492604 DOI: 10.1016/j.scitotenv.2024.171725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Nitrogen (N) accumulation in landfills is a pressing environmental concern due to its diverse sources and significant environmental impacts. However, there is relatively limited attention and research focus on N in landfills as it is overshadowed by other more prominent pollutants. This study comprehensively examines the sources of N in landfills, including food waste contributing to 390 million tons of N annually, industrial discharges, and sewage treatment plant effluents. The environmental impacts of N in landfills are primarily manifested in N2O emissions and leachate with high N concentrations. To address these challenges, this study presents various mitigation and management strategies, including N2O reduction measures and novel NH4+ removal techniques, such as electrochemical technologies, membrane separation processes, algae-based process, and other advanced oxidation processes. However, a more in-depth understanding of the complexities of N cycling in landfills is required, due to the lack of long-term monitoring data and the presence of intricate interactions and feedback mechanisms. To ultimately achieve optimized N management and minimized adverse environmental impacts in landfill settings, future prospects should emphasize advancements in monitoring and modeling technologies, enhanced understanding of microbial ecology, implementation of circular economy principles, application of innovative treatment technologies, and comprehensive landfill design and planning.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Qiteng Zheng
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Hao Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xinyao Fan
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
2
|
Liang X, Zhou W, Yang R, Zhang D, Wang H, Li Q, Qi Z, Li Y, Lin W. Microbial mechanism of biochar addition to reduce N 2O emissions from soilless substrate systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119326. [PMID: 37844399 DOI: 10.1016/j.jenvman.2023.119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
The soilless peat-based substrate partially solves the global soil problem in greenhouse vegetable production. However, it still produces serious N2O emissions due to the application of nutrient solutions. The pyrolysis biochar is regarded as an effective measure to reduce soil N2O emissions. However, the effect and mechanism of biochar on N2O emissions from the soilless substrate remain unknown. Therefore, this study set up six treatments by adjusting the ratio of biochar addition of peat-based substrate: 0% (0BC), 2% (2BC), 4% (4BC), 6% (6BC), 8% (8BC) and 10% (10BC) (v/v). The results showed that compared to the control treatment, N2O emissions reduced by 81%, 71%, 51%, 61%, and 75% in the 2BC, 4BC, 6BC, 8BC and 10BC treatments, respectively. In addition, lettuce yield increased by 10% and 7% in the 2BC and 4BC treatments and decreased by 0.5%, 4% and 6% in the 6BC, 8BC and 10BC treatments, respectively. Combining stable isotope technology, qPCR analysis and high-throughput sequencing, five microbial pathways of N2O production, including bacterial and archaea nitrification (BN and AN), denitrification performed by fungi, denitrifier bacteria and nitrifier bacteria (FD, DD and ND), were roughly distinguished. In addition, the extent of N2O reduction was obtained by δ18O vs.δ15NSP map. For all treatments, overall, the DD process (over 50%) was the main process of N2O production and reduction, while ND and AN processes were almost negligible (less 5%). In detail, the decrease of N2O emissions was caused by decreasing the contribution of FD in the 6BC, 8BC and 10BC treatments and reducing the contribution of BN in the 0BC and 2BC treatments. In addition, biochar addition increased the extent of N2O reduction to N2. In summary, the 2% biochar addition presented the greatest extent of N2O reduction to N2 (83%) and the lowest N2O emissions as well as the highest lettuce yields and nitrogen utilization efficiency. Therefore, 2% biochar is deemed the most optimal addition to the peat-based substrate.
Collapse
Affiliation(s)
- Xiaofeng Liang
- College of Mechanical Engineering, Chengdu University, Chengdu, 610106, PR China.
| | - Wanlai Zhou
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China
| | - Rui Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China
| | - Dongdong Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China
| | - Hong Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China
| | - Qiaozhen Li
- Environmental Stable Isotope Lab., Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhiyong Qi
- College of Mechanical Engineering, Chengdu University, Chengdu, 610106, PR China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China
| | - Yuzhong Li
- Environmental Stable Isotope Lab., Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Wei Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, PR China; Environmental Stable Isotope Lab., Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
3
|
Lin W, Li Q, Zhou W, Yang R, Zhang D, Wang H, Li Y, Qi Z, Li Y. Insights into production and consumption processes of nitrous oxide emitted from soilless culture systems by dual isotopocule plot and functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159046. [PMID: 36181829 DOI: 10.1016/j.scitotenv.2022.159046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Soilless culture systems (SCS) play an increasing role in greenhouse vegetable production. In the SCS, soilless substrates serve as the major substitute for soil, supplying nutrients to plants but releasing greenhouse gases into the atmosphere. Remarkably, there is a serious problem of N2O emission due to excessive input of N fertilizer. However, the microbial processes of N2O production and consumption in soilless substrates have been rarely studied resulting in difficultly interpreting for its global warming potential. Therefore, these pathways from two classic soilless substrates under two irrigation patterns were investigated by stable isotope technology combined with qPCR analysis in present study. The results according to the dual isotopocule plot of δ15NSP vs. δ18O showed that the mean contribution of denitrification and the mean extent of N2O reduction of case i (Reduction-Mixing) were 26.2 and 81.2 % for the treatment of peat based substrate under drip irrigation (PD), 47.7 and 70.3 % for the treatment of coir substrate under drip irrigation (CD), 29.0 and 80.8 % for the treatment of peat based substrate under tidal irrigation (PT), and 50.8 and 47.4 % for the treatment of coir substrate under tidal irrigation (CT). These results were also further confirmed by the abundance of major functional genes including AOA amoA, nirK and nosZ. Altogether, N2O emission and its microbial processes are determined by substrate types instead of irrigation patterns. For detail, denitrification dominated in the peat based substrate and nitrification dominated in the coir substrate. Compared to the coir substrate, the peat based substrate had higher abundance of functional genes and stronger denitrification and thus generated more N2O. For the two soilless substrates, moreover, the microbiome replaced the mineral N content as the limiting factor for N2O emission. In the SCS, in summary, the two soilless substrates play an important role in tomato growth, but might suffer from inorganic nutrient surplus and microbial shortage. More importantly, the combined analysis of N2O isotopocule deltas and functional genes is a robust tool and provides reliable conclusions for clarifying the microbial processes of N2O production and consumption, thus it is also recommended for use in environments other than soilless substrates.
Collapse
Affiliation(s)
- Wei Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Environmental Stable Isotope Lab., Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - QiaoZhen Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Environmental Stable Isotope Lab., Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanlai Zhou
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Rui Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Dongdong Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Hong Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Yujia Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Environmental Stable Isotope Lab., Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyong Qi
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Yuzhong Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Environmental Stable Isotope Lab., Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Li C, Wei Z, Yang P, Shan J, Yan X. Conversion from rice fields to vegetable fields alters product stoichiometry of denitrification and increases N 2O emission. ENVIRONMENTAL RESEARCH 2022; 215:114279. [PMID: 36126691 DOI: 10.1016/j.envres.2022.114279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Information about effects of conversion from rice fields to vegetable fields on denitrification process is still limited. In this study, denitrification rate and product ratio (i.e., N2O/(N2O + N2) ratio) were investigated by soil-core incubation based N2/Ar technique in one rice paddy field (RP) and two vegetable fields (VF4 and VF7, 4 and 7 years vegetable cultivating after conversion from rice fields, respectively). Genes related to denitrification and bacterial community composition were quantified to investigate the microbial mechanisms behind the effects of land-use conversion. The results showed that conversion of rice fields to vegetable fields did not significantly change denitrification rate although the abundance of denitrification related genes was significantly reduced by 79.22%-99.84% in the vegetable soils. Whereas, compared with the RP soil, N2O emission rate was significantly (P < 0.05) increased by 53.5 and 1.6 times in the VF4 and VF7 soils, respectively. Correspondingly, the N2O/(N2O + N2) ratio increased from 0.18% (RP soil) to 5.65% and 0.65% in the VF4 and VF7 soils, respectively. These changes were mainly attributed to the lower pH, higher nitrate content, and the altered bacterial community composition in the vegetable soils. Overall, our results showed that conversion of rice fields to vegetable fields increased the N2O emission rate and altered the product ratio of denitrification. This may increase the contribution of land-use conversion to global warming and stratospheric ozone depletion.
Collapse
Affiliation(s)
- Chenglin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Pinpin Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
5
|
Liu C, Mi X, Zhang X, Fan Y, Zhang W, Liao W, Xie J, Gao Z, Roelcke M, Liu H. Impacts of slurry application methods and inhibitors on gaseous emissions and N 2O pathways in meadow-cinnamon soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115560. [PMID: 35738130 DOI: 10.1016/j.jenvman.2022.115560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to evaluate the impact of mitigation practices (slurry application methods and inhibitors applications) on gas emissions and identify the soil N2O production pathways in cattle slurry applied soil using isotopocule mapping approach. First, we compared the NH3 and N2O emissions of cattle slurry applied soil in a summer maize field experiment in north China plain (NCP) with four treatments: control (CK, no fertilization), slurry application using surface (SA-S), slurry application using band application (BA-S), and chemical fertilizer application using band application (BA-C). Then, an incubation experiment was conducted to investigate the mitigation effect of nitrification inhibitors (dicyandiamide, DCD) and denitrification inhibitors (procyanidins, PC) and their combination (DCD + PC) on gaseous N emissions with slurry applied using incorporation (IA) or surface application (SA) methods. The results showed that the total gaseous N emissions (N2O-N and NH3-N) in field were in the order of SA-S (1534 mg m-2) > BA-S (338 mg m-2) > BA-C (128 mg m-2) > CK (55 mg m-2), and the dominant N loss contributor varied from NH3 in SA-S (∼89%) to N2O in BA-S (∼94%) and BA-C (∼88%). Moreover, the isotopocule mapping approach indicated that emitted N2O of the slurry applied soil in field appeared to have lower rN2O values and led to more N2O + N2 emissions at the initial fertilization period. The incubation experiment indicated that the N2O emissions of slurry-applied soil were significantly reduced by DCD (∼45%) and DCD + PC (∼67%) application in comparison with CK (p < 0.05), and the stronger contributions of bacterial denitrification/nitrifier denitrification to N2O production were revealed by the lower δ15NSP in N2O using the isotopocule mapping approach. In conclusion, in NCP the gaseous losses of the slurry applied field can be largely reduced by using incorporation method, and greater reduction could be achieved given the simultaneous application of nitrification/denitrification inhibitors.
Collapse
Affiliation(s)
- Chunjing Liu
- College of Resources and Environmental Sciences, Hebei Agricultural University, 071000, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, 071000, Baoding, PR China
| | - Xiaojun Mi
- College of Resources and Environmental Sciences, Hebei Agricultural University, 071000, Baoding, PR China
| | - Xinxing Zhang
- College of Resources and Environmental Sciences, Hebei Agricultural University, 071000, Baoding, PR China
| | - Yujing Fan
- College of Resources and Environmental Sciences, Hebei Agricultural University, 071000, Baoding, PR China
| | - Weitao Zhang
- General Husbandry Station of Hebei Province, 050000, Shijiazhuang, PR China
| | - Wenhua Liao
- College of Resources and Environmental Sciences, Hebei Agricultural University, 071000, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, 071000, Baoding, PR China
| | - Jianzhi Xie
- College of Resources and Environmental Sciences, Hebei Agricultural University, 071000, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, 071000, Baoding, PR China.
| | - Zhiling Gao
- College of Resources and Environmental Sciences, Hebei Agricultural University, 071000, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, 071000, Baoding, PR China.
| | - Marco Roelcke
- Institute of Geoecology, Technische Universität Braunschweig, 38106, Braunschweig, Germany; Institute of Crop Science, University of Hohenheim, 70599, Stuttgart, Germany
| | - Huiling Liu
- College of Resources and Environmental Sciences, Hebei Agricultural University, 071000, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, 071000, Baoding, PR China
| |
Collapse
|