1
|
Zanni S, Cammalleri V, D'Agostino L, Protano C, Vitali M. Occurrence of pharmaceutical residues in drinking water: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10436-10463. [PMID: 39103588 DOI: 10.1007/s11356-024-34544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
The aim of the present paper was to give a complete picture on the drinking water contamination by pharmaceutical residues all over the world. For this purpose, a systematic review was carried out for identifying all available research reporting original data resulting by sampling campaign and analysis of "real" drinking water samples to detect pharmaceutical residues. The investigated databases were PubMed, Scopus, and Web of Science. A total of 124 studies were included; among these, 33 did not find target analytes (all below the limit of detection), while the remaining 91 studies reported the presence for one or more compounds, in concentrations ranging from a few units to a few tens of nanograms. The majority of the studies were performed in Europe and the most represented categories were nonsteroidal anti-inflammatory drugs and analgesics. The most common analytical approach used is the preparation and analysis of the samples by solid-phase extraction and chromatography coupled to mass spectrometry. The main implications resulting from our review are the need for (a) further studies aimed to allow more accurate environmental, wildlife, and human health risk assessments and (b) developing integrated policies promoting less environmentally persistent drugs, the reduction of pharmaceuticals in livestock breeding, and the update of wastewater and drinking water treatment plants for a better removal of drugs and their metabolites.
Collapse
Affiliation(s)
- Stefano Zanni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Vincenzo Cammalleri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Ludovica D'Agostino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, P.Le Aldo Moro 5, Rome, 00185, Italy.
| |
Collapse
|
2
|
Li H, Zhou B, Xu X, Huo R, Zhou T, Dong X, Ye C, Li T, Xie L, Pang W. The insightful water quality analysis and predictive model establishment via machine learning in dual-source drinking water distribution system. ENVIRONMENTAL RESEARCH 2024; 250:118474. [PMID: 38368920 DOI: 10.1016/j.envres.2024.118474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Dual-source drinking water distribution systems (DWDS) over single-source water supply systems are becoming more practical in providing water for megacities. However, the more complex water supply problems are also generated, especially at the hydraulic junction. Herein, we have sampled for a one-year and analyzed the water quality at the hydraulic junction of a dual-source DWDS. The results show that visible changes in drinking water quality, including turbidity, pH, UV254, DOC, residual chlorine, and trihalomethanes (TMHs), are observed at the sample point between 10 and 12 km to one drinking water plant. The average concentration of residual chlorine decreases from 0.74 ± 0.05 mg/L to 0.31 ± 0.11 mg/L during the water supplied from 0 to 10 km and then increases to 0.75 ± 0.05 mg/L at the end of 22 km. Whereas the THMs shows an opposite trend, the concentration reaches to a peak level at hydraulic junction area (10-12 km). According to parallel factor (PARAFAC) and high-performance size-exclusion chromatography (HPSEC) analysis, organic matters vary significantly during water distribution, and tryptophan-like substances and amino acids are closely related to the level of THMs. The hydraulic junction area is confirmed to be located at 10-12 km based on the water quality variation. Furthermore, data-driven models are established by machine learning (ML) with test R2 higher than 0.8 for THMs prediction. And the SHAP analysis explains the model results and identifies the positive (water temperature and water supply distance) and negative (residual chlorine and pH) key factors influencing the THMs formation. This study conducts a deep understanding of water quality at the hydraulic junction areas and establishes predictive models for THMs formation in dual-sources DWDS.
Collapse
Affiliation(s)
- Huiping Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Baiqin Zhou
- Gansu Academy of Eco-environmental Sciences, Lanzhou, 730030, China; School of Municipal and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Xiaoyan Xu
- Suzhou Industrial Park Qingyuan Hong Kong & China Water Co. Ltd., Suzhou, 215021, China
| | - Ranran Huo
- Suzhou Industrial Park Qingyuan Hong Kong & China Water Co. Ltd., Suzhou, 215021, China
| | - Ting Zhou
- Suzhou Industrial Park Qingyuan Hong Kong & China Water Co. Ltd., Suzhou, 215021, China
| | - Xiaochen Dong
- Suzhou Industrial Park Qingyuan Hong Kong & China Water Co. Ltd., Suzhou, 215021, China
| | - Cheng Ye
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tian Li
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Weihai Pang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Dong B, Huang H, Wang C, Zhang X, Gao C, Su N, Shi D, Ren J. Analysis of the seasonal water quality variation at the hydraulic junction of a dual-source water distribution system. RSC Adv 2024; 14:17832-17842. [PMID: 38836169 PMCID: PMC11148534 DOI: 10.1039/d4ra01878h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The implementation of a dual-source water supply system offers an increased level of reliability in water provision; however, intricate hydraulic dynamics introduce apprehensions regarding water safety at the hydraulic junction. In this study, we gathered data of the water quality at the hydraulic junction of a dual-source water supply system (plant A and plant B, sampling site A10 was near plant A, and sampling site A12 was near plant B) for one year in Suzhou Industrial Park. Our findings indicated that seasonal variations and water temperature exerted significant influence on the composition and formation of disinfection byproducts (DBPs). Notably, during the warmer months spanning from June to September, the concentration of trihalomethanes was the highest at the hydraulic junction, whereas the concentration of residual chloride was the lowest. The analysis on DBPs revealed that more Br-containing precursors in water in plant A resulted in the accumulation of more Br-containing DBPs at A10, whereas the highest concentration of Cl-containing DBPs accumulated at A12. The analysis of the dissolved organic matter (DOM) composition indicated an increase in concentration at A10 and A12 compared with that in plant A and plant B. The highest concentration of humic acids was observed at A10, whereas A12 accumulated the highest concentration of aromatic proteins and microbial metabolites. Owing to the fluctuations in water consumption patterns at the hydraulic junction, the water quality was susceptible to variability, thereby posing an elevated risk. Consequently, extensive efforts are warranted to ensure the maintenance of water safety and quality at this critical interface.
Collapse
Affiliation(s)
- Bowen Dong
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Hui Huang
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Chengyan Wang
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Xiaolong Zhang
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Chenyu Gao
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Nan Su
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Dayong Shi
- Gansu Academy of Eco-Environmental Sciences Lanzhou 730030 China
| | - Jie Ren
- School of Environment, Harbin Institute of Technology Harbin 150090 China
| |
Collapse
|
4
|
Lin W, Li K, Qin Y, Han X, Chen X, Ren Y. Flunitrazepam induces neurotoxicity in zebrafish through microbiota-gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165974. [PMID: 37532048 DOI: 10.1016/j.scitotenv.2023.165974] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/02/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The abuse of psychoactive substances has led to their frequent detection in the environment, with unknown effects on the nervous system. In this study, zebrafish were exposed to benzodiazepine drug flunitrazepam (FLZ, 0.2 and 5 μg/L) for 30 days to assess its neurotoxicity. Results revealed that FLZ disrupted the balance of gut microbiota and caused an increase in pathogenic bacteria, such as Paracoccus and Aeromonas, leading to pathological damage to the intestine. The upregulation of intestinal pro-inflammatory factors, IL-1β and TNF-α, by 2.4 and 6.3 times, respectively, along with the downregulation of tight junction proteins, Occludin and zonula occludens 1 (ZO-1), by 80 % and 50 %, increased in intestinal permeability. Moreover, untargeted metabolomics demonstrated that FLZ interfered with intestinal nucleotide metabolism and amino acid biosynthesis. FLZ could also increase the levels of lipopolysaccharide (LPS) and malondialdehyde (MDA) in the brain by 0.9 and 3.4 times, respectively, leading to pathological changes in brain tissue. Furthermore, FLZ significantly disturbed nucleotide metabolism and amino acid biosynthesis and metabolism pathways in the brain. Correlation analysis between gut microbiota and neurochemicals confirmed that FLZ can induce neurotoxicity through the microbiota-gut-brain axis. These findings elucidate the molecular mechanisms of psychoactive drugs on microbiota-gut-brain axis and provide a theoretical basis for the ecological environmental risk assessment of various psychoactive substances.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Kan Li
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou 510230, PR China; Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Yingjun Qin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xing Han
- National Anti-Drug Laboratory Guangdong Regional Center, Guangzhou 510230, PR China; Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, PR China
| | - Xiaohui Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Batista P, Pintado M, Oliveira-Silva P. Overview about Oral Films in Mental Disorders. Pharmaceuticals (Basel) 2023; 16:1063. [PMID: 37630975 PMCID: PMC10458751 DOI: 10.3390/ph16081063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mental disorders are increasing worldwide, and efforts have been developed by multidisciplinary research groups to combine knowledge from different areas such as psychology, neuroscience, medicine, and biotechnology to develop strategies and products to promote the prevention of mental disorders. Excessive antipsychotic consumption is a public health problem, and innovative strategies must be devised. The development of innovative and, if possible, natural products is one of the strategies to combat this public health problem. Oral films are recent delivery systems that have been developed with several advantages that should be applied in this area. This review intends to draw attention to these new dosage forms of drugs and bioactive molecules pertinent to the field of mental health prevention and therapy and to the need for regulatory guidelines to ensure their quality and safety. This is a critical overview about strengths, weaknesses, opportunities, and threats related to oral film implementation in mental disorder treatment.
Collapse
Affiliation(s)
- Patrícia Batista
- Human Neurobehavioral Laboratory, Research Centre for Human Development, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Patrícia Oliveira-Silva
- Human Neurobehavioral Laboratory, Research Centre for Human Development, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| |
Collapse
|
6
|
Zheng D, Zhang X, Zhang Y, Fan W, Zhao X, Gan T, Lu Y, Li P, Xu W. In situ construction of Fe 3O 4@PDA@Au multi hotspot SERS probe for trace detection of benzodiazepines in serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122897. [PMID: 37229942 DOI: 10.1016/j.saa.2023.122897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023]
Abstract
The abuse of benzodiazepines is a serious health hazard that can cause damage to the central nervous system.Trace monitoring of benzodiazepines in serum can effectively prevent the damage caused by these drugs. Therefore, in this study, a Fe3O4@PDA@Au core-shell satellite nanomaterial SERS(Surface-Enhanced Raman Scattering) probe that integrates magnetic separation techniques and a multi-hotspot structure was synthetized by in situ growth of gold nanoparticles on the surface of PDA(Polymerized dopamine)-coated Fe3O4. The size and gap of Au nanoparticles on the surface of the SERS probe can be modulated by regulating the amount of HAuCl4 to create 3D multi-hotspot structures. The good dispersion and superparamagnetic properties of this SERS probe enable it to fully contact and load the target molecules in the serum, and the applied magnetic field facilitates separation and enrichment.This process increases the molecular density and number of SERS hotspots, thereby enhancing detection sensitivity. Based on the above considerations, this SERS probe can detect traces of eszopiclone and diazepam in serum at concentrations as low as 1 μg/ml with good linearity, offering promising applications in clinical monitoring of drug concentrations in blood.
Collapse
Affiliation(s)
- Doudou Zheng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, Anhui, China
| | - Xiang Zhang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yixin Zhang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, Anhui, China
| | - Weiwei Fan
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, Anhui, China
| | - Xinxin Zhao
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Tian Gan
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yulin Lu
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Weiping Xu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Anhui, Hefei 230001, China.
| |
Collapse
|