1
|
Wang K, Li A, Qiu Z, Wang B, Jin X, Hu L, Wang H. Effects of microplastics accumulation and antibiotics contamination in anaerobic membrane bioreactors for municipal wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137705. [PMID: 40010217 DOI: 10.1016/j.jhazmat.2025.137705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Municipal wastewater treatment plants are the main collection points for plastics and antibiotics. Anaerobic membrane bioreactor (AnMBR) is one the most potential municipal wastewater treatment technologies. This study evaluated the impact of microplastic (aged polyvinyl chloride, aged PVC, 1.5 g/L), antibiotics (ciprofloxacin, CIP, 100 μg/L) and their interaction effect on AnMBR treatment performance and membrane fouling. Results showed that the inhibition of CIP on AnMBR organic removal and methane production was intensified, owing to the CIP adsorption on aged PVC. The enzyme activities of electron transport (ETS), adenosine triphosphate (ATP) and F420 were also significantly restrained by 47-52 % with combined exposure. The combined effects also significantly aggravated the membrane fouling of AnMBR, which shorted the membrane operational period by half due to more soluble microbial products (SMP) secretion. The microbial diversity analyses indicated that aged PVC and CIP addition can accumulate some main anaerobic fermentation bacteria but inhibit the archaea. The abundance of related enzyme in the acetoclastic and hydrogenotrophic methanogenesis decreased with the sole aged PVC and CIP addition and severely inhibited with their combine effect. The absolute abundance mcrA significantly reduced by 92 % with combined exposure, validating the negative impact on methanogenic activity. These findings provide valuable insight into the AnMBR implementation in complex wastewater treatment.
Collapse
Affiliation(s)
- Kanming Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Aoran Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhixuan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Banglong Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xizheng Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingling Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Zhao Y, He J, Pang H, Li L, Cui X, Liu Y, Jiang W, Liu X. Anaerobic digestion and biochar/hydrochar enhancement of antibiotic-containing wastewater: Current situation, mechanism and future prospects. ENVIRONMENTAL RESEARCH 2025; 264:120087. [PMID: 39455046 DOI: 10.1016/j.envres.2024.120087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024]
Abstract
The increasing consumption of antibiotics by humans and animals and their inappropriate disposal have increased antibiotic load in municipal and pharmaceutical industry waste, resulting in severe public health risks worldwide. Anaerobic digestion (AD) is the main force of antibiotic-containing wastewater treatment, and the adaptability of biochar/hydrochar (BC/HC) makes it an attractive addition to AD systems, which aim to promote methane production efficiency. Nevertheless, further studies are needed to better understand the multifaceted function of BC/HC and its role in antibiotic-containing wastewater AD. This review article examines the current status of AD of antibiotic-containing wastewater and the effects of different preparation conditions on the physicochemical properties of BC/HC and AD status. The incorporation of BC/HC into the AD process has several potential benefits, contingent upon the physical and chemical properties of BC/HC. These benefits include mitigation of antibiotic toxicity, establishment of a stable system, enrichment of functional microorganisms and enhancement of direct interspecies electron transfer. The mechanism by which BC/HC enhances the AD of antibiotic-containing wastewater, with focus on microbial enhancement, was analysed. A review of the literature revealed that the challenge of optimization and process improvement must be addressed to enhance efficiency and clarify the mechanism of BC/HC in the AD of antibiotic-containing wastewater. This review aims to provide significant insights and details into the BC/HC-enhanced AD of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Yuanyi Zhao
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Junguo He
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China.
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xinxin Cui
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Yunlong Liu
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Weixun Jiang
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| | - Xinping Liu
- School of Civil Engineering and Transportation, Guangzhou University, 230 Zhonghuan West Road, Guangzhou, 510006, China
| |
Collapse
|
3
|
Buakaew T, Ratanatamskul C. Unveiling the influence of microaeration and sludge recirculation on enhancement of pharmaceutical removal and microbial community change of the novel anaerobic baffled biofilm - membrane bioreactor in treating building wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172420. [PMID: 38614333 DOI: 10.1016/j.scitotenv.2024.172420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
This research aims to conduct a comparative investigation of the role played by microaeration and sludge recirculation in the novel anaerobic baffled biofilm-membrane bioreactor (AnBB-MBR) for enhancing pharmaceutical removal from building wastewater. Three AnBB-MBRs - R1: AnBB-MBR, R2: AnBB-MBR with microaeration and R3: AnBB-MBR with microaeration and sludge recirculation - were operated simultaneously to remove Ciprofloxacin (CIP), Caffeine (CAF), Sulfamethoxazole (SMX) and Diclofenac (DCF) from real building wastewater at the hydraulic retention time (HRT) of 30 h for 115 days. From the removal profiles of the targeted pharmaceuticals in the AnBB-MBRs, it was found that the fixed-film compartment (C1) could significantly reduce the targeted pharmaceuticals. The remaining pharmaceuticals were further removed with the microaeration compartment. R2 exhibited the utmost removal efficiency for CIP (78.0 %) and DCF (40.8 %), while SMX was removed most successfully by R3 (microaeration with sludge recirculation) at 91.3 %, followed by microaeration in R2 (88.5 %). For CAF, it was easily removed by all AnBB-MBR systems (>90 %). The removal mechanisms indicate that the microaeration in R2 facilitated the adsorption of CIP onto microaerobic biomass, while the enhanced biodegradation of CAF, SMX and DCF was confirmed by batch biotransformation kinetics and the adsorption isotherms of the targeted pharmaceuticals. The microbial groups involved in biodegradation of the targeted compounds under microaeration were identified as nitrogen removal microbials (Nitrosomonas, Nitrospira, Thiobacillus, and Denitratisoma) and methanotrophs (Methylosarcina, Methylocaldum, and Methylocystis). Overall, explication of the integration of AnBB-MBR with microaeration (R2) confirmed it as a prospective technology for pharmaceutical removal from building wastewater due to its energy-efficient approach characterized by minimal aeration supply.
Collapse
Affiliation(s)
- Tanissorn Buakaew
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chavalit Ratanatamskul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Innovative Waste Treatment and Water Reuse, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Ramos JGVDS, Richter CP, Silva MA, Singolano GL, Hauagge G, Lorençon E, Junior ILC, Edwiges T, de Arruda PV, Vidal CMDS. Effects of ciprofloxacin on biogas production and microbial community composition in anaerobic digestion of swine wastewater in ASBR type reactor. ENVIRONMENTAL TECHNOLOGY 2024; 45:2076-2088. [PMID: 36621001 DOI: 10.1080/09593330.2022.2164744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In swine farming, antibiotics are often used to reduce disease and promote animal growth. Part of these compounds is not absorbed by the swine body, being excreted and later reaching the treatment systems, soil, and nearby waterbodies. This research sought to investigate the influence of adding ciprofloxacin (CIP) on the anaerobic digestion of swine wastewater. For that, a bench-scale anaerobic sequential batch reactor (ASBR) was used, with 5 L of working volume in six different phases, with volumetric organic loading rate (VOLR) and CIP dosage variation. According to the results, the optimal VOLR for the reactor was 0.60 ± 0.11 gSV L-1 d-1, resulting in biogas productivity of 0.51 ± 0.03 Lbiogas L-1 d-1. After initial stability, adding substrate with 0.5 mgCIP L-1 resulted in an abrupt drop of 82% in the productivity from the 7th to 11th day of addition, coinciding with volatile acids accumulation. Afterward, the reactor recovered and reached apparent stability, with productivity similar to the previous step without the drug. For 2.5 mgCIP L-1 in the substrate, the biogas productivity at equilibrium was 11.8% lower than in the phases with the same VOLR and 0.0 and 0.5 mgCIP L-1. Organic matter removals near 80% were achieved for both dosages. The 16S rRNA metagenomic analyses showed an increase in the relative abundance of most of the phyla found, indicating that the dosages used allowed the acclimatization of microorganisms and possibly the compound biodegradation.
Collapse
Affiliation(s)
- José Gustavo Venâncio da Silva Ramos
- Civil Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
- Technical Residency in Environmental Engineering and Management, State University of Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Camila Palacio Richter
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Maria Alice Silva
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Giordana Longo Singolano
- Civil Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Gabriel Hauagge
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Eduarda Lorençon
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | | | - Thiago Edwiges
- Biological and Environmental Sciences, The Federal University of Technology - Paraná (UTFPR), Medianeira, Brazil
| | - Priscila Vaz de Arruda
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | | |
Collapse
|
5
|
Yao B, Liu M, Tang T, Hu X, Yang C, Chen Y. Enhancement of anaerobic digestion of ciprofloxacin wastewater by nano zero-valent iron immobilized onto biochar. BIORESOURCE TECHNOLOGY 2023; 385:129462. [PMID: 37429552 DOI: 10.1016/j.biortech.2023.129462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
The commonly used antibiotic ciprofloxacin (CIP) can significantly inhibit and interfere with the anaerobic digestion (AD) performance. This work was developed to explore the effectiveness and feasibility of nano iron-carbon composites to simultaneously enhance methane production and CIP removal during AD under CIP stress. The results demonstrated that when the nano-zero-valent iron (nZVI) content immobilized on biochar (BC) was 33% (nZVI/BC-33), the CIP degradation efficiency reached 87% and the methanogenesis reached 143 mL/g COD, both higher than Control, respectively. Reactive oxygen species analysis demonstrated that nZVI/BC-33 could effectively mitigate microorganisms subjected to the dual redox pressure from CIP and nZVI, and reduce a series of oxidative stress reactions. The microbial community depicted that nZVI/BC-33 enriched functional microorganisms related to CIP degradation and methane production and facilitated direct electron transfer processes. Nano iron-carbon composites can effectively alleviate the stress of CIP on AD and enhance methanogenesis.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chengyu Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Liu W, Song X, Ding X, Xia R, Lin X, Li G, Nghiem LD, Luo W. Antibiotic removal from swine farming wastewater by anaerobic membrane bioreactor: Role of hydraulic retention time. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
7
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Aslanli A. Progressive Biocatalysts for the Treatment of Aqueous Systems Containing Pharmaceutical Pollutants. Life (Basel) 2023; 13:841. [PMID: 36983996 PMCID: PMC10052509 DOI: 10.3390/life13030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The review focuses on the appearance of various pharmaceutical pollutants in various water sources, which dictates the need to use various methods for effective purification and biodegradation of the compounds. The use of various biological catalysts (enzymes and cells) is discussed as one of the progressive approaches to solving problems in this area. Antibiotics, hormones, pharmaceuticals containing halogen, nonsteroidal anti-inflammatory drugs, analgesics and antiepileptic drugs are among the substrates for the biocatalysts in water purification processes that can be carried out. The use of enzymes in soluble and immobilized forms as effective biocatalysts for the biodegradation of various pharmaceutical compounds (PCPs) has been analyzed. Various living cells (bacteria, fungi, microalgae) taken as separate cultures or components of natural or artificial consortia can be involved in biocatalytic processes under aerobic or anaerobic conditions. Cells as biocatalysts introduced into water treatment systems in suspended or immobilized form are used for deep biodegradation of PCPs. The potential of combinations of biocatalysts with physical-chemical methods of wastewater treatment is evaluated in relation to the effective removing of PCPs. The review analyzes recent results and the main current trends in the development of biocatalytic approaches to biodegradation of PCPs, the pros and cons of the processes and the biocatalysts used.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
8
|
Tang T, Liu M, Du Y, Chen Y. Deciphering the internal mechanisms of ciprofloxacin affected anaerobic digestion, its degradation and detoxification mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156718. [PMID: 35760173 DOI: 10.1016/j.scitotenv.2022.156718] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Ciprofloxacin (CIP) is widely used in livestock farms, but the internal mechanism of the effect of residual CIP in actual livestock wastewater on anaerobic digestion (AD) performance remains unknown. This study examined the dose-specific effects of CIP (0.5-2 mg/L) on livestock wastewater AD by analyzing acidogenesis and methanogenesis. 0.5 mg/L CIP promoted methane production by facilitating acidogenesis and acetogenesis. Compared with the control, the cumulative methane production increased from 331.38 to 407.44 mL/g VS at a dose of 0.5 mg/L, an increase of 22.95 %. However, as the dose of CIP increased, the cumulative methane production gradually decreased to 217.64 mL/g VS (2 mg/L). Microbial community analysis revealed that CIP had the greatest impact on methane production by influencing the activity of acidogenic bacteria. Meanwhile, acidogenesis was critical for CIP degradation. In acidogenesis, hydroxylation, amination, defluorination, decarboxylation, and piperazine ring breaking not only degraded CIP but also reduced its toxicity. Therefore, a large number of intermediates could be continuously degraded by microorganisms. However, as the dosage of CIP increased, the ability of microorganisms to degrade intermediates decreased.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
9
|
Oberoi AS, Surendra KC, Wu D, Lu H, Wong JWC, Kumar Khanal S. Anaerobic membrane bioreactors for pharmaceutical-laden wastewater treatment: A critical review. BIORESOURCE TECHNOLOGY 2022; 361:127667. [PMID: 35878778 DOI: 10.1016/j.biortech.2022.127667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticalsare a diverse group of chemical compounds widely used for prevention and treatment of infectious diseases in both humans and animals. Pharmaceuticals, either in their original or metabolite form, find way into the wastewater treatment plants (WWTPs) from different sources. Recently, anaerobic membrane bioreactors (AnMBR) has received significant research attention for the treatment of pharmaceuticals in various wastewater streams. This review critically examines the behaviour and removal of a wide array of pharmaceuticals in AnMBR with primary focus on their removal efficiencies and mechanisms, critical influencing factors, and the microbial community structures. Subsequently, the inhibitory effects of pharmaceuticals on the performance of AnMBR and membrane fouling are critically discussed. Furthermore, the imperative role of membrane biofouling layer and its components in pharmaceuticals removal is highlighted. Finally, recent advancements in AnMBR configurations for membrane fouling control and enhanced pharmaceuticals removal are systemically discussed.
Collapse
Affiliation(s)
- Akashdeep Singh Oberoi
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal.
| | - Di Wu
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea.
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, PR China.
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaì'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
10
|
Rani J, Pandey KP, Kushwaha J, Priyadarsini M, Dhoble AS. Antibiotics in anaerobic digestion: Investigative studies on digester performance and microbial diversity. BIORESOURCE TECHNOLOGY 2022; 361:127662. [PMID: 35872275 DOI: 10.1016/j.biortech.2022.127662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The ever-increasing consumption of antibiotics in both humans and animals has increased their load in municipal and pharmaceutical industry waste and may cause serious damage to the environment. Impact of antibiotics on the performance of commercially used anaerobic digesters in terms of bioenergy output, antibiotics' removal and COD removal have been compared critically with a few studies indicating >90% removal of antibiotics. AnMBR performed the best in terms of antibiotic removal, COD removal and methane yield. Most of the antibiotics investigated have adverse effects on microbiome associated with different stages and methane generation pathways of AD which has been assessed using high throughput technologies like metatranscriptomics, metaproteomics and flow cytometry. Perspectives have been given for understanding the fate and elimination of antibiotics from AD. The challenge of optimization and process improvement needs to be addressed to increase efficiency of the anaerobic digesters.
Collapse
Affiliation(s)
- Jyoti Rani
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Kailash Pati Pandey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Jeetesh Kushwaha
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Madhumita Priyadarsini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India.
| |
Collapse
|