1
|
Paternina-Ramos A, Gracia C A, Rangel-Buitrago N. Zooplankton assemblage and microplastics associated with a coastal sandspit (Tubará, Atlántico). MARINE POLLUTION BULLETIN 2025; 215:117853. [PMID: 40121717 DOI: 10.1016/j.marpolbul.2025.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Zooplankton, as a foundational component of the food chain, plays an important role in the bioaccumulation and biomagnification of contaminants, including microplastics (MPs). This study focused on the structure of the marine zooplankton community and the presence of MPs in the surface waters of Tubará (Atlántico Department, Colombian Caribbean), establishing baseline data to assess the potential ingestion of MPs by zooplanktivorous organisms. Four sampling events were conducted at the Puerto Velero sandspit during the second half of 2023. The zooplankton assemblage comprised 11 phyla, with an average density of 633.18 individuals per cubic meter (indv/m3) ± 350.5 indv/m3. The community was predominantly composed of copepods (54.66 %), mollusk larvae (15.17 %), chaetognaths (10.29 %), and appendicularians (9.35 %). A total of 614 MPs were identified, corresponding to a density of 5.43 MPs/m3 ± 2.9 MPs/m3. These MPs were classified into three types and ten colors. Fibers accounted for 93.49 % of the MPs, whereas fragments and films constituted 5.86 % and 0.65 %, respectively. The most prevalent colors were red (36 %), black (33.7 %), and blue (16.9 %). Additionally, an average numerical ratio of 0.0086 MPs per zooplankton individual was recorded. This research represents the first report on the zooplankton community structure in the Atlántico Department and is also the first study in Colombia to quantify the MP-to-individual ratio. These findings are essential for guiding conservation and management strategies for marine fauna and emphasize the critical need to monitor both the plankton community and MPs in systems significantly impacted by discharges from the Magdalena River.
Collapse
Affiliation(s)
- Alex Paternina-Ramos
- Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, km 7 vía Puerto Colombia, Atlántico, Colombia.
| | - Adriana Gracia C
- Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, km 7 vía Puerto Colombia, Atlántico, Colombia.
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, km 7 vía Puerto Colombia, Atlántico, Colombia.
| |
Collapse
|
2
|
Calleja-Setién E, Rios-Fuster B, Alomar C, Fagiano V, Sánchez-García N, Bernal-Mondejar I, Deudero S. Floating microplastics along the western Mediterranean Sea: Are we reaching a "Good Environmental Status" or drifting away? MARINE POLLUTION BULLETIN 2025; 211:117372. [PMID: 39644623 DOI: 10.1016/j.marpolbul.2024.117372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
This study investigates the spatial and temporal distribution of sea surface microplastic in the Spanish Mediterranean Sea, assessing compliance with the Good Environmental Status (GES) criteria of the European Marine Strategy Framework Directive 2008/56/EC and Barcelona Convention. Data from 668 sea surface water samples collected from 2017 to 2023 were analysed to classify their status according to indicators of microplastic pollution. A mean abundance of 0.24 ± 1.80 items/m2 of sea surface microplastics was quantified, with significant differences between locations, zones, areas, and macro-areas (KW, p <0.05). The highest abundance was observed in the protected area of the Columbretes Islands (14.26 ± 8.66 items/m2) and the lowest in Fuengirola (0.0008 ± ND items/m2). The peninsular coast showed a higher abundance of microplastic (0.41 ± 0.27 items/m2) than the Balearic Islands (0.21 ± 0.06 items/m2). Fragments and sheets accounted for 72 % and 15 % of the microplastics, respectively. The highest microplastic abundance was observed in 2017 (0.85 ± 0.5 items/m2) and the lowest in 2022 (0.07 ± 0.01 items/m2), but no temporal trend was detected (MK, p >0.05). According to GES, 98 % of the stations were classified as having "Moderate" to "Very poor" conditions, while only 2 % were in good or high environmental status. This study confirms the lack of GES achievement along the Spanish western Mediterranean coastal waters and highlights the need for action to reduce plastic waste and prevent marine pollution.
Collapse
Affiliation(s)
- Estíbaliz Calleja-Setién
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente, s/n, 07015 Palma de Majorca, Balearic Islands, Spain.
| | - Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente, s/n, 07015 Palma de Majorca, Balearic Islands, Spain
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente, s/n, 07015 Palma de Majorca, Balearic Islands, Spain
| | - Valentina Fagiano
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente, s/n, 07015 Palma de Majorca, Balearic Islands, Spain
| | - Natalia Sánchez-García
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente, s/n, 07015 Palma de Majorca, Balearic Islands, Spain
| | - Inmaculada Bernal-Mondejar
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente, s/n, 07015 Palma de Majorca, Balearic Islands, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente, s/n, 07015 Palma de Majorca, Balearic Islands, Spain
| |
Collapse
|
3
|
Soto-Navarro J, Jordà G. Observational requirements for marine litter concentration characterization in the Mediterranean Sea. MARINE POLLUTION BULLETIN 2025; 211:117434. [PMID: 39675134 DOI: 10.1016/j.marpolbul.2024.117434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
The pollution of the seas by anthropogenic debris represents a significant environmental and socioeconomic concern. It is of paramount importance to accurately monitor the amount of marine litter in the oceans. However, there is considerable variation in the reported values of marine litter concentrations in certain areas. This uncertainty can be attributed to the inadequacy of the sampling strategies employed. This study analyzes the spatial and temporal requirements for the marine litter sampling in order to obtain accurate estimates of the actual marine litter concentration with the Mediterranean Sea serving as a case study. We conducted a series observing system simulation experiments based on the outputs of a high-resolution modeling system. Our results demonstrate that the strategies employed in the majority of observational campaigns are inadequate for obtaining acceptable uncertainty ranges. The average concentration uncertainty, both spatial and temporal, was quantified in relation to the parameters of the sampling strategies.
Collapse
Affiliation(s)
- Javier Soto-Navarro
- Physical Oceanography Group of the University of Málaga (GOFIMA), Málaga, Spain; Institute of Oceanic Engineering of the University of Málaga (IIO-UMA), Málaga, Spain.
| | - Gabriel Jordà
- Centre Oceanogràfic de les Balears, Spanish Institute of Oceanography (COB-IEO/CSIC), Mallorca, Spain
| |
Collapse
|
4
|
Piskuła P, Astel A, Pawlik M. Microplastics in seawater and fish acquired from the corresponding fishing zones of the Baltic Sea. MARINE POLLUTION BULLETIN 2025; 211:117485. [PMID: 39718281 DOI: 10.1016/j.marpolbul.2024.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Microplastics in seawater and fish from the Baltic Sea were analyzed. The significant contribution of the study is due to extensive collection of fish and surface water samples from corresponding fishing zones. Microplastics were detected in 100 % of seawater and 61 % of fish samples. The abundances of microplastics were 19,984 ± 8858 items/m3 (seawater) and 3.3 items/fish in the fish organs. The average dimension was 1.08 ± 1.19 mm (seawater), and 0.77 ± 0.84 mm (fish). In 106 out of 178 specimens (61 %), MPs were found in the gills (46 %), digestive tract (38 %), or liver (16 %). Fiber was the most dominant shape found in seawater (91.7 %) and fish (68.3 %), while the dominant color of items was blue. Items were mostly composed of polyethylene (21 %), polypropylene (20 %), cellophane (16 %), polyamide (9 %), and polyacrylate (8 %).
Collapse
Affiliation(s)
- Paulina Piskuła
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland.
| | - Aleksander Astel
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| | - Magdalena Pawlik
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| |
Collapse
|
5
|
Islam ARMT, Hasan M, Sadia MR, Mubin AN, Ali MM, Senapathi V, Idris AM, Malafaia G. Unveiling microplastics pollution in a subtropical rural recreational lake: A novel insight. ENVIRONMENTAL RESEARCH 2024; 250:118543. [PMID: 38417661 DOI: 10.1016/j.envres.2024.118543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
While global attention has been primarily focused on the occurrence and persistence of microplastics (MP) in urban lakes, relatively little attention has been paid to the problem of MP pollution in rural recreational lakes. This pioneering study aims to shed light on MP size, composition, abundance, spatial distribution, and contributing factors in a rural recreational lake, 'Nikli Lake' in Kishoreganj, Bangladesh. Using density separation, MPs were extracted from 30 water and 30 sediment samples taken from ten different locations in the lake. Subsequent characterization was carried out using a combination of techniques, including a stereomicroscope, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FE-SEM). The results showed a significant prevalence of MPs in all samples, with an average amount of 109.667 ± 10.892 pieces/kg3 (dw) in the sediment and 98.167 ± 12.849 pieces/m3 in the water. Small MPs (<0.5 mm), fragments and transparent colored particles formed the majority, accounting for 80.2%, 64.5% and 55.3% in water and 78.9%, 66.4% and 64.3% in sediment, respectively. In line with global trends, polypropylene (PP) (53%) and polyethylene (PE) (43%) emerged as the predominant polymers within the MPs. MP contents in water and sediment showed positive correlations with outflow, while they correlated negatively with inflow and lake depth (p > 0.05). Local activities such as the discharge of domestic sewage, fishing waste and agricultural runoff significantly influence the distribution of polypropylene. Assessment of pollution factor, pollution risk index and pollution load index values at the sampling sites confirmed the presence of MPs, with values above 1. This study is a baseline database that provides a comprehensive understanding of MP pollution in the freshwater ecosystem of Bangladesh, particularly in a rural recreational lake. A crucial next step is to explore ecotoxicological mechanisms, legislative measures and future research challenges triggered by MP pollution.
Collapse
Affiliation(s)
- Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh.
| | - Moriom Rahman Sadia
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh.
| | - Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh.
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
6
|
Li X, Wu F, Zhang C, Wang T. The Effects of Rainfall Events on the Composition and Diversity of Microplastics on Beaches in Xiamen City on a Short-Term Scale. TOXICS 2024; 12:375. [PMID: 38787154 PMCID: PMC11125818 DOI: 10.3390/toxics12050375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Coastal beaches are vulnerable to microplastic pollution originating primarily from terrestrial and marine sources or the in situ weathering of plastic waste. The present study investigates the effects of rainfall events on the composition and diversity of microplastics on beaches in Xiamen City on a short-term scale. In the results, the quantity of microplastics in beach sediments was 245.83 ± 11.61 items·kg-1 (mean ± standard error). The abundance of microplastics did not differ after each rainfall event but significantly decreased after multiple rainfall events. When the diversity of microplastics in the coastal area was evaluated, the Shannon-Wiener index and Pielou's index also decreased from 3.12 and 0.64 to 2.99 and 0.62, respectively, after multiple rainfall events. Rainfall had varying effects on microplastics depending on their size and shape, with particles smaller than 500 μm experiencing pronounced reductions. There was a significant negative correlation between the abundance of microplastics and the grain size of sand, but a positive correlation with sediment moisture content. We encourage the consideration of the potential impact of rainfall events during sample collection to ensure the reliability of the data. We also recommend using diversity indexes to help in understanding the influence of physical processes on microplastic distribution and their mechanisms.
Collapse
Affiliation(s)
- Xueyan Li
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China; (X.L.); (C.Z.)
| | - Fengrun Wu
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China; (X.L.); (C.Z.)
| | - Chengyi Zhang
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, China; (X.L.); (C.Z.)
| | - Tao Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China;
| |
Collapse
|
7
|
Marcus L, Mardones JI, Rioseco JT, Pinochet J, Montes C, Corredor-Acosta A, Moreno-Meynard P, Garcés-Vargas J, Jorquera E, Iriarte JL, Urbina MA. Evidence of plastic pollution from offshore oceanic sources in southern Chilean Patagonian fjords. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168706. [PMID: 37992835 DOI: 10.1016/j.scitotenv.2023.168706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
The Chilean Patagonian fjords are globally renowned as one of the few remaining pristine environments on Earth; however, their ecosystems are under significant threat from climatic and anthropogenic pressures. Of particular concern is the lack of research into the impact of plastic pollution on the waters and biodiversity of these fjords. In this study, the marine environment of a secluded and sparsely populated fjord system in southern Patagonia was sampled to assess microplastics in seawater, beaches, bottom sediment, and zooplankton. Microplastics were found to be widespread across the water surface of the fjord, but with low abundances of 0.01 ± 0.01 particles m-3 (mean ± SD). The presence of microplastics in sedimentary environments (e.g., beaches and bottom sediments, 15.6 ± 15.3 and 9.8 ± 24 particles kg of dry sediment-1, respectively) provided additional evidence of plastic debris accumulation within the fjord system. Furthermore, microplastics were already bioavailable to key zooplankton species of the Patagonian food web (0.01 ± 0.02 particles individual-1), suggesting bioaccumulation. A comprehensive examination of potential microplastic inputs originating from coastal runoff, coupled with distribution of water masses, suggested minimal local contribution of microplastics to the fjord, strongly indicating that plastic litter is likely entering the area through oceanic currents. The composition and type of microplastics, primarily consisting of polyester fibers (approx. 60 %), provided further support for the proposed distant origin and transportation into the fjord by oceanographic drivers. These results raise significant concern as reveal that despite a lack of nearby population, industrial or agricultural activity, remote Patagonian fjords are still impacted by plastic pollution originating from distant sources. Prioritizing monitoring efforts is crucial for effectively assessing the future trends and ecological impact of plastic pollution in these once so-called pristine ecosystems.
Collapse
Affiliation(s)
- Lara Marcus
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Lago Panguipulli 1390, 5501842 Puerto Montt, Chile.
| | - Jorge I Mardones
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile; Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Jazmin Toledo Rioseco
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile
| | - Javier Pinochet
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile.; Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - Caroline Montes
- Laboratory of Ecotoxicology and Laboratory of Marine Environmental Monitoring Research (LAPMAR), Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Andrea Corredor-Acosta
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile
| | | | - José Garcés-Vargas
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile; Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Erika Jorquera
- Facultad de Ciencias, Universidad Católica de La Santísima Concepción, Concepción, Chile
| | - José Luis Iriarte
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia 5090000, Chile; Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile.; Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, PO Box 1313, Concepción, Chile
| |
Collapse
|
8
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Galli M, Baini M, Panti C, Giani D, Caliani I, Campani T, Rosso M, Tepsich P, Levati V, Laface F, Romeo T, Scotti G, Galgani F, Fossi MC. Oceanographic and anthropogenic variables driving marine litter distribution in Mediterranean protected areas: Extensive field data supported by forecasting modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166266. [PMID: 37579802 DOI: 10.1016/j.scitotenv.2023.166266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Marine litter concentration in the Mediterranean Sea is strongly influenced both by anthropogenic pressures and hydrodynamic factors that locally characterise the basin. Within the Plastic Busters MPAs (Marine Protected Areas) Interreg Mediterranean Project, a comprehensive assessment of floating macro- and microlitter in the Pelagos Sanctuary and the Tuscan Archipelago National Park was performed. An innovative multilevel experimental design has been planned ad-hoc according to a litter provisional distribution model, harmonising and implementing the current sampling methodologies. The simultaneous presence of floating macro- and microlitter items and the potential influences of environmental and anthropogenic factors affecting litter distribution have been evaluated to identify hotspot accumulation areas representing a major hazard for marine species. A total of 273 monitoring transects of floating macrolitter and 141 manta trawl samples were collected in the study areas to evaluate the abundance and composition of marine litter. High mean concentrations of floating macrolitter (399 items/km2) and microplastics (259,490 items/km2) have been found in the facing waters of the Gulf of La Spezia and Tuscan Archipelago National Park as well in the Genova canyon and Janua seamount area. Accordingly, strong litter inputs were identified to originate from the mainland and accumulate in coastal waters within 10-15 nautical miles. Harbours and riverine outfalls contribute significantly to plastic pollution representing the main sources of contamination as well as areas with warmer waters and weak oceanographic features that could facilitate its accumulation. The results achieved may indicate a potentially threatening trend of litter accumulation that may pose a serious risk to the Pelagos Sanctuary biodiversity and provide further indications for dealing with plastic pollution in protected areas, facilitating future management recommendations and mitigation actions in these fragile marines and coastal environments.
Collapse
Affiliation(s)
- Matteo Galli
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Dario Giani
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Tommaso Campani
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy
| | - Massimiliano Rosso
- NBFC, National Biodiversity Future Center, Palermo, Italy; CIMA Research Foundation, 17100 Savona, Italy
| | - Paola Tepsich
- NBFC, National Biodiversity Future Center, Palermo, Italy; CIMA Research Foundation, 17100 Savona, Italy
| | - Vanessa Levati
- CIMA Research Foundation, 17100 Savona, Italy; Department of Biology, University of Napoli Federico II, 80138 Napoli, Italy
| | - Federica Laface
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; Stazione Zoologica Anton Dohrn, 98167 Messina, Italy
| | - Teresa Romeo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 98057 Milazzo, Italy; ISPRA, Italian Institute for Environmental Protection and Research, 98057 Milazzo, Italy
| | - Gianfranco Scotti
- ISPRA, Italian Institute for Environmental Protection and Research, 98057 Milazzo, Italy
| | | | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
10
|
Compa M, Perelló E, Box A, Colomar V, Pinya S, Sureda A. Ingestion of microplastics and microfibers by the invasive blue crab Callinectes sapidus (Rathbun 1896) in the Balearic Islands, Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119329-119342. [PMID: 37924412 PMCID: PMC10698140 DOI: 10.1007/s11356-023-30333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
The blue crab Callinectes sapidus Rathbun, 1896 is native to the western coasts of the Atlantic Ocean and is currently considered an invasive species in the Mediterranean Sea. In this study, we examined the stomach contents of C. sapidus to determine the frequency of occurrence of microplastics (MPs) and microfibers (MFs) in the Balearic Islands archipelago in the western Mediterranean Sea. A total of 120 individuals were collected from six locations between 2017 and 2020. Overall, 65.8% of the individuals had MPs and/or MFs particles with an average of 1.4 ± 1.6 particles ind.-1 of which an average of 1.0 ± 1.3 items ind.-1 were MFs and an average of 0.4 ± 0.8 items ind.-1 were MPs. In terms of type, fragments were the dominant type of MPs and the most common size of items ranged from between 0.5 and 1 mm (40%) followed by 1-5 mm (31%). The most prevalent polymers were low-density polyethylene (39%) and high-density polyethylene (26%). In terms of links to human activities, MP ingestion was positively correlated with an increase in drain pipes, whereas MF ingestion was positively correlated with an increase in sewage pipelines, providing evidence of potential sources and the bioavailability of these particles in various environments. This study confirms the widespread presence of MP and MF particles, even in areas that are currently managed under different protection statuses, in the stomach contents of invasive blue crab species throughout coastal communities.
Collapse
Affiliation(s)
- Montserrat Compa
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122, Palma, Balearic Islands, Spain.
| | - Esperança Perelló
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa Km 7,5, 07122, Palma, Balearic Islands, Spain
| | - Antoni Box
- Department of Agricultura, Ramaderia, Pesca, Caça I Cooperació Municipal, Consell Insular d'Eivissa, 07800, Eivissa, Spain
| | - Victor Colomar
- Consortium for the Recovery of Fauna of the Balearic Islands (COFIB), Government of the Balearic Islands, Ctra. Palma-Sineu Km 15.4, 07141, Santa Eugènia, Balearic Islands, Spain
| | - Samuel Pinya
- Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa Km 7,5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER Fisiopatología de La Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| |
Collapse
|
11
|
Dąbrowska A, Kipa S, Vasilopoulos M, Osial M. The comparative study by Raman spectroscopy of the plastic tide in the three ports of the Mediterranean Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124093-124105. [PMID: 37999840 PMCID: PMC10746617 DOI: 10.1007/s11356-023-30973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
This paper summarizes the field studies on marine microplastics (MPs) carried out in the autumn season in four various localisations within three ports chosen at the Mediterranean Sea near the French Riviera and the West Coast of Italy (within the Ligurian Sea). It considers the transport problem and the fate of the MPs introduced to the sea by analysing beach debris found on the shore after the stormy weather. Monitored ports included Saint-Tropez, Portoferraio and Porto Ercole, in which two different places were monitored. The aim is to approach the plastic tide phenomena by concentrating on a selected fraction of all MPs presented on the seashore. The final identification of debris was performed using Raman spectroscopy, providing a high-resolution signal. The PE, PP and PS contents were compared as the most frequent and representative polymers. Finally, we tackle the pending issue of the compound leakage from the MPs taking the environmentally aged particles from Portoferraio for further laboratory experiments and discuss an innovative approach with a low detection limit based on the electrochemical methods.
Collapse
Affiliation(s)
- Agnieszka Dąbrowska
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy of Intermolecular Interactions, Pasteura 1, 02-093, Warsaw, Poland.
- University of Warsaw Biological and Chemical Research Centre, Żwirki i Wigury 101 st, 02-089, Warsaw, Poland.
| | - Seweryn Kipa
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy of Intermolecular Interactions, Pasteura 1, 02-093, Warsaw, Poland
| | - Michalis Vasilopoulos
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy of Intermolecular Interactions, Pasteura 1, 02-093, Warsaw, Poland
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106, Warsaw, Poland
| |
Collapse
|
12
|
Fagiano V, Compa M, Alomar C, Morató M, Deudero S. The hyperbenthic environment: A forgotten habitat for plastic pollution. MARINE POLLUTION BULLETIN 2023; 194:115291. [PMID: 37459771 DOI: 10.1016/j.marpolbul.2023.115291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 09/12/2023]
Abstract
This study investigates the abundances and composition of microplastics (MP) among the shallow layers of a coastal Mediterranean Marine Protected Area (Cabrera MPA), seafloor sediments, hyperbenthic environment, and the water column. The mid waters samples were collected mid-way between the sea surface and the seafloor and hyperbenthic samples at the water layer adjacent to the seafloor. Sampling was carried out on patchiness seafloor of Posidonia oceanica meadows. The seafloor sediments showed a mean abundance of 378,769.20 ± 508,109.11 MPs/m3, three orders of magnitude higher than the hyperbenthic (209.17 ± 117.07 MPs/m3), and the mid waters layer (106.48 ± 107.17 MPs/m3). An increasing vertical gradient in MP abundances, mainly composed of fibers was observed. Fibers were made-up mainly of polystyrene (PS, 25 %), expanded polystyrene (EPS, 18 %) and cellulose acetate (CA, 16 %). The results stress the need to increase efforts to find solutions to mitigate fiber pollution in the marine environment.
Collapse
Affiliation(s)
- V Fagiano
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain; University of Balearic Islands, Palma de Mallorca, Spain.
| | - M Compa
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - C Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - M Morató
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - S Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| |
Collapse
|
13
|
Compa M, Alomar C, Rios-Fuster B, Fagiano V, Deudero S. Sea surface surveys for microplastic and floating marine macro litter items in coastal waters of Cabrera Archipelago Maritime Terrestrial National Park. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27710-x. [PMID: 37264171 DOI: 10.1007/s11356-023-27710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
This study is aimed at identifying and comparing microplastics and floating marine litter along the sea surface in the marine protected area of Cabrera Archipelago Maritime Terrestrial National Park (Cabrera MPA) in the Balearic Islands. A total of 52 net surveys and 22 visual surveys were carried out between July and August in 2019 and 2020. The abundance of microplastic (MP) items was highest in the southern and eastern regions, with an average of 381,244.4 ± 1,031,082.8 items/km2 weighing an average of 927.1 ± 2731.4 g/km2. Most of these items were < 5 mm (81%) in size and were mainly composed of polyethylene and polypropylene (98%). In terms of floating marine macro litter (ML) from visual surveys, an average of 2028 ± 2084 items/km2 were observed. In this case, the majority of the ML items were plastic pieces (69%) measuring 2.5 to 50 cm. Furthermore, ML quantified by visual surveys was an order of magnitude higher than in similar studies carried out on large vessels, highlighting the importance of vessel height and speed for identifying the smallest size fractions (81%). The results of this study document the intensity of MPs and ML, primarily plastic, in coastal waters, and provide a baseline for management efforts to mitigate floating litter, in addition to raising awareness of the transferability of marine litter from other regions.
Collapse
Affiliation(s)
- Montserrat Compa
- Centro Nacional Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Consejo Superior de Investigaciones Científicas (IEO-CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| | - Carme Alomar
- Centro Nacional Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Consejo Superior de Investigaciones Científicas (IEO-CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain.
| | - Beatriz Rios-Fuster
- Centro Nacional Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Consejo Superior de Investigaciones Científicas (IEO-CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| | - Valentina Fagiano
- Centro Nacional Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Consejo Superior de Investigaciones Científicas (IEO-CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| | - Salud Deudero
- Centro Nacional Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Consejo Superior de Investigaciones Científicas (IEO-CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| |
Collapse
|
14
|
Cohen-Sánchez A, Solomando A, Pinya S, Tejada S, Valencia JM, Box A, Sureda A. Microplastic Presence in the Digestive Tract of Pearly Razorfish Xyrichtys novacula Causes Oxidative Stress in Liver Tissue. TOXICS 2023; 11:365. [PMID: 37112592 PMCID: PMC10143270 DOI: 10.3390/toxics11040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Plastic pollution in the oceans is a growing problem, with negative effects on exposed species and ecosystems. Xyrichtys novacula L. is a very important fish species both culturally and economically in the Balearic Islands. The aim of the present study was to detect and categorise the presence of microplastics (MPs) in the digestive tract of X. novacula, as well as the existence of oxidative stress in the liver. For this purpose, the fish were categorised into two groups based on the number of MPs observed in the digestive tracts: a group with no or low presence of MPs (0-3 items) and a group with a higher presence of MPs (4-28 items). MPs were found in 89% of the specimens analysed, with a dominance of fibre type and blue colour. Regarding the type of polymer, polycarbonate was the most abundant, followed by polypropylene and polyethylene. For the group with a greater presence of MPs, the activities of the antioxidant enzymes glutathione peroxidase and glutathione reductase, as well as the phase II detoxification enzyme glutathione s-transferase, were higher than the activities observed in fish with little to no presence of MPs. The activities of catalase and superoxide dismutase and the levels of malondialdehyde did not show significant differences between both groups. In conclusion, these results demonstrate the presence of MPs in the digestive tract of X. novacula and the existence of an antioxidant and detoxification response, mainly based on the glutathione-based enzymes.
Collapse
Affiliation(s)
- Amanda Cohen-Sánchez
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Silvia Tejada
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - José María Valencia
- LIMIA-Laboratori d’Investigacions Marines i Aqüicultura, 07157 Port d’Andratx, Spain
| | - Antonio Box
- Department of Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal, Consell Insular d’Eivissa, 07800 Eivissa, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
15
|
Fagiano V, Compa M, Alomar C, Rios-Fuster B, Morató M, Capó X, Deudero S. Breaking the paradigm: Marine sediments hold two-fold microplastics than sea surface waters and are dominated by fibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159722. [PMID: 36309280 DOI: 10.1016/j.scitotenv.2022.159722] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
We conducted one of the first studies to integrate the quantification and characterization of microplastics (MPs), including fibers, in different habitats (sea surface, seafloor and beach sediments) of a coastal Mediterranean marine protected area, analyzing their ingestion in several marine species. The objectives of the study were to evaluate the distribution of MPs according to shape and polymer, to assess the contribution of fibers to local plastic pollution and to evaluate their ingestion in fish and invertebrates species that inhabit the study area (Pagrus pagrus, Serranus scriba, Spondyliosoma cantharus, Diplodus vulgaris, Oblada melanura, Holothuria forskalii, Holothuria tubularis, Holothuria polis, Arbacia lixula, Paracentrotus lividus, Modiolus barbatus, Mytilus galloprovincialis and Arca noae). A total of 111 environmental samples were analyzed. The mean abundance of MPs (excluding fibers) quantified in beach sediments (13,418.86 ± 28,787.99 MPs/m2) was two orders of magnitude higher than that found in seafloor sediments (76.92 ± 108.84 MPs/m2), which in turn was two orders of magnitude higher than sea surface samples (0.17 ± 0.39 MPs/m2). The fibers were the most abundant shape of MPs identified in all habitats. Variability in MPs ingestion was detected between species, with ingestion rates ranging from 43 % to 100 % for general MPs and ranging from 7 % to 100 % for fibers. The highest ingestion was observed in Holoturians, representing suitable bioindicators for plastic pollution. The composition of the polymer varies weakly depending on habitats and biota, but the result is strongly correlated with the morphology of the plastic. Fibers were mainly composed of cellulose acetate (29 %), styrofoam of polystyrene (18 %), and filaments, films and fragments of polyethylene and polypropylene. The results highlighted the need to expand integrated approaches to effectively study marine plastic pollution and to undertake efficient actions to limit the input of plastics, particularly fibers, into the marine environment.
Collapse
Affiliation(s)
- V Fagiano
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain; University of Balearic Islands, Palma de Mallorca, Spain.
| | - M Compa
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - C Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - B Rios-Fuster
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - M Morató
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - X Capó
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - S Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| |
Collapse
|
16
|
Rios-Fuster B, Alomar C, Paniagua González G, Garcinuño Martínez RM, Soliz Rojas DL, Fernández Hernando P, Deudero S. Assessing microplastic ingestion and occurrence of bisphenols and phthalates in bivalves, fish and holothurians from a Mediterranean marine protected area. ENVIRONMENTAL RESEARCH 2022; 214:114034. [PMID: 35948144 DOI: 10.1016/j.envres.2022.114034] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Microplastic (MP) ingestion, along with accumulated plasticizers such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and phthalates represented by diethyl phthalate (DEP), dibutyl phthalate (DBP) and bis (2-ethylhexyl) phthalate (DEHP), were quantified in bivalves, fish, and holothurians collected from a coastal pristine area at the western Mediterranean Sea. MP ingestion in sediment-feeders holothurians (mean value 12.67 ± 7.31 MPs/individual) was statistically higher than ingestion in bivalves and fish (mean 4.83 ± 5.35 and 3 ± 4.44 MPs/individual, respectively). The main ingested polymers were polyethylene, polypropylene, and polystyrene. The levels of BPS, BPF, and DEHP were highest in bivalves' soft tissue; BPA and DBP had the highest levels in the holothurians' muscle. In addition, the levels of all plasticizers assessed were lowest in fish muscle; only BPA levels in fish were higher than in bivalves, with intermediate values between those of bivalves and holothurians. This study provides data on exposure to MPs and plasticizers of different species inhabiting Cabrera Marine Protected Area (MPA) and highlights the differences in MP ingestion and levels of plasticizers between species with different ecological characteristics and feeding strategies.
Collapse
Affiliation(s)
- Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, 07015, Palma de Mallorca, Spain.
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, 07015, Palma de Mallorca, Spain
| | - Gema Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Rosa Maria Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Dulce Lucy Soliz Rojas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Pilar Fernández Hernando
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, 07015, Palma de Mallorca, Spain
| |
Collapse
|
17
|
Compa M, Alomar C, López Cortès MF, Rios-Fuster B, Morató M, Capó X, Fagiano V, Deudero S. Multispecies Assessment of Anthropogenic Particle Ingestion in a Marine Protected Area. BIOLOGY 2022; 11:1375. [PMID: 36290281 PMCID: PMC9598462 DOI: 10.3390/biology11101375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
We have applied a multispecies ecosystem approach to analyse the ingestion of anthropogenic particles (AP) in the gastrointestinal tract of 313 individuals (17 fish species and 8 invertebrate species) from pelagic, demersal and benthic habitats in a marine protected area off the Western Mediterranean (Cabrera National Park). We have quantified and characterized the ingestion at several taxonomic levels of fish, sea urchins, sea cucumbers, bivalves, and jellyfish in relation to biotic/abiotic factors based on taxonomic groups, trophic guilds (functional groups) and habitats. AP ingestion occurrence ranged from 26 to 100% with no significant differences among taxonomic groups. The fish within the MPA showed an overall ingestion occurrence ranging from 0 to 100%, the echinoderms from 29 to 100%, the bivalves from 72 to 96% and the jellyfish 36% ingestion. The ecosystem approach applied to evaluate overall AP ingestion within the species reported that for trophic guilds, the omnivorous species ingested the highest amounts of anthropogenic items, while herbivores ingested significantly fewer items than all other trophic guilds. Moreover, no significant differences were found amongst habitats, indicating a homogeneous spatial distribution of APs at all studied habitats. The multispecies approach provided insight into the high APs exposure to species within Cabrera MPA, highlighting the potential harm linked with marine litter that threatens marine biodiversity.
Collapse
Affiliation(s)
- Montserrat Compa
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - María Francesca López Cortès
- Dirección General de Espacios Naturales y Biodiversidad, Parque Nacional Marítimo-Terrestre del Archipiélago de Cabrera, Gremi de Corredors 10, Polígon de Son Rossinyol, 07009 Palma, Spain
| | - Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Mercè Morató
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Xavier Capó
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Valentina Fagiano
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| |
Collapse
|
18
|
Cohen-Sánchez A, Solomando A, Pinya S, Tejada S, Valencia JM, Box A, Sureda A. First detection of microplastics in Xyrichtys novacula (Linnaeus 1758) digestive tract from Eivissa Island (Western Mediterranean). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65077-65087. [PMID: 35484455 PMCID: PMC9481491 DOI: 10.1007/s11356-022-20298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/12/2022] [Indexed: 05/14/2023]
Abstract
Plastic waste and its ubiquity in the oceans represent a growing problem for marine life worldwide. Microplastics (MPs) are ubiquitous in the sea and easily enter food webs. Xyrichtys novacula L. is one of the main target species of recreational fishing in the Balearic Islands, Spain. In the present study, the quantity of MPs in gastrointestinal tracts of X. novacula from two different areas (a marine protected area (MPA) and a non-protected area) of Eivissa Island (in the Balearic archipelago) has been assessed, as well as MPs evaluation within the sediment of both areas. The results showed that over 80% of sampled individuals had MPs in their gut with an average of 3.9 ± 4.3 plastic items/individual. Eighty percent of these plastics were fibres, while the rest were fragments. Although the sediment of the non-protected area had a significant higher presence of MPs, no significant differences in the number of MPs were observed in X. novacula from both areas. The µ-FT-IR analysis showed that the main polymers in the sediments were polycarbonate (PC) and polypropylene (PP), whereas in the digestive tract of fish PC, PP, polyethylene, polystyrene and polyester. In conclusion, practically all X. novacula specimens presented MPs in their digestive tract regardless if the capture zone was in a MPAs or not. These results highlight the ubiquity of MPs in coastal marine areas, and further studies might be necessary to evaluate further implications of MP presence in this species.
Collapse
Affiliation(s)
- Amanda Cohen-Sánchez
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands Spain
| | - Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands Spain
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Balearic Islands Spain
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Balearic Islands Spain
| | - Silvia Tejada
- Laboratory of Neurophysiology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - José María Valencia
- LIMIA, Laboratori d’Investigacions Marines i Aqüicultura, 07157 Port d’Andratx, Spain
| | - Antonio Box
- Department of Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal, Consell Insular d’Eivissa, 07800 Eivissa, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| |
Collapse
|
19
|
Sambolino A, Herrera I, Álvarez S, Rosa A, Alves F, Canning-Clode J, Cordeiro N, Dinis A, Kaufmann M. Seasonal variation in microplastics and zooplankton abundances and characteristics: The ecological vulnerability of an oceanic island system. MARINE POLLUTION BULLETIN 2022; 181:113906. [PMID: 35835051 DOI: 10.1016/j.marpolbul.2022.113906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The ingestion of microplastics (MPs - plastic particles <5 mm) by planktivorous organisms represents a significant threat to marine food webs. To investigate how seasonality might affect plastic intake in oceanic islands' ecosystems, relative abundances and composition of MPs and mesozooplankton samples collected off Madeira Island (NE Atlantic) between February 2019 and January 2020 were analysed. MPs were found in all samples, with fibres accounting for 89 % of the particles. MPs and zooplankton mean abundance was 0.262 items/m3 and 18.137 individuals/m3, respectively. Their monthly variations follow the seasonal fluctuation of environmental parameters, such as currents, chlorophyll-a concentration, sea surface temperature and precipitation intensity. A higher MPs/zooplankton ratio was recorded in the warm season (May-Oct), reaching 0.068 items/individual when considering large-sized particles (1000-5000 μm). This is the first study to assess the seasonal variability of MPs in an oceanic island system providing essential information respecting its ecological impact in pelagic environments.
Collapse
Affiliation(s)
- Annalisa Sambolino
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; LB3, Faculty of Exact Science and Engineering, University of Madeira, Funchal, Portugal; Marine Biology Station of Funchal, Faculty of Life Sciences, University of Madeira, Funchal, Portugal.
| | - Inma Herrera
- Marine Biology Station of Funchal, Faculty of Life Sciences, University of Madeira, Funchal, Portugal; Grupo en Biodiversidad y Conservación (BIOCON), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Telde, Spain
| | - Soledad Álvarez
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira, Portugal
| | - Alexandra Rosa
- Oceanic Observatory of Madeira (OOM), Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Oceanic Observatory of Madeira (OOM), Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - João Canning-Clode
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Smithsonian Environmental Research Center, Edgewater, USA
| | - Nereida Cordeiro
- LB3, Faculty of Exact Science and Engineering, University of Madeira, Funchal, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Ana Dinis
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Madeira, Portugal; Oceanic Observatory of Madeira (OOM), Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal
| | - Manfred Kaufmann
- Marine Biology Station of Funchal, Faculty of Life Sciences, University of Madeira, Funchal, Portugal; CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Karthik R, Robin RS, Purvaja R, Karthikeyan V, Subbareddy B, Balachandar K, Hariharan G, Ganguly D, Samuel VD, Jinoj TPS, Ramesh R. Microplastic pollution in fragile coastal ecosystems with special reference to the X-Press Pearl maritime disaster, southeast coast of India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119297. [PMID: 35421552 DOI: 10.1016/j.envpol.2022.119297] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are a global environmental concern and pose a serious threat to marine ecosystems. This study aimed to determine the abundance and distribution of MPs in beach sediments (12 beaches), marine biota (6 beaches) and the influence of microbes on MPs degradation in eco-sensitive Palk Bay and Gulf of Mannar coast. The mean MP abundance 65.4 ± 39.8 particles/m2 in beach sediments; 0.19 ± 1.3 particles/individual fish and 0.22 ± 0.11 particles g-1 wet weight in barnacles. Polyethylene fragments (33.4%) and fibres (48%) were the most abundant MPs identified in sediments and finfish, respectively. Histopathological examination of fish has revealed health consequences such as respiratory system damage, epithelial degradation and enterocyte vacuolization. In addition, eight bacterial and seventeen fungal strains were isolated from the beached MPs. The results also indicated weathering of MPs due to microbial interactions. Model simulations helped in tracking the fate and transboundary landfall of spilled MPs across the Indian Ocean coastline after the X-Press Pearl disaster. Due to regional circulations induced by the monsoonal wind fields, a potential dispersal of pellets has occurred along the coast of Sri Lanka, but no landfall and ecological damage are predicted along the coast of India.
Collapse
Affiliation(s)
- R Karthik
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - V Karthikeyan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - B Subbareddy
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - K Balachandar
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - G Hariharan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - D Ganguly
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - V D Samuel
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - T P S Jinoj
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India.
| |
Collapse
|
21
|
Fagiano V, Compa M, Alomar C, García-Marcos K, Deudero S. Marine plastics in Mediterranean islands: Evaluating the distribution and composition of plastic pollution in the surface waters along four islands of the Western Sea Basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119268. [PMID: 35398154 DOI: 10.1016/j.envpol.2022.119268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/14/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
To study the spatial distribution of sea surface plastics in marine protected and non-protected areas, 65 sea surface trawls were carried out using a Hydro-bios manta net coupled with a 335-μm mesh. A total of 19 sampling sites along the coastal waters of Mallorca, the "Parque Nacional Marítimo-Terrestre del Archipiélago de Cabrera" and Menorca in the Balearic Islands as well as along coastal waters of The Natural Park of Columbretes Islands (NW Mediterranean Sea) were sampled. A total of 10,637 plastic items were identified and a subset of these items was categorized by shape, color, size and polymer composition. Plastic particles were found at each sampling site and in all samples. No microscale nor mesoscale variability in floating marine plastics abundance (particles/m2) was encountered throughout the study area where similar values were found in protected areas with no local land-based contamination sources, such as Columbretes [0.04 (±0.03) particles/m2], and in high anthropized areas, such as the island of Mallorca [0.04 (±0.07) particles/m2]. However, differences were found in characteristics of plastic items (shape, polymer, and size range), with the protected area of Columbretes characterized by the presence of the highest density of very small plastic items composed mainly of fragments (93%). Quantified plastics from the marine environment were composed mainly of polyethylene (PE, 63.3%), polypropylene (PP; 24.9%), polycarbonate (PC; 4.6%) and polystyrene (PS, 3.3%). The polymer composition showed a homogenous composition between islands and differences were detected only amongst Columbretes and the other islands. Results from this study provide further evidence of the ubiquity of plastics in the marine environment and highlight that remote and protected areas, such as Columbretes, are not exempt from plastic pollution, but receptor areas for small and aged floating plastics composed mainly by fragments, which might have potentially harmful effects on protected ecosystems.
Collapse
Affiliation(s)
- V Fagiano
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, 07015, Mallorca, Spain; University of Balearic Islands, Palma de Mallorca, Spain.
| | - M Compa
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, 07015, Mallorca, Spain
| | - C Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, 07015, Mallorca, Spain
| | - K García-Marcos
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, 07015, Mallorca, Spain
| | - S Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente S/n, 07015, Mallorca, Spain
| |
Collapse
|
22
|
Al Nahian S, Rakib MRJ, Haider SMB, Kumar R, Mohsen M, Sharma P, Khandaker MU. Occurrence, spatial distribution, and risk assessment of microplastics in surface water and sediments of Saint Martin Island in the Bay of Bengal. MARINE POLLUTION BULLETIN 2022; 179:113720. [PMID: 35561514 DOI: 10.1016/j.marpolbul.2022.113720] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/09/2022] [Accepted: 04/29/2022] [Indexed: 05/14/2023]
Abstract
Microplastics (MPs) are emerging contaminants in aquatic and terrestrial ecosystems and have caused substantial concern worldwide. This study surveyed the presence of MPs in surface water and sediments across the coastal area of Saint Martin Island in the Bay of Bengal. MPs were collected following the standard protocol and identified as various types like expanded polystyrene, foam, filaments, fragments, lines, fibres, and paint flakes. Total MPs pollution in beach sediment was 317 particles/kg across 14 sampling sites, varied from 11 to 10589 particles/m2 of dry sediment and 0.95 particles/m3, having ~2 to 19 particles/30 min trawl in coastal surface water samples. Most of the frequent MPs in beach sediments ranged from 1.0 to 2.0 mm, whereas the fragments were predominant in sediment and surface water samples. MPs distribution revealed that different shapes were dominant at different sites within the Island. The calculated pollution risk index due to the presence of MPs indicated that the sediment and surface water samples were under the low-risk category. However, polymeric risk assessment and contamination factors suggest that the coastline is significantly polluted, as high pollution load indices (PLI >1) were observed for sediments and coastal surface water samples. This work provides the detailed MPs data in the coastal environment of Saint Martin Island for the first time; hence it may be helpful to develop proper strategies to deal with environmental problems.
Collapse
Affiliation(s)
- Sultan Al Nahian
- Environmental Oceanography and Climate Division, Bangladesh Oceanographic Research Institute, Cox's Bazar, Bangladesh.
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Sayeed Mahmood Belal Haider
- Environmental Oceanography and Climate Division, Bangladesh Oceanographic Research Institute, Cox's Bazar, Bangladesh
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India
| | - Mohamed Mohsen
- Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, Bihar, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
23
|
Compa M, Alomar C, Morató M, Álvarez E, Deudero S. Spatial distribution of macro- and micro-litter items along rocky and sandy beaches of a Marine Protected Area in the western Mediterranean Sea. MARINE POLLUTION BULLETIN 2022; 178:113520. [PMID: 35339063 DOI: 10.1016/j.marpolbul.2022.113520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
In this study, the spatial distribution and physical characteristics of beach macro- and micro-litter within the Cabrera Archipelago Maritime-Terrestrial National Park (Cabrera MPA), in the Balearic Islands have been analysed. For macro-litter items, a mean concentration of 1.9 ± 2.4 items/m2 weighing a total of 13 kg was quantified. In terms of beach composition, cobble beaches with deposited seagrass had almost twice as much marine litter as other beaches. For beach micro-litter items, white and transparent microplastics within the size class of 1-2 mm were the most abundant on all the beaches, and the most common polymer types were polyethylene (64%) and polypropylene (17.2%). Overall, for both macro- and micro-litter items, plastic was the most dominant material (90%) identified on all beaches surveyed within Cabrera MPA, indicating areas of low anthropogenic pressures are increasingly becoming sinks for marine litter.
Collapse
Affiliation(s)
- Montserrat Compa
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, Mallorca 07015, Spain.
| | - Carme Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, Mallorca 07015, Spain
| | - Mercè Morató
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, Mallorca 07015, Spain
| | - Elvira Álvarez
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, Mallorca 07015, Spain
| | - Salud Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, Mallorca 07015, Spain
| |
Collapse
|
24
|
Miccoli A, Mancini E, Saraceni PR, Della Ventura G, Scapigliati G, Picchietti S. First evidence of in vitro cytotoxic effects of marine microlitter on Merluccius merluccius and Mullus barbatus, two Mediterranean commercial fish species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152618. [PMID: 34968612 DOI: 10.1016/j.scitotenv.2021.152618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Marine litter is composed mainly of plastics and is recognized as a serious threat to marine ecosystems. Ecotoxicological approaches have started elucidating the potential severity of microplastics (MPs) in controlled laboratory studies with pristine materials but no information exists on marine environmental microlitter as a whole. Here, we characterized the litter in the coastal Northern Tyrrhenian sea and in the stomach of two fish species of socio-economic importance, and exposed primary cell cultures of mucosal and lymphoid organs to marine microlitter for evaluating possible cytotoxic effects. An average of 0.30 ± 0.02 microlitter items m-3 was found in water samples. μFT-IR analysis revealed that plastic particles, namely HDPE, polyamide and polypropylene were present in 100% and 83.3% of Merluccius merluccius and Mullus barbatus analyzed, which overall ingested 14.67 ± 4.10 and 5.50 ± 1.97 items/individual, respectively. Moreover, microlitter was confirmed as a vector of microorganisms. Lastly, the apical end-point of viability was found to be significantly reduced in splenic cells exposed in vitro to two microlitter conditions. Considering the role of the spleen in the mounting of adaptive immune responses, our results warrant more in-depth investigations for clarifying the actual susceptibility of these two species to anthropogenic microlitter.
Collapse
Affiliation(s)
- A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy.
| | - E Mancini
- Italian Fishery Research and Studies Center, Rome 00184, Italy
| | - P R Saraceni
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| | - G Della Ventura
- Department of Science, Roma 3 University, Rome 00146, Italy; INFN Laboratori Nazionali di Frascati, Via E. Fermi 54, Frascati 00044, Italy
| | - G Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| | - S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| |
Collapse
|
25
|
Prarat P, Hongsawat P. Microplastic pollution in surface seawater and beach sand from the shore of Rayong province, Thailand: Distribution, characterization, and ecological risk assessment. MARINE POLLUTION BULLETIN 2022; 174:113200. [PMID: 34902767 DOI: 10.1016/j.marpolbul.2021.113200] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The distribution, characteristics, and ecological risk of microplastics in beach sand and seawater samples collected along the shore of Rayong province, Thailand, were investigated in this study. The average microplastics abundance in beach sand and seawater was 338.89 ± 264.94 particles/kg d.w. and 1781.48 ± 1598.36 particles/m3, respectively. Beach sand and seawater had the most yellow-brown particles and transparent microfibers, respectively. The most common microplastics (100-500 μm) and polyethylene were found. In beach sand, the potential ecological risk (RI) is classified as minor, while in seawater, it is classified as medium. The PLIzone in beach sand and seawater was Hazard Level II and Hazard Level IV, respectively. Despite their apparent proximity, the non-correlation between risk levels in beach sand and seawater may be due to polymer type variations influenced by the different land-based and sea-based sources.
Collapse
Affiliation(s)
- Panida Prarat
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok (Rayong Campus), Rayong, Thailand.
| | - Parnuch Hongsawat
- Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok (Rayong Campus), Rayong, Thailand
| |
Collapse
|