1
|
Hu J, Zheng J, Lu D, Dai X, Wang R, Zhu Y, Park BS, Li C, Kim JH, Guo R, Wang P. Mapping the main harmful algal species in the East China Sea (Yangtze River estuary) and their possible response to the main ecological status and global climate change via a global vision. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175527. [PMID: 39153617 DOI: 10.1016/j.scitotenv.2024.175527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
The Yangtze River Estuary (YRE) is one of the areas in China most severely affected by harmful algal blooms (HABs). This study explored the distributive patterns of HABs in the YRE and how they are influenced by the El Niño-Southern Oscillation (ENSO) and other environmental factors. Quantitative real-time PCR (qPCR) was employed to detect and quantify the four predominant HAB species in the YRE, Karenia mikimotoi, Margalefidinium polykrikoides, Prorocentrum donghaiense, and Heterosigma akashiwo. Additionally, the study analyzed how turbidity, pH, salinity, and temperature influence these algae. Distribution of the four HAB species in the YRE area shows clear geographical variations: K. mikimotoi is predominantly found in the northwest and central sea areas, M. polykrikoides (East Asian Ribotype, EAR) is mainly distributed in the southeastern part, P. donghaiense is abundant in the northern regions, and H. akashiwo is especially prevalent at stations S26 and S27 in the northeastern part of the study area. HABs dominated by H. akashiwo and P. donghaiense were observed in the northeastern sea area of the YRE on July 22, 2020. Our study reveals that K. mikimotoi, M. polykrikoides (EAR), and P. donghaiense are mainly affected by turbidity, pH, and salinity, while temperature predominantly influences the blooms of H. akashiwo. Moreover, runoff in the YRE has a certain correlation with ENSO events, which may also impact the nutrient content of the region. The findings of this study illustrate the distributive patterns of the four HAB species under various ecological conditions in the YRE and emphasize the importance of establishing practical cases for future warning systems. To better understand how climate change affects HABs, exploring the link between ENSO and HABs is essential.
Collapse
Affiliation(s)
- Jiarong Hu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Junjie Zheng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Douding Lu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xinfeng Dai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Ruifang Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Ocean College, Zhejiang University, Zhoushan 316000, China
| | - Yuanli Zhu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Bum Soo Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Changpeng Li
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resource, Hangzhou 310012, China
| | - Jin Ho Kim
- Department of Earth and Marine Science, College of Ocean Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ruoyu Guo
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China.
| |
Collapse
|
2
|
Peng J, Wang D, He P, Wei P, Zhang L, Lan W, Li Y, Chen W, Zhao Z, Jiang L, Zhou L. Exploring the environmental influences and community assembly processes of bacterioplankton in a subtropical coastal system: Insights from the Beibu Gulf in China. ENVIRONMENTAL RESEARCH 2024; 259:119561. [PMID: 38972345 DOI: 10.1016/j.envres.2024.119561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Due to rapid urbanization, the Beibu Gulf, a semi-closed gulf in the northwestern South China Sea, faces escalating ecological and environmental threats. Understanding the assembly mechanisms and driving factors of bacterioplankton in the Beibu Gulf is crucial for preserving its ecological functions and services. In the present study, we investigated the spatiotemporal dynamics of bacterioplankton communities and their assembly mechanisms in the Beibu Gulf based on the high-throughput sequencing of the bacterial 16 S rRNA gene. Results showed significantly higher bacterioplankton diversity during the wet season compared to the dry season. Additionally, distinct seasonal variations in bacterioplankton composition were observed, characterized by an increase in Cyanobacteria and Thermoplasmatota and a decrease in Proteobacteria and Bacteroidota during the wet season. Null model analysis revealed that stochastic processes governed bacterioplankton community assembly in the Beibu Gulf, with drift and homogenizing dispersal dominating during the dry and wet seasons, respectively. Enhanced deterministic assembly of bacterioplankton was also observed during the wet season. Redundancy and random forest model analyses identified the physical properties (e.g., temperature) and nutrient content (e.g., nitrate) of water as primary environmental drivers influencing bacterioplankton dynamics. Moreover, variation partitioning and distance-decay of similarity revealed that environmental filtering played a significant role in shaping bacterioplankton variations in this rapidly developed coastal ecosystem. These findings advance our understanding of bacterioplankton assembly in coastal ecosystems and establish a theoretical basis for effective ecological health management amidst ongoing global changes.
Collapse
Affiliation(s)
- Jinxia Peng
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Dapeng Wang
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Pingping He
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Pinyuan Wei
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Li Zhang
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai, 536000, China
| | - Yusen Li
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China
| | - Wenjian Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Linyuan Jiang
- China(Guangxi)-ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Guangxi Academy of Fishery Sciences, Nanning, 53002l, China.
| | - Lei Zhou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Gutiérrez-Barral A, Teira E, Díaz-Alonso A, Justel-Díez M, Kaal J, Fernández E. Impact of wildfire ash on bacterioplankton abundance and community composition in a coastal embayment (Ría de Vigo, NW Spain). MARINE ENVIRONMENTAL RESEARCH 2024; 194:106317. [PMID: 38160575 DOI: 10.1016/j.marenvres.2023.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Wildfire ash can have an impact on coastal prokaryotic plankton. To understand the extent to which community composition and abundance of coastal prokaryotes are affected by ash, two ash addition experiments were performed. Ash from a massive wildfire that took place in the Ría de Vigo watershed in October 2017 was added to natural surface water samples collected in the middle sector of the ría during the summer of 2019 and winter of 2020, and incubated for 72 h, under natural water temperature and irradiance conditions. Plankton responses were assessed through chlorophyll a and bacterial abundance measurements. Prokaryotic DNA was analyzed using 16S rRNA gene partial sequencing. In summer, when nutrient concentrations were low in the ría, the addition of ash led to an increase in phytoplankton and bacterial abundance, increasing the proportions of Alteromonadales, Flavobacteriales, and the potentially pathogenic Vibrio, among other taxa. After the winter runoff events, nutrient concentrations in the Ría de Vigo were high, and only minor changes in bacterial abundance were detected. Our findings suggest that the compounds associated with wildfire ash can alter the composition of bacterioplanktonic communities, which is relevant information for the management of coastal ecosystems in fire-prone areas.
Collapse
Affiliation(s)
- Alberto Gutiérrez-Barral
- Centro de Investigación Mariña da Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, Vigo, Galicia, Spain.
| | - Eva Teira
- Centro de Investigación Mariña da Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, Vigo, Galicia, Spain
| | - Alexandra Díaz-Alonso
- Centro de Investigación Mariña da Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, Vigo, Galicia, Spain
| | - Maider Justel-Díez
- Centro de Investigación Mariña da Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, Vigo, Galicia, Spain
| | - Joeri Kaal
- Pyrolyscience, 15707, Santiago de Compostela, Spain
| | - Emilio Fernández
- Centro de Investigación Mariña da Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, Vigo, Galicia, Spain
| |
Collapse
|
4
|
Brauge T, Mougin J, Ells T, Midelet G. Sources and contamination routes of seafood with human pathogenic Vibrio spp.: A Farm-to-Fork approach. Compr Rev Food Sci Food Saf 2024; 23:e13283. [PMID: 38284576 DOI: 10.1111/1541-4337.13283] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
Vibrio spp., known human foodborne pathogens, thrive in freshwater, estuaries, and marine settings, causing vibriosis upon ingestion. The rising global vibriosis cases due to climate change necessitate a deeper understanding of Vibrio epidemiology and human transmission. This review delves into Vibrio contamination in seafood, scrutinizing its sources and pathways. We comprehensively assess the contamination of human-pathogenic Vibrio in the seafood chain, covering raw materials to processed products. A "Farm-to-Fork" approach, aligned with the One Health concept, is essential for grasping the complex nature of Vibrio contamination. Vibrio's widespread presence in natural and farmed aquatic environments establishes them as potential entry points into the seafood chain. Environmental factors, including climate, human activities, and wildlife, influence contamination sources and routes, underscoring the need to understand the origin and transmission of pathogens in raw seafood. Once within the seafood chain, the formation of protective biofilms on various surfaces in production and processing poses significant food safety risks, necessitating proper cleaning and disinfection to prevent microbial residue. In addition, inadequate seafood handling, from inappropriate processing procedures to cross-contamination via pests or seafood handlers, significantly contributes to Vibrio food contamination, thus warranting attention to reduce risks. Information presented here support the imperative for proactive measures, robust research, and interdisciplinary collaboration in order to effectively mitigate the risks posed by human pathogenic Vibrio contamination, safeguarding public health and global food security. This review serves as a crucial resource for researchers, industrials, and policymakers, equipping them with the knowledge to develop biosecurity measures associated with Vibrio-contaminated seafood.
Collapse
Affiliation(s)
- Thomas Brauge
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| | - Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, Nova Scotia, Canada
| | - Graziella Midelet
- ANSES, Laboratory for Food Safety, Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Boulogne sur Mer, France
| |
Collapse
|
5
|
He L, Yu Z, Xu X, Zhu J, Yuan Y, Cao X, Song X. Metabarcoding analysis identifies high diversity of harmful algal bloom species in the coastal waters of the Beibu Gulf. Ecol Evol 2023; 13:e10127. [PMID: 37223313 PMCID: PMC10202623 DOI: 10.1002/ece3.10127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Harmful algal blooms (HABs) have occurred more frequently in recent years. In this study, to investigate their potential impact in the Beibu Gulf, short-read and long-read metabarcoding analyses were combined for annual marine phytoplankton community and HAB species identification. Short-read metabarcoding showed a high level of phytoplankton biodiversity in this area, with Dinophyceae dominating, especially Gymnodiniales. Multiple small phytoplankton, including Prymnesiophyceae and Prasinophyceae, were also identified, which complements the previous lack of identifying small phytoplankton and those unstable after fixation. Of the top 20 phytoplankton genera identified, 15 were HAB-forming genera, which accounted for 47.3%-71.5% of the relative abundance of phytoplankton. Based on long-read metabarcoding, a total of 147 OTUs (PID > 97%) belonging to phytoplankton were identified at the species level, including 118 species. Among them, 37 species belonged to HAB-forming species, and 98 species were reported for the first time in the Beibu Gulf. Contrasting the two metabarcoding approaches at the class level, they both showed a predominance of Dinophyceae, and both included high abundances of Bacillariophyceae, Prasinophyceae, and Prymnesiophyceae, but the relative contents of the classes varied. Notably, the results of the two metabarcoding approaches were quite different below the genus level. The high abundance and diversity of HAB species were probably due to their special life history and multiple nutritional modes. Annual HAB species variation revealed in this study provided a basis for evaluating their potential impact on aquaculture and even nuclear power plant safety in the Beibu Gulf.
Collapse
Affiliation(s)
- Liyan He
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xin Xu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Jianan Zhu
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Yongquan Yuan
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental SciencesInstitute of Oceanology, Chinese Academy of SciencesQingdaoChina
- Functional Laboratory of Marine Ecology and Environmental ScienceLaoshan LaboratoryQingdaoChina
- Center for Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Zhu J, Tang S, Cheng K, Cai Z, Chen G, Zhou J. Microbial community composition and metabolic potential during a succession of algal blooms from Skeletonema sp. to Phaeocystis sp. Front Microbiol 2023; 14:1147187. [PMID: 37138603 PMCID: PMC10149697 DOI: 10.3389/fmicb.2023.1147187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Elucidating the interactions between algal and microbial communities is essential for understanding the dynamic mechanisms regulating algal blooms in the marine environment. Shifts in bacterial communities when a single species dominates algal blooms have been extensively investigated. However, bacterioplankton community dynamics during bloom succession when one algal species shift to another is still poorly understood. In this study, we used metagenomic analysis to investigate the bacterial community composition and function during algal bloom succession from Skeletonema sp. to Phaeocystis sp. The results revealed that bacterial community structure and function shifted with bloom succession. The dominant group in the Skeletonema bloom was Alphaproteobacteria, while Bacteroidia and Gammaproteobacteria dominated the Phaeocystis bloom. The most noticeable feature during the successions was the change from Rhodobacteraceae to Flavobacteriaceae in the bacterial communities. The Shannon diversity indices were significantly higher in the transitional phase of the two blooms. Metabolic reconstruction of the metagenome-assembled genomes (MAGs) showed that dominant bacteria exhibited some environmental adaptability in both blooms, capable of metabolizing the main organic compounds, and possibly providing inorganic sulfur to the host algae. Moreover, we identified specific metabolic capabilities of cofactor biosynthesis (e.g., B vitamins) in MAGs in the two algal blooms. In the Skeletonema bloom, Rhodobacteraceae family members might participate in synthesizing vitamin B1 and B12 to the host, whereas in the Phaeocystis bloom, Flavobacteriaceae was the potential contributor for synthesizing vitamin B7 to the host. In addition, signal communication (quorum sensing and indole-3-acetic acid molecules) might have also participated in the bacterial response to bloom succession. Bloom-associated microorganisms showed a noticeable response in composition and function to algal succession. The changes in bacterial community structure and function might be an internal driving factor for the bloom succession.
Collapse
Affiliation(s)
- Jianming Zhu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, China
| | - Si Tang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, China
- *Correspondence: Guofu Chen,
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
- Jin Zhou,
| |
Collapse
|
7
|
Heterogeneous Growth Enhancement of Vibrio cholerae in the Presence of Different Phytoplankton Species. Appl Environ Microbiol 2022; 88:e0115822. [PMID: 36000870 PMCID: PMC9469713 DOI: 10.1128/aem.01158-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is a ubiquitously distributed human pathogen that naturally inhabits marine and estuarine ecosystems. Two serogroups are responsible for causing cholera epidemics, O1 and O139, but several non-O1 and non-O139 V. cholerae (NOVC) strains can induce cholera-like infections. Outbreaks of V. cholerae have previously been correlated with phytoplankton blooms; however, links to specific phytoplankton species have not been resolved. Here, the growth of a NOVC strain (S24) was measured in the presence of different phytoplankton species, alongside phytoplankton abundance and concentrations of dissolved organic carbon (DOC). During 14-day experiments, V. cholerae S24 was cocultured with strains of the axenic phytoplankton species Actinocyclus curvatulus, Cylindrotheca closterium, a Pseudoscourfieldia sp., and a Picochlorum sp. V. cholerae abundances significantly increased in the presence of A. curvatulus, C. closterium, and the Pseudoscourfieldia sp., whereas abundances significantly decreased in the Picochlorum sp. coculture. V. cholerae growth was significantly enhanced throughout the cogrowth experiment with A. curvatulus, whereas when grown with C. closterium and the Pseudoscourfieldia sp., growth only occurred during the late stationary phase of the phytoplankton growth cycle, potentially coinciding with a release of DOC from senescent phytoplankton cells. In each of these cases, significant correlations between phytoplankton-derived DOC and V. cholerae cell abundances occurred. Notably, the presence of V. cholerae also promoted the growth of A. curvatulus and Picochlorum spp., highlighting potential ecological interactions. Variations in abundances of NOVC identified here highlight the potential diversity in V. cholerae-phytoplankton ecological interactions, which may inform efforts to predict outbreaks of NOVC in coastal environments. IMPORTANCE Many environmental strains of V. cholerae do not cause cholera epidemics but remain a public health concern due to their roles in milder gastrointestinal illnesses. With emerging evidence that these infections are increasing due to climate change, determining the ecological drivers that enable outbreaks of V. cholerae in coastal environments is becoming critical. Links have been established between V. cholerae abundance and chlorophyll a levels, but the ecological relationships between V. cholerae and specific phytoplankton species are unclear. Our research demonstrated that an environmental strain of V. cholerae (serogroup 24) displays highly heterogenous interactions in the presence of different phytoplankton species with a relationship to the dissolved organic carbon released by the phytoplankton species. This research points toward the complexity of the interactions of environmental strains of V. cholerae with phytoplankton communities, which we argue should be considered in predicting outbreaks of this pathogen.
Collapse
|
8
|
Geng Y, Peng C, Zhou W, Huang S, Zhou P, Wang Z, Qin H, Li D. Gradient rise in seepage pollution levels in tailings ponds shapes closer linkages between phytoplankton and bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129432. [PMID: 35753300 DOI: 10.1016/j.jhazmat.2022.129432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 05/14/2023]
Abstract
A large number of tailings ponds formed by slag accumulation have become serious environmental hazards. Spatially high potential energy and long-term accumulation may result in gradient-changing seepage pollution. The assemblages of phytoplankton and bacteria are widely used as assessment indicators. In this study, we investigate the changes in phytoplankton and bacterial assemblages in tailing pollution. The results showed that there are temporal and spatial variabilities in seepage pollution. The abundance and diversity of phytoplankton and bacteria decreased with increasing pollution. However, Synedra acus (diatom) and Polynucleobacter (bacteria) were positively correlated with pollution levels (r = 0.37, P < 0.05; r = 0.24, P < 0.05). Heavy metals are the main contributors to bacterial changes (16.46%), while nutrients are for algae (13.24%). Tailings pond pollution reduced the number of phytoplankton and bacterial linkages. However, more pollution broke the originally independent modules of phytoplankton and bacteria, and they produced more positive correlations (79.39%; 87.68%). Microcystis sp. and Limnobacter were the key nodes of the co-occurrence network in the polluted areas. Exploring the interactions between bacteria and phytoplankton within different pollution levels could provide insights into biological interaction patterns and the bioremediation of tailings ponds.
Collapse
Affiliation(s)
- Yuchen Geng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Weicheng Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Panpan Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hongjie Qin
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Lab of Comprehensive Innovative Utilization of Ornamental Plant Germplasm, Guangzhou 510640, China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|