1
|
Boarino A, Demichelis F, Vindrola D, Robotti E, Marengo E, Martin M, Deorsola F, Padoan E, Celi L. Bio-physical pre-treatments in anaerobic digestion of organic fraction of municipal solid waste to optimize biogas production and digestate quality for agricultural use. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:114-126. [PMID: 39182277 DOI: 10.1016/j.wasman.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
This study optimized the anaerobic digestion (AD) of separated collected organic fractions of municipal solid waste (OFMSW) to produce energy and digestate as biofertilizer. Due to OFMSW's partial recalcitrance to degradation, enzymatic (UPP2, MCPS, USC4, USE2, A. niger) and physical (mechanical blending, heating, hydrodynamic cavitation) pre-treatments were tested. Experimental and modeling approaches were used to compare AD performance regarding energy sustainability and digestate quality. Digestate was separated into solid and liquid fractions, and then chemically and physically characterized by investigating the nutrient release mechanisms. Principal Component Analysis was applied, equally weighing energy and digestate productions. Unlike previous studies focusing only on biogas, this study evaluated the effects of pre-treatments on both biogas and digestate production, viewing AD as a biorefinery process for urban waste valorization. Results showed that all pre-treatments were energetically sustainable, but enzymatic pre-treatments yielded digestates richer in nutrients (increase of 80% N, 200% P and 150% K as compared to OFMSW) and with greater organic matter degradation compared to physical pre-treatments. The liquid fraction of digestate from enzymatic pre-treatments had higher nutrient concentrations, while those from physical pre-treatments had more balanced nutrient content, making them more suitable for fertigation.
Collapse
Affiliation(s)
- Alice Boarino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| | - Francesca Demichelis
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Daniela Vindrola
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | - Maria Martin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| | - Fabio Deorsola
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Elio Padoan
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| | - Luisella Celi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy.
| |
Collapse
|
2
|
Zhang X, Arnold WA, Wright N, Novak PJ, Guest JS. Prioritization of Early-Stage Research and Development of a Hydrogel-Encapsulated Anaerobic Technology for Distributed Treatment of High Strength Organic Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19651-19665. [PMID: 39460990 PMCID: PMC11542886 DOI: 10.1021/acs.est.4c05389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
This study aims to support the prioritization of research and development (R&D) pathways of an anaerobic technology leveraging hydrogel-encapsulated biomass to treat high-strength organic industrial wastewaters, enabling decentralized energy recovery and treatment to reduce organic loading on centralized treatment facilities. To characterize the sustainability implications of early-stage design decisions and to delineate R&D targets, an encapsulated anaerobic process model was developed and coupled with design algorithms for integrated process simulation, techno-economic analysis, and life cycle assessment under uncertainty. Across the design space, a single-stage configuration with passive biogas collection was found to have the greatest potential for financial viability and the lowest life cycle carbon emission. Through robust uncertainty and sensitivity analyses, we found technology performance was driven by a handful of design and technological factors despite uncertainty surrounding many others. Hydraulic retention time and encapsulant volume were identified as the most impactful design decisions for the levelized cost and carbon intensity of chemical oxygen demand (COD) removal. Encapsulant longevity, a technological parameter, was the dominant driver of system sustainability and thus a clear R&D priority. Ultimately, we found encapsulated anaerobic systems with optimized fluidized bed design have significant potential to provide affordable, carbon-negative, and distributed COD removal from high strength organic wastewaters if encapsulant longevity can be maintained at 5 years or above.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department
of Civil and Environmental Engineering, University of Illinois Urbana–Champaign, 3221 Newmark Civil Engineering Laboratory,
205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - William A. Arnold
- Department
of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
| | - Natasha Wright
- Department
of Mechanical Engineering, University of
Minnesota, 111 Church
Street SE, Minneapolis, Minnesota 55455, United States
| | - Paige J. Novak
- Department
of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
| | - Jeremy S. Guest
- Department
of Civil and Environmental Engineering, University of Illinois Urbana–Champaign, 3221 Newmark Civil Engineering Laboratory,
205 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Institute
for Sustainability, Energy, and Environment, University of Illinois Urbana–Champaign, 1101 W. Peabody Drive, Urbana, Illinois 61801, United States
- DOE
Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana–Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Pinela J, Añibarro-Ortega M, Barros L. Food Waste Biotransformation into Food Ingredients: A Brief Overview of Challenges and Opportunities. Foods 2024; 13:3389. [PMID: 39517174 PMCID: PMC11545483 DOI: 10.3390/foods13213389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/06/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
In today's global context, challenges persist in preventing agri-food waste due to factors like limited consumer awareness and improper food-handling practices throughout the entire farm-to-fork continuum. Introducing a forward-thinking solution, the upcycling of renewable feedstock materials (i.e., agri-food waste and by-products) into value-added ingredients presents an opportunity for a more sustainable and circular food value chain. While multi-product cascade biorefining schemes show promise due to their greater techno-economic viability, several biotechnological hurdles remain to be overcome at many levels. This mini-review provides a succinct overview of the biotechnological and societal challenges requiring attention while highlighting valuable food-grade compounds derived from biotransformation processes. These bio-based ingredients include organic acids, phenolic compounds, bioactive peptides, and sugars and offer diverse applications as antioxidants, preservatives, flavorings, sweeteners, or prebiotics in foodstuffs and other consumer goods. Therefore, these upcycled products emerge as a sustainable alternative to certain potentially harmful artificial food additives that are still in use or have already been banned from the industry.
Collapse
Affiliation(s)
- José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.A.-O.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lágidos, Lugar da Madalena, 4485-655 Vairão, Vila do Conde, Portugal
| | - Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.A.-O.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.A.-O.); (L.B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
4
|
Lin F, Li W, Wang D, Hu G, Qin Z, Xia X, Hu L, Liu X, Luo R. Advances in succinic acid production: the enhancement of CO 2 fixation for the carbon sequestration benefits. Front Bioeng Biotechnol 2024; 12:1392414. [PMID: 38605985 PMCID: PMC11007169 DOI: 10.3389/fbioe.2024.1392414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Succinic acid (SA), one of the 12 top platform chemicals produced from biomass, is a precursor of various high value-added derivatives. Specially, 1 mol CO2 is assimilated in 1 mol SA biosynthetic route under anaerobic conditions, which helps to achieve carbon reduction goals. In this review, methods for enhanced CO2 fixation in SA production and utilization of waste biomass for SA production are reviewed. Bioelectrochemical and bioreactor coupling systems constructed with off-gas reutilization to capture CO2 more efficiently were highlighted. In addition, the techno-economic analysis and carbon sequestration benefits for the synthesis of bio-based SA from CO2 and waste biomass are analyzed. Finally, a droplet microfluidics-based high-throughput screening technique applied to the future bioproduction of SA is proposed as a promising approach.
Collapse
Affiliation(s)
| | | | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Wang X, Gong Y, Sun C, Wang Z, Sun Y, Yu Q, Zhang Y. New insights into inhibition of high Fe(III) content on anaerobic digestion of waste-activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170147. [PMID: 38242486 DOI: 10.1016/j.scitotenv.2024.170147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The impacts of the increased iron in the waste-activated sludge (WAS) on its anaerobic digestion were investigated. It was found that low Fe(III) content (< 750 mg/L) promoted WAS anaerobic digestion, while the continual increase of Fe(III) inhibited CH4 production and total chemical oxygen demand (TCOD) removal. As the Fe(III) content increased to 1470 mg/L, methane production has been slightly inhibited about 5 % compared with the group containing 35 mg/L Fe(III). Particularly, as Fe(III) concentration was up to 2900 mg/L, CH4 production, and TCOD removal decreased by 43.6 % and 37.5 %, respectively, compared with the group with 35 mg/L Fe(III). Furthermore, the percentage of CO2 of the group with 2900 mg/L Fe(III) decreased by 52.8 % compared with the group containing 35 mg/L Fe(III). It indicated that Fe(II) generated by the dissimilatory iron reduction might cause CO2 consumption, which was confirmed by X-ray diffraction that siderite (FeCO3) was generated in the group with 2900 mg/L Fe(III). Further study revealed that Fe(III) promoted the WAS solubilization and hydrolysis, but inhibited acidification and methane production. The methanogenesis test with H2/CO2 as a substrate showed that CO2 consumption weakened hydrogenotrophic methanogenesis and then increased H2 partial pressure, further causing VFA accumulation. Microbial community analysis indicated that the abundance of hydrogen-utilizing methanogens decreased with the high Fe(III) content. Our study suggested that the increase of Fe(III) in sludge might inhibit methanogenesis by consuming or precipitating CO2. To achieve maximum bioenergy conversion, the iron content should be controlled to lower than 750 mg/L. The study may provide new insights into the mechanistic understanding of the inhibition of high Fe(III) content on the anaerobic digestion of WAS.
Collapse
Affiliation(s)
- Xuepeng Wang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Yijing Gong
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Cheng Sun
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Zhenxin Wang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Ye Sun
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Qilin Yu
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China.
| | - Yaobin Zhang
- Dalian University of Technology, School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| |
Collapse
|
6
|
Al-Hazmi HE, Hassan GK, Kurniawan TA, Śniatała B, Joseph TM, Majtacz J, Piechota G, Li X, El-Gohary FA, Saeb MR, Mąkinia J. Technological solutions to landfill management: Towards recovery of biomethane and carbon neutrality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120414. [PMID: 38412730 DOI: 10.1016/j.jenvman.2024.120414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt.
| | | | - Bogna Śniatała
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, Toruń, 87-100, Poland
| | - Xiang Li
- School of Environmental Science & Engineering, Donghua Univerisity, Dept Env. Room 4155, 2999 North Renmin Rd, Songjiang District, Shanghai, China
| | - Fatma A El-Gohary
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416, Gdańsk, Poland
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| |
Collapse
|
7
|
El-Aidie SAM, Khalifa GSA. Innovative applications of whey protein for sustainable dairy industry: Environmental and technological perspectives-A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13319. [PMID: 38506186 DOI: 10.1111/1541-4337.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Industrial waste management is critical to maintaining environmental sustainability. The dairy industry (DI), as one of the major consumers of freshwater, generates substantial whey dairy effluent, which is notably rich in organic matter and thus a significant pollutant. The effluent represents environmental risks due to its high biological and chemical oxygen demands. Today, stringent government regulations, environmental laws, and heightened consumer health awareness are compelling industries to responsibly manage and reuse whey waste. Therefore, this study investigates sustainable solutions for efficiently utilizing DI waste. Employing a systematic review approach, the research reveals that innovative technologies enable the creation of renewable, high-quality, value-added food products from dairy byproducts. These innovations offer promising sustainable waste management strategies for the dairy sector, aligning with economic interests. The main objectives of the study deal with, (a) assessing the environmental impact of dairy sector waste, (b) exploring the multifaceted nutritional and health benefits inherent in cheese whey, and (c) investigating diverse biotechnological approaches to fashion value-added, eco-friendly dairy whey-based products for potential integration into various food products, and thus fostering economic sustainability. Finally, the implications of this work span theoretical considerations, practical applications, and outline future research pathways crucial for advancing the sustainable management of dairy waste.
Collapse
Affiliation(s)
- Safaa A M El-Aidie
- Dairy Technology Department, Animal Production Research Institute, Agricultural Research Centre, Giza, Egypt
| | | |
Collapse
|
8
|
Manikandan S, Vickram S, Subbaiya R, Karmegam N, Woong Chang S, Ravindran B, Kumar Awasthi M. Comprehensive review on recent production trends and applications of biochar for greener environment. BIORESOURCE TECHNOLOGY 2023; 388:129725. [PMID: 37683709 DOI: 10.1016/j.biortech.2023.129725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The suitability of biochar as a supplement for environmental restoration varies significantly based on the type of feedstocks used and the parameters of the pyrolysis process. This study comprehensively examines several aspects of biochar's potential benefits, its capacity to enhance crop yields, improve nutrient availability, support the co-composting, water restoration and enhance overall usage efficiency. The supporting mechanistic evidence for these claims is also evaluated. Additionally, the analysis identifies various gaps in research and proposes potential directions for further exploration to enhance the understanding of biochar application. As a mutually advantageous approach, the integration of biochar into agricultural contexts not only contributes to environmental restoration but also advances ecological sustainability. The in-depth review underscores the diverse suitability of biochar as a supplement for environmental restoration, contingent upon the specific feedstock sources and pyrolysis conditions used. However, concerns have been raised regarding potential impacts on human health within agricultural sectors.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692 Kitwe, Zambia
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India; Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
9
|
Zhong Y, He J, Duan S, Cai Q, Pan X, Zou X, Zhang P, Zhang J. Revealing the mechanism of novel nitrogen-doped biochar supported magnetite (NBM) enhancing anaerobic digestion of waste-activated sludge by sludge characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117982. [PMID: 37119625 DOI: 10.1016/j.jenvman.2023.117982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Anaerobic digestion (AD) is a promising technology in waste treatment and energy recovery. However, it suffers from long retention time and low biogas yield. In this study, novel nitrogen-doped biochar supported magnetite (NBM) was synthesized and applied to enhance the AD of waste-activated sludge. Results showed that NBM increased cumulative methane production and SCOD removal efficiency by up to 1.75 times and 15% respectively at 5 g/L compared with the blank. NBM enhanced both hydrolysis and methanogenesis process during AD and the activities of α-glucosidase, protease, coenzyme F420 and electron transport system were increased by 19%, 163%, 104% and 160% respectively at 5 g/L NBM compared with the blank. NBM also facilitated the secretion of conductive protein in extracellular polymeric substances as well as the formation of conductive pili, leading to 3.18-7.59 times higher sludge electrical conductivity. Microbial community analysis revealed that bacteria Clostridia and archaea Methanosarcina and Methanosaeta were enriched by the addition of NBM, and direct interspecies electron transfer might be promoted between them. This study provides a practical reference for future material synthesis and its application.
Collapse
Affiliation(s)
- Yijie Zhong
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China.
| | - Shengye Duan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Qiupeng Cai
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiang Zou
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Pengfei Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
10
|
Huang J, Wang C, Zhang S, Han X, Feng R, Li Y, Huang X, Wang J. Optimizing nitrogenous organic wastewater treatment through integration of organic capture, anaerobic digestion, and anammox technologies: sustainability and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27410-6. [PMID: 37261686 DOI: 10.1007/s11356-023-27410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
With China's recent commitment to reducing carbon emissions and achieving carbon neutrality, anaerobic digestion and anaerobic ammonium oxidation (anammox) have emerged as promising technologies for treating nitrogenous organic wastewater. Anaerobic digestion can convert organic matter into volatile fatty acids (VFAs), methane, and other chemicals, while anammox can efficiently remove nitrogen with minimal energy consumption. This study evaluates the principles and characteristics of enhanced chemical flocculation and bioflocculation, as well as membrane separation, for capturing organic matter. Additionally, the paper evaluates the production of acids and methane from anaerobic digestion, exploring the influence of various factors and the need for control strategies. The features, challenges, and concerns of partial nitrification-anammox (PN/A) and partial denitrification-anammox (PD/A) are also outlined. Finally, an integrated system that combined organic capture, anaerobic digestion, and anammox is proposed as a sustainable and effective solution for treating nitrogenous organic wastewater and recovering energy and resources.
Collapse
Affiliation(s)
- Jianming Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
| | - Rongfei Feng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Yang Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiaoyan Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| |
Collapse
|
11
|
Sequeda Barros R, Durán Contreras M, Romani Morris F, Vanegas Chamorro M, Albis Arrieta A. Evaluation of the methanogenic potential of anaerobic digestion of agro-industrial wastes. Heliyon 2023; 9:e14317. [PMID: 36938458 PMCID: PMC10018565 DOI: 10.1016/j.heliyon.2023.e14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Waste management technologies have become a way to generate value-added products. Anaerobic digestion (AD) allows biogas generation by treating organic wastes. In this work, the methanogenic potentials of anaerobic digestion of rumen and chicken manure, two typical agro-industrial wastes from the Colombian Caribbean region, were evaluated. On a first stage, the effect of temperature on anaerobic digestion of manure inoculated with liquid rumen was measured. Results revealed that the thermophilic digestion produces more biogas (up to 47% higher than the mesophilic digestion), but the mesophilic digestion has better biogas quality (up to 20% more methane than the thermophilic digestion). On the second experimental stage, it was assessed the effect of temperature regimen and the addition of fat-oil-grease (FOG) on cumulative biogas production, methane percentage, and physicochemical parameters. It was found that the anaerobic digestion of the rumen with FOG in mesophilic conditions had the best performance in terms of quantity and quality of biogas (2520 NL CH4/kg VS, CH4 93%, H2S 1 mg/L, H2O 16 mg/L). Finally, rumen and manure had methane concentrations above 40% in all cases studied, after 60 days of anaerobic digestion. It was concluded that rumen and manure are good candidates for biogas generation.
Collapse
Affiliation(s)
- Rodrigo Sequeda Barros
- Research Group KAÍ, Department of Chemical Engineering, Universidad del Atlántico, Puerto Colombia, Barranquilla Metropolitan Area-081007, Atlántico, Colombia
| | - Michel Durán Contreras
- Research Group KAÍ, Department of Chemical Engineering, Universidad del Atlántico, Puerto Colombia, Barranquilla Metropolitan Area-081007, Atlántico, Colombia
| | - Felipe Romani Morris
- Research Group KAÍ, Department of Chemical Engineering, Universidad del Atlántico, Puerto Colombia, Barranquilla Metropolitan Area-081007, Atlántico, Colombia
| | - Marley Vanegas Chamorro
- Research Group KAÍ, Department of Chemical Engineering, Universidad del Atlántico, Puerto Colombia, Barranquilla Metropolitan Area-081007, Atlántico, Colombia
- Corresponding author.
| | - Alberto Albis Arrieta
- Research Group Bioprocess, Department of Chemical Engineering, Universidad del Atlántico, Puerto Colombia, Barranquilla Metropolitan Area-081007, Atlántico, Colombia
| |
Collapse
|
12
|
Qian J, Zheng P. Fixation of CO2 from ethanol fermentation for succinic acid production in a dual-chamber bioreactor system. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Narisetty V, Adlakha N, Kumar Singh N, Dalei SK, Prabhu AA, Nagarajan S, Naresh Kumar A, Amruthraj Nagoth J, Kumar G, Singh V, Kumar V. Integrated biorefineries for repurposing of food wastes into value-added products. BIORESOURCE TECHNOLOGY 2022; 363:127856. [PMID: 36058538 DOI: 10.1016/j.biortech.2022.127856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Food waste (FW) generated through various scenarios from farm to fork causes serious environmental problems when either incinerated or disposed inappropriately. The presence of significant amounts of carbohydrates, proteins, and lipids enable FW to serve as sustainable and renewable feedstock for the biorefineries. Implementation of multiple substrates and product biorefinery as a platform could pursue an immense potential of reducing costs for bio-based process and improving its commercial viability. The review focuses on conversion of surplus FW into range of value-added products including biosurfactants, biopolymers, diols, and bioenergy. The review includes in-depth description of various types of FW, their chemical and nutrient compositions, current valorization techniques and regulations. Further, it describes limitations of FW as feedstock for biorefineries. In the end, review discuss future scope to provide a clear path for sustainable and net-zero carbon biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- Innovation Centre, Moolec Science Pvt. Ltd., Gallow Hill, Warwick CV34 6UW, United Kingdom
| | - Nidhi Adlakha
- Synthetic Biology and Bioprocessing Group, Regional Centre for Biotechnology, NCR-Biotech Cluster, Faridabad, India
| | - Navodit Kumar Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New-Delhi 110016, India
| | - Sudipt Kumar Dalei
- Synthetic Biology and Bioprocessing Group, Regional Centre for Biotechnology, NCR-Biotech Cluster, Faridabad, India
| | - Ashish A Prabhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Sanjay Nagarajan
- Sustainable Environment Research Centre, University of South Wales, Pontypridd CF37 4BB, United Kingdom
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Joseph Amruthraj Nagoth
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Vijai Singh
- Department of Biosciences, Indrashil University, Rajpur, Gujarat, India
| | - Vinod Kumar
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
14
|
Ma X, Gao M, Li Y, Wang Q, Sun X. Production of cellulase by Aspergillus niger through fermentation of spent mushroom substance: Glucose inhibition and elimination approaches. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Dattatraya Saratale G, Rajesh Banu J, Nastro RA, Kadier A, Ashokkumar V, Lay CH, Jung JH, Seung Shin H, Ganesh Saratale R, Chandrasekhar K. Bioelectrochemical systems in aid of sustainable biorefineries for the production of value-added products and resource recovery from wastewater: A critical review and future perspectives. BIORESOURCE TECHNOLOGY 2022; 359:127435. [PMID: 35680092 DOI: 10.1016/j.biortech.2022.127435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Bioelectrochemical systems (BES) have the potential to be used in a variety of applications such as waste biorefinery, pollutants removal, CO2 capture, and the electrosynthesis of clean and renewable biofuels or byproducts, among others. In contrast, many technical challenges need to be addressed before BES can be scaled up and put into real-world applications. Utilizing BES, this review article presents a state-of-the-art overall view of crucial concepts and the most recent innovative results and achievements acquired from the BES system. Special attention is placed on a hybrid approach for product recovery and wastewater treatment. There is also a comprehensive overview of waste biorefinery designs that are included. In conclusion, the significant obstacles and technical concerns found throughout the BES studies are discussed, and suggestions and future requirements for the virtual usage of the BES concept in actual waste treatment are outlined.
Collapse
Affiliation(s)
- Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Rosa Anna Nastro
- Department of Science and Technology, University Parthenope of Naples- Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Chyi-How Lay
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung 40724, Taiwan
| | - Ju-Hyeong Jung
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Han Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, South Korea
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi-522213, Guntur, Andhra Pradesh, India.
| |
Collapse
|
16
|
Muhorakeye A, Cayetano RD, Kumar AN, Park J, Pandey AK, Kim SH. Valorization of pretreated waste activated sludge to organic acids and biopolymer. CHEMOSPHERE 2022; 303:135078. [PMID: 35644235 DOI: 10.1016/j.chemosphere.2022.135078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Polyhydroxybutyrate (PHB) is a natural polyester that may be made by utilizing volatile fatty acids (VFAs) as a substrate. VFA generated by continuous anaerobic fermentation of waste activated sludge (WAS) was fed into bioreactors for PHB synthesis in this work. Series of optimization tests were conducted to increase the biodegradability and hydrolysis of waste activated sludge. It was found out that 0.05 g/g TS of SDBS (sodium dodecylbenzene sulfonate), 70 °C (heat treatment) and 2hr (time) as pretreatment condition would give the highest solubilization. Impact of pH adjustment on the acidogenesis of pretreated WAS was evaluated in batch experiments at varying initial pH (4-10). The result indicated that when operational pH was between 7.5 and 8, the VFA yield was increased by 5.3-18.1%. Continuous acidogenic operation validated the SDBS pretreatment and pH adjustment warranted stable VFA conversion from WAS at a yield of 47% in COD basis. Firmicutes, Actinobacteria and Proteobacteria were affiliated as dominant bacterial phyla in the continuous acidogenesis. The effluent of the continuous acidogenesis was converted to biopolymer with the average yields of 0.23 g PHB-COD/g VFAadded-COD in the feast mode and 0.34 g PHB-COD/g VFAadded-COD in the famine mode. In feast and famine cycle, the average VFA utilization was 55% and 60% respectively. The sequential SDBS pretreatment, acidogenesis and PHB production would produce 162 g of PHB from 1 kg of WAS as COD basis.
Collapse
Affiliation(s)
- Alice Muhorakeye
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Roent Dune Cayetano
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | - Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
17
|
Mehrez I, Chandrasekhar K, Kim W, Kim SH, Kumar G. Comparison of alkali and ionic liquid pretreatment methods on the biochemical methane potential of date palm waste biomass. BIORESOURCE TECHNOLOGY 2022; 360:127505. [PMID: 35750119 DOI: 10.1016/j.biortech.2022.127505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Date palm waste biomass is a readily accessible agricultural waste biomass that may be used to produce biogas. Because the complex structure of date palm waste biomass prevents the embedded holo-cellulosic sugars from biodegrading, pretreatment is required to increase methane (CH4) yield. The present investigation aimed to comparatively determine the impact of alkali and ionic liquid pretreatment on the biochemical methane potential (BMP) of different types of date palm waste biomass. The findings revealed that ionic liquid pretreated Palm and Fruit bunch showed the highest BMP (321.67 mL CH4/g-TS) and substrate conversion efficiency (68.01%), respectively, over other biomass samples. In alkali pretreatment, the highest BMP and substrate conversion efficiency were detected with Palm (309.76 mL CH4/g-TS) and Spathe (62.09%). The high BMP and substrate conversion efficiency of date palm waste biomass may be harnessed for bioenergy production when this ionic liquid pretreatment technology is used.
Collapse
Affiliation(s)
- Ikram Mehrez
- Laboratory of Energy, Environment, and Information Systems, Faculty of Sciences and Technology, Adrar University, 01000 Adrar, Algeria
| | - K Chandrasekhar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi 522213, Guntur, Andhra Pradesh, India
| | - Woojoong Kim
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway.
| |
Collapse
|
18
|
Kumar R, Kumar R, Brar SK, Kaur G. Next-generation -omics approaches to drive carboxylate production by acidogenic fermentation of food waste: a review. Bioengineered 2022; 13:14987-15002. [PMID: 37105768 PMCID: PMC10234218 DOI: 10.1080/21655979.2023.2180583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 04/29/2023] Open
Abstract
Acidogenic fermentation of food waste using mixed microbial cultures can produce carboxylates [or volatile fatty acids (VFA)] as high-valued bioproducts via a complex interplay of microorganisms during different stages of this process. However, the present fermentation systems are incapable of reaching the industrially relevant VFA production yields of ≥50 g/L primarly due to the complex process operation, competitive metabolic pathways, and limited understanding of microbial interplays. Recent reports have demonstrated the significant roles played by microbial communities from different phyla, which work together to control the process kinetics of various stages underlying acidogenic fermentation. In order to fully delineate the abundance, structure, and functionality of these microbial communities, next-generation high-throughput meta-omics technologies are required. In this article, we review the potential of metagenomics and metatranscriptomics approaches to enable microbial community engineering. Specifically, a deeper analysis of taxonomic relationships, shifts in microbial communities, and differences in the genetic expression of key pathway enzymes under varying operational and environmental parameters of acidogenic fermentation could lead to the identification of species-level functionalities for both cultivable and non-cultivable microbial fractions. Furthermore, it could also be used for successful gene sequence-guided microbial isolation and consortium development for bioaugmentation to allow VFA production with high concentrations and purity. Such highly controlled and engineered microbial systems could pave the way for tailored and high-yielding VFA synthesis, thereby creating a petrochemically competitive waste-to-value chain and promoting the circular bioeconomy.Research HighlightsMixed microbial mediated acidogenic fermentation of food waste.Metagenomics and metatranscriptomics based microbial community analysis.Omics derived function-associated microbial isolation and consortium engineering.High-valued sustainable carboxylate bio-products, i.e. volatile fatty acids.
Collapse
Affiliation(s)
- Reema Kumar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| | - Rajat Kumar
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Satinder K. Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| | - Guneet Kaur
- Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Saavedra Del Oso M, Regueira A, Hospido A, Mauricio-Iglesias M. Fostering the valorization of organic wastes into carboxylates by a computer-aided design tool. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 142:101-110. [PMID: 35183896 DOI: 10.1016/j.wasman.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
The carboxylate platform has the potential to constitute an outstanding opportunity for converting organic wastes into chemicals and other value-added products within a circular economy framework. However, its development is still hampered by technological and financial constraints due to difficulties at forecasting the carboxylates yields by different wastes. This work provides a framework that can be the key to foster circular economy and bridge the development risks, allowing early-stage evaluation of process performance. This framework, which is implemented as a computer-aided design tool, is comprised by: (i) a library of substrates including their characterization and appropriate kinetic parameter selection, (ii) an integral kinetic and stoichiometric model which solves both identified gaps regarding the disintegration mechanisms and the acidogenic stoichiometry variability in the anaerobic mono and cofermentation of complex organic wastes, and (iii) a set of indicators to interpret simulation results and assist the decision making; and presents a showcase of applications supported by two case studies. These case studies show that the optimal conditions to steer VFA spectrum towards odd-chain VFA in MCF of regrind pasta are neutral pH (6.5-7) and a relatively low HRT (3-4 days), while cofermentation of tuna canning wastewater and regrind pasta follows interactive mechanisms that cannot be captured by a "naïve approach", i.e. by adding up the individual contributions. Finally, it is discussed how value chain actors with different interests can benefit from the proposed tool: identifying technical, economic, and environmental bottlenecks, and proposing innovative solutions prior to costly lab research and piloting.
Collapse
Affiliation(s)
- Mateo Saavedra Del Oso
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alberte Regueira
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Center for Microbiology Ecology and Technology (CMET), Ghent University, Coupure Links 653, Ghent 9000, Belgium; CAPTURE (www.capture-resources.be), Coupure Links 653, Ghent 9000, Belgium
| | - Almudena Hospido
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Mauricio-Iglesias
- CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
20
|
Singh M, Mal N, Mohapatra R, Bagchi T, Parambath SD, Chavali M, Rao KM, Ramanaiah SV, Kadier A, Kumar G, Chandrasekhar K, Kim SH. Recent biotechnological developments in reshaping the microalgal genome: A signal for green recovery in biorefinery practices. CHEMOSPHERE 2022; 293:133513. [PMID: 34990720 DOI: 10.1016/j.chemosphere.2022.133513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
The use of renewable energy sources as a substitute for nonrenewable fossil fuels is urgently required. Algae biorefinery platform provides an excellent alternate to overcome future energy problems. However, to let this viable biomass be competent with existing feedstocks, it is necessary to exploit genetic manipulation and improvement in upstream and downstream platforms for optimal bio-product recovery. Furthermore, the techno-economic strategies further maximize metabolites production for biofuel, biohydrogen, and other industrial applications. The experimental methodologies in algal photobioreactor promote high biomass production, enriched in lipid and starch content in limited environmental conditions. This review presents an optimization framework combining genetic manipulation methods to simulate microalgal growth dynamics, understand the complexity of algal biorefinery to scale up, and identify green strategies for techno-economic feasibility of algae for biomass conversion. Overall, the algal biorefinery opens up new possibilities for the valorization of algae biomass and the synthesis of various novel products.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| | - Navonil Mal
- Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Reecha Mohapatra
- Department of Life Sciences, NIT Rourkela, 769008, Odisha, India
| | - Trisha Bagchi
- Department of Botany, West Bengal State University, Barasat, 700126, West Bengal, India
| | | | - Murthy Chavali
- Office of the Dean (Research) & Division of Chemistry, Department of Science, Faculty of Science & Technology, Alliance University (Central Campus), Chandapura-Anekal Main Road, Bengaluru, 562106, Karnataka, India; NTRC-MCETRC and 109 Nano Composite Technologies Pvt. Ltd., Guntur District, 522201, Andhra Pradesh, India
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea; Department of Automotive Lighting Convergence Engineering, Yeungnam University, 280 Daehak-ro, Joyeong-dong, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - S V Ramanaiah
- Food and Biotechnology Research Lab, South Ural State University (National Research University), 454080, Chelyabinsk, Russian Federation
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Material and Opto-electronic Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
21
|
Narisetty V, R. R, Maitra S, Tarafdar A, Alphy MP, Kumar AN, Madhavan A, Sirohi R, Awasthi MK, Sindhu R, Varjani S, Binod P. Waste-Derived Fuels and Renewable Chemicals for Bioeconomy Promotion: A Sustainable Approach. BIOENERGY RESEARCH 2022; 16:16-32. [PMID: 35350609 PMCID: PMC8947955 DOI: 10.1007/s12155-022-10428-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Bio-based fuels and chemicals through the biorefinery approach has gained significant interest as an alternative platform for the petroleum-derived processes as these biobased processes are noticed to have positive environmental and societal impacts. Decades of research was involved in understanding the diversity of microorganisms in different habitats that could synthesize various secondary metabolites that have functional potential as fuels, chemicals, nutraceuticals, food ingredients, and many more. Later, due to the substrate-related process economics, the diverse low-value, high-carbon feedstocks like lignocellulosic biomass, industrial byproducts, and waste streams were investigated to have greater potential. Among them, municipal solid wastes can be used as the source of substrates for the production of commercially viable gaseous and liquid fuels, as well as short-chain fattyacids and carboxylic acids. In this work, technologies and processes demanding the production of value-added products were explained in detail to understand and inculcate the value of municipal solid wastes and the economy, and it can provide to the biorefinery aspect.
Collapse
Affiliation(s)
- Vivek Narisetty
- Moolec Science, Innovation Centre, Gallows Hill, Warwick, CV34 6UW UK
| | - Reshmy R.
- Department of Science and Humanities, Providence College of Engineering, Chengannur, 689 122 Kerala India
| | - Shraddha Maitra
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122 Uttar Pradesh India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019 Kerala India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| | - A. Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742 USA
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Jagathy, Trivandrum 695 014 India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, 9 , Seongbuk-gu, Seoul 02841 South Korea
- Centre for Energy and Environmental Sustainabilty, Lucknow, 226001 Uttar Pradesh India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712 100 Shaanxi China
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam, 691 505 Kerala India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Paryavaran Bhavan, CHH Road, Sector 10 A, Gandhinagar, 382010 Gujarat India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695 019 Kerala India
| |
Collapse
|