1
|
Liang W, Zhang W, Shao X, Gong K, Su C, Zhang W, Peng C. Organic matters adsorbed on goethite inhibited the heterogeneous aggregation and adsorption of CdSe quantum dots: Experiments and extended DLVO theory. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133769. [PMID: 38359758 DOI: 10.1016/j.jhazmat.2024.133769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The widespread use of Cd-based quantum dots (Cd-QDs) has led to their inevitable release into the environment, and the prevalent iron oxides and natural organic matter (NOM) are the key factors affecting the environmental behavior and fate of Cd-QDs. However, the impact of NOM adsorbed on iron oxides on the behavior of Cd-QDs with iron oxides and the mechanism of its interaction are not clear. In this study, two kinds of water-soluble QDs (CdSe QDs and core-shell CdSe/ZnS QDs) were selected to study the aggregation and adsorption behavior on goethite (Goe) and goethite-humic acid/fulvic acid composites (Goe-HA/FA). Aggregation kinetics and adsorption experiments between QDs and Goe(-HA/FA), characterization, and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory calculations indicated that electrostatic interaction was the dominant force for QDs adsorption on Goe(-HA/FA). HA/FA changed the surface charge of Goe and increased the electrostatic repulsion and steric hindrance between the particles, which in turn inhibited the adsorption of QDs on Goe. Besides, unsubstituted aromatic carbons, carboxy carbons, and carbonyl carbons played an important role in the adsorption process, and chemisorption occurred between QDs and Goe(-HA/FA). Our findings are important for better assessing the transport, fate, and potential environmental impacts and risks of Cd-QDs in iron-rich environments.
Collapse
Affiliation(s)
- Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kailin Gong
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengpeng Su
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
3
|
Zhang Q, Yuan P, Liang W, Qiao Z, Shao X, Zhang W, Peng C. Exogenous iron alters uptake and translocation of CuO nanoparticles in soil-rice system: A life cycle study. ENVIRONMENT INTERNATIONAL 2022; 168:107479. [PMID: 36007301 DOI: 10.1016/j.envint.2022.107479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
The abundant iron in farmland soil may affect the environmental fate of metal-based nanoparticles (MNPs). In this study, the effect of FeSO4 and nano-zero-valent iron (nZVI) as exogenous iron on the uptake and translocation of CuO nanoparticles (NPs) in soil-rice system was performed in a life cycle study. The results show that exogenous iron basically elevated the soil pH and electrical conductivity but lowered the redox potential. Moreover, the Cu bioavailability in soil was significantly increased by 86-269% with exogenous iron at the tillering stage, while was reduced by 15-45% with medium and high concentrations of Fe(II) at the maturation stage. Meanwhile, the addition of exogenous iron resolved the unfilling of grains caused by CuO NPs. Notably, except for highest Fe(II) treatment, both Fe(II) and nZVI reduced Cu accumulation from 31% to 84% in roots and leaves due to more iron plaque. Especially, medium Fe(II) level markedly decreased the Cu content in the brown rice. μ-XRF analysis suggests that high intensity of Cu was primarily located in the rice hull and embryo under Fe(II) treatment. The reduction of CuO NPs to Cu2O caused by Fe(II) can explain the positive effect of exogenous iron on controlling the environmental risk of MNPs.
Collapse
Affiliation(s)
- Qi Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peng Yuan
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuechun Shao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Takeshita V, Carvalho LB, Galhardi JA, Munhoz-Garcia GV, Pimpinato RF, Oliveira HC, Tornisielo VL, Fraceto LF. Development of a Preemergent Nanoherbicide: From Efficiency Evaluation to the Assessment of Environmental Fate and Risks to Soil Microorganisms. ACS NANOSCIENCE AU 2022; 2:307-323. [PMID: 37102067 PMCID: PMC10125138 DOI: 10.1021/acsnanoscienceau.1c00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Nanoparticles based on biodegradable polymers have been shown to be excellent herbicide carriers, improving weed control and protecting the active ingredient in the crop fields. Metribuzin is often found in natural waters, which raises environmental concerns. Nanoencapsulation of this herbicide could be an alternative to reduce its losses to the environment and improve gains in its efficiency. However, there is a paucity of information about the behavior of nanoformulations of herbicides in environmental matrices. In this study, the stability of nanoencapsulated metribuzin in polymeric nanoparticles (nanoMTZ) was verified over time, as well as its dissipation in different soils, followed by the effects on soil enzymatic activity. The physiological parameters and control effects of nanoMTZ on Ipomoea grandifolia plants were investigated. No differences were verified in the half-life of nanoencapsulated metribuzin compared to a commercial formulation of the herbicide. Moreover, no suppressive effects on soil enzymatic activities were observed. The retention of nanoMTZ in the tested soils was lower compared to its commercial analogue. However, the mobility of nanoencapsulated metribuzin was not greatly increased, reflecting a low risk of groundwater contamination. Weed control was effective even at the lowest dose of nanoMTZ (48 g a.i. ha-1), which was consistent with the higher efficiency of nanoMTZ compared to the conventional herbicide in inhibiting PSII activity and decreasing pigment levels. Overall, we verified that nanoMTZ presented a low environmental risk, with increased weed control.
Collapse
Affiliation(s)
- Vanessa Takeshita
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Lucas Bragança Carvalho
- Institute
of Science and Technology, São Paulo
State University (UNESP), Av. Três de Março
511, 18087-180 Sorocaba, SP, Brazil
| | - Juliana Aparecida Galhardi
- Institute
of Science and Technology, São Paulo
State University (UNESP), Av. Três de Março
511, 18087-180 Sorocaba, SP, Brazil
| | | | - Rodrigo Floriano Pimpinato
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Halley Caixeta Oliveira
- Department
of Animal and Plant Biology, State University
of Londrina, PR 445,
km 380, 86057-970 Londrina, PR, Brazil
| | - Valdemar Luiz Tornisielo
- Center
of Nuclear Energy in Agriculture, University
of São Paulo, Av. Centenário 303, 13400-970 Piracicaba, SP, Brazil
| | - Leonardo Fernandes Fraceto
- Institute
of Science and Technology, São Paulo
State University (UNESP), Av. Três de Março
511, 18087-180 Sorocaba, SP, Brazil
| |
Collapse
|
5
|
Cao X, Xu L, Chen YP, Decho AW, Cui Z, Lead JR. Contribution, Composition, and Structure of EPS by In Vivo Exposure to Elucidate the Mechanisms of Nanoparticle-Enhanced Bioremediation to Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:896-906. [PMID: 34983180 DOI: 10.1021/acs.est.1c05326] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial extracellular polymeric substances (EPS) have been recently found to contribute most for metal removal in nanoenhanced bioremediation. However, the mechanism by which NPs affect EPS-metal interactions is not fully known. Here, Halomonas sp. was employed to explore the role of EPS after in vivo exposure to Cd/Pb and polyvinylpyrrolidone (PVP) coated iron oxide nanoparticles (IONPs, 20 mg L-1) for 72 h. Cd-IONPs produced the highest concentrations of EPS proteins (136.3 mg L-1), while Cd induced the most production of polysaccharides (241.0 mg L-1). IONPs increased protein/polysaccharides ratio from 0.2 (Cd) to 1.2 (Cd-IONPs). The increased protein favors the formation of protein coronas on IONPs surface, which would promote Cd adsorption during NP-metal-EPS interaction. FTIR analysis indicated that the coexistence of Cd and IONPs interacted with proteins more strongly than with polysaccharides. Glycosyl monomer analyses suggested mannose and glucose as target sugars for EPS complexation with metals, and IONPs reduced metal-induced changes in monosaccharide profiles. Protein secondary structures changed in all treatments, but we could not distinguish stresses induced by metals from those by IONPs. These findings provide greater understanding of the role of EPS in NP-metal-EPS interaction, providing a better underpinning knowledge for the application of NP-enhanced bioremediation.
Collapse
Affiliation(s)
- Xiufeng Cao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Liang Xu
- Shandong Taixing Advanced Material Co., LTD., Shandong Energy Group, Jinan, 250204, PR China
| | - Yung Pin Chen
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jamie R Lead
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|