1
|
Yang L, Yang W, Li Q, Zhao Z, Zhou H, Wu P. Microplastics in Agricultural Soils: Sources, Fate, and Interactions with Other Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40377166 DOI: 10.1021/acs.jafc.5c03682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Microplastics (MPs) are recognized as emerging soil contaminants. However, the potential risks of MPs to agroecosystems have not been fully revealed, especially the compound toxic effects of MPs with co-existing organic or inorganic pollutants (OPs/IPs) in agricultural fields. In this study, we quantified the contributions of different agronomic practices to the sources of MPs in soil and highlighted the important influences of long-term tillage and fertilization on the migration and aging of MPs in agricultural fields. In addition, the antagonistic and synergistic interactions between MPs and OPs/IPs in soil were explored. We emphasized that the degree of adsorption of MPs and soil particles to OPs/IPs is a key determinant of the co-toxicity of those contaminants in soil. Finally, several directions for future research are proposed, and these knowledge gaps provide an important basis for understanding the contamination process of MPs in agricultural soils.
Collapse
Affiliation(s)
- Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Qihang Li
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Sajjad M, Bahadur S, Farooq MA, Ren MX. Interactive impacts of heat stress and microplastics contamination on the growth and biochemical response of wheat (Triticum aestivum) and maize (Zea mays) plants. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02892-x. [PMID: 40353938 DOI: 10.1007/s10646-025-02892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
The increasing global temperatures, driven largely by anthropogenic activities, pose a significant threat to crops worldwide, with heat stress (HS) emerging as one of the most severe challenges to agricultural productivity. Among the numerous human-induced pressures threatening terrestrial ecosystems globally, microplastics (MPs) represent one of the most persistent and urgent concerns. This study investigated the effects of heat stress (HS) at 35 °C and 40 °C (12 h exposure) on wheat (Triticum aestivum) and maize (Zea mays) grown in soil contaminated with polyethylene microplastics (PE-MPs; 0.01%, 0.1%, and 1% w/w), assessing their physiological and biochemical responses. The results indicated a significant (p < 0.05) reduction in plant height, root length, leaf area, chlorophyll content, and biomass of the selected plants due to MPs application. HS alone and in co-exposure with MPs caused damage to plant tissues as shown by significant (p < 0.05) reactive oxygen species (ROS) production, and lipid peroxidation. Under ROS induction, proline and antioxidant enzymes (CAT, POD, SOD) exhibited significantly (p < 0.05) higher levels in combined stress (HS + MPs) than in individual treatments. In conclusion, wheat exhibited higher levels of H2O2 and MDA stress markers indicating increased oxidative stress compared to maize. In contrast, maize showed elevated levels of proline, CAT, POD, and SOD, suggesting greater resistance to environmental stresses than wheat. Our results provide new understandings of sustainable agriculture practices and hold vast promise in addressing the challenges of HS and MP stresses in agricultural soils.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou, China
| | - Muhammad Aamir Farooq
- Key Laboratory for Quality Regulation of Tropical Horticulture Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Ming-Xun Ren
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China.
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, China.
| |
Collapse
|
3
|
Zhang L, Shi A, Yuan C, Wang S, Zhou Y, Liu X, Chu J, Yao X. Microplastics impacts the toxicity of antibiotics on Pinellia ternata: An exploration of their effects on photosynthesis, oxidative stress homeostasis, secondary metabolism, the AsA-GSH cycle, and metabolomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109883. [PMID: 40199164 DOI: 10.1016/j.plaphy.2025.109883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Antibiotics and microplastics (MPs) are two new types of contaminants that are widely existent in agricultural systems. MPs could act as carriers of antibiotics, and affect the bioavailability and degradation of antibiotics, causing a combined effect on plant growth. The aim of the present experiment was to explore the effects of the treatments of oxytetracycline (OTC, 100 mg kg-1) alone and in combination with polyethylene microplastics (PE-MPs, 0.1 %, 1 %, 3 %) on P. ternata phenotypic parameters, photosynthetic system, reactive oxygen species (ROS), secondary metabolism, ascorbate-glutathione (AsA-GSH) cycle, and metabolomics. Results demonstrated that exposure to OTC alone reduced P. ternata fresh weight by causing oxidative damage, reducing photosynthetic pigment and secondary metabolite contents. OTC + MP0.1 group alleviated OTC stress to P. ternata by increasing photosynthetic pigment contents and antioxidant enzyme activities. OTC + MP3 group significantly reduced plant height of P. ternata. In addition, metabolomics analysis showed that OTC treatment interfered with pantothenate and CoA biosynthesis. The OTC + MP0.1 group activated pantothenate and CoA biosynthesis and glutathione metabolism. The significance of this study lies in clarifying the effects of OTC on medicinal plants and whether its influence mechanism is regulated by the concentration of MPs.
Collapse
Affiliation(s)
- Lulu Zhang
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Aoyue Shi
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Chengwei Yuan
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China
| | - Shuhan Wang
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yanru Zhou
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xuze Liu
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Jianzhou Chu
- The School of Life Sciences, Hebei University, Baoding, 071002, China
| | - Xiaoqin Yao
- The School of Life Sciences, Hebei University, Baoding, 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China.
| |
Collapse
|
4
|
Yang R, Cui Y, Cheng L, Hu M, Guan M, Fu Y, Zhang Y. Exposure to polyethylene terephthalate microplastics induces reprogramming of flavonoids metabolism and gene regulatory networks in Capsicum annuum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118022. [PMID: 40088606 DOI: 10.1016/j.ecoenv.2025.118022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Micro/Nano-plastics (M/NPs) have emerged as a globally concerning pollutant. However, research on the phytotoxicity of M/NPs on plant secondary metabolism and the underlying molecular mechanisms is still limited. Pepper, a widely cultivated vegetable, is rich in flavonoids, which are a class of important secondary metabolites found throughout the plant kingdom with multiple biological functions. In this study, we conducted a detailed assessment of the physiological toxicity of Polyethylene Terephthalate microplastics (PET-MPs) on the growth of pepper seedlings. Results showed that PET-MPs significantly inhibited pepper growth, particularly root development. Moreover, PET-MPs exposure resulted in a burst of ROS, causing oxidative damage. KEGG pathways analysis illustrated that PET-MPs significantly altered the flavonoid biosynthesis and phenylpropanoid biosynthesis pathways at both the metabolome and transcriptome levels. Weighted gene correlation network analysis (WGCNA) identified ten structural genes and nine transcription factor genes that play pivotal roles in regulating flavonoid biosynthesis. In summary, this study elucidates the alterations in the flavonoid composition, along with the underlying gene regulatory network governing flavonoid metabolism under PET-MPs exposure in pepper. These findings enhance our comprehension of MPs pollution and provide valuable insights for the development of sustainable agro-ecosystems and food security in the future.
Collapse
Affiliation(s)
- Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yilan Cui
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Long Cheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mangu Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mingzhu Guan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Youyang Fu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
5
|
Zha H, Li S, Zhuge A, Shen J, Yao Y, Chang K, Li L. Hazard assessment of airborne and foodborne biodegradable polyhydroxyalkanoates microplastics and non-biodegradable polypropylene microplastics. ENVIRONMENT INTERNATIONAL 2025; 196:109311. [PMID: 39892168 DOI: 10.1016/j.envint.2025.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/14/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Microplastics (MP) are ubiquitous in the environment, and are toxic to various living organisms. Proper application of biodegradable plastics may alleviate the hazards of conventional non-biodegradable plastics. In the current study, multi-omics analyses were performed to compare the biodegradable polyhydroxyalkanoates (PHA) and non-biodegradable polypropylene (PP) MP for their toxicity on mouse liver and lung. Airborne PHA MP induced nasal microbiome dysbiosis, pulmonary microbiome alteration, pulmonary and serum metabolome disruption, and hepatic transcriptome disturbances, resulting in mild pulmonary toxicity. By contrast, airborne PP MP caused greater alterations in nasal and pulmonary microbiome, pulmonary and serum metabolome, and hepatic transcriptome, resulting in pulmonary and hepatic toxicity. Both foodborne PHA and PP MP caused intestinal microbiome dysbiosis, while foodborne PHA MP caused slighter intestinal and serum metabolome disruption, hepatic transcriptome disturbances and hepatotoxicity (e.g., lower serum aspartate aminotransferase and alanine aminotransferase) compared to foodborne PP MP. Some potential differential biomarkers were determined between PP and PHA MP exposures, i.e., nasal Allobaculum and pulmonary Alloprevotella for airborne PHA; nasal Lactobacillus and pulmonary Acinetobacter for airborne PP; intestinal Faecalibacterium for foodborne PHA; and intestinal unclassified_Erysipelatoclostridiaceae for foodborne PP. The results show that PHA MP can induce less pulmonary and hepatic toxicity compared to PP MP, suggesting PHA is a potential substitution for PP. The findings can benefit the hazard assessment of airborne and foodborne PHA and PP MP.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Xue Y, Gong X, Yang L, Zhi D, Meng Q, Guo Y, Dong K, Tian Y. Influence of nano-polystyrene on cyfluthrin toxicity in honeybee Apis cerana cerana Fabricius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117753. [PMID: 39827611 DOI: 10.1016/j.ecoenv.2025.117753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/21/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Plastics and pesticides are commonly used and often coexist in the environment. As pollinating insects, honeybees are simultaneously exposed to both these toxins. However, there has been no study on the toxic effects of nano-polystyrene plastics (nanoPS) and cyfluthrin (Cy) on the Apis cerana cerana Fabricius until now. This study found that nanoPS did not significantly impact the mortality of Apis cerana cerana but could reduce cyfluthrin-induced mortality. Additionally, nanoPS caused damage to the honeybee gut and hindered the development of the hypopharyngeal glands, whereas cyfluthrin did not produce these pathological changes. Concerning the detoxification-related genes, the two toxins alone and in combination significantly promoted the expression of P450 9E2 and Cyp9Q3 genes, and the upregulation trend was found more significant for the combination. Regarding immune gene expression, exposure to a single toxin or both toxins significantly down-regulated the abaecin gene, but only exposure to nanoPS significantly decreased apidaecin expression. The changes in metabolites and metabolic pathways in honeybees after ingesting nanoPS were also studied. This study highlights the toxicity of nano-microplastics and Cy alone and in combination to Apis cerana cerana Fabricius and provides new insights into the potential ecological risks of nanoPS.
Collapse
Affiliation(s)
- Yunfei Xue
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xueyang Gong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Linfu Yang
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dandan Zhi
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qingxin Meng
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yulong Guo
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| | - Yakai Tian
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honey Bee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
7
|
Pradhan SS, Mahanty A, Pattanaik KP, Adak T, Mohapatra PK. Entry, fate and impact of antibiotics in rice agroecosystem: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1120-1138. [PMID: 39739186 DOI: 10.1007/s11356-024-35765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
Antibiotics are extensively used to manage human, animal and plant ailments caused by microbial infections. However, rampant use of antibiotics has led to the development of antibiotic resistance, which is a public health concern. The development of antibiotic resistance is significantly influenced by agro-ecosystems. Rice agroecosystem receives high levels of antibiotics from direct applications, and sources like manure and irrigation water. Consequently, uptake of antibiotic residues by rice (Oryza sativa L.) is resulting in accumulation of antibiotics in plant parts. Accumulation of these antibiotics can be toxic to plant, and can be partitioned to rice grain and straw, and reach the human and animal food chain leading to the development of antibiotic resistance. Moreover, the antibiotics can alter soil microbes, which would result in loss of production. This study compiles information from existing literature on global antibiotic usage and explores how antibiotics enter the rice ecosystem through contaminated wastewater, manure, sewage sludge, and through direct application. A detailed discussion on the persistence and movement of antibiotics in different environment compartments is provided. The review also highlights the impacts of antibiotics on plants and natural microbiota, as well as issues pertaining to antimicrobial resistance in public health sectors. For sustainable mitigation of the issues of antibiotic residues in rice ecosystem, we suggest application of decontaminated manure, microbial bioremediation, optimization of the use of plant-based alternatives, enhancing regulations, and fostering global collaboration. We advocate integrated disease management approaches which can significantly reduce the antibiotic use in rice agroecosystem.
Collapse
Affiliation(s)
- Sophia Subhadarsini Pradhan
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Department of Botany, Ravenshaw University, Cuttack, 751003, Odisha, India
| | - Arabinda Mahanty
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - Totan Adak
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | |
Collapse
|
8
|
Khan KY, Ali B, Ghani HU, Cui X, Luo X, Ali Z, Ahmed W, Tan J, Lysenko V, Guo Y. Polyvinyl chloride microplastics and drought co-exposure alter rice growth by affecting metabolomics and proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177002. [PMID: 39427893 DOI: 10.1016/j.scitotenv.2024.177002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Microplastics, interacting with drought stress, have become threat to crops by altering soil environment. Currently, the effect of combined microplastic and drought stress on crop growth remain poorly understood. In this work, the mechanism of multi-stress responses was investigated under the exposure of polvinylchloride microplastic (PV) and drought (D) individually and in combination (DPV) on rice varieties Hanyou73 and Q280 through proteomics and metabolomic analysis. All treatments negatively affect chlorophyll content, antioxidant enzyme activities, rice grain composition, metabolome and proteomic profiling of both rice varieties. Full rice grain yield was decreased under all treatments except PV treatment in which it was increased in both rice varieties. DPV treatment shows the lowest grain yield and more adverse effects on metabolome by affecting glycerophospholipid metabolism, tryptophan metabolism and alanine, aspartate and glutamate metabolism. Soluble sugar contents were decreased in H73 but in Q280 increased by 159 % under DPV and 123 % in PV treatment, compared to their control group. The results from metabolomics illustrate that glycerophospholipid metabolism is commonly altered in both rice types under all treatments. PV and drought alone and in combination induce extensive alterations in proteomics of rice leaves especially impacting proteins related to binding, translation and photosynthetic process. The results reveal that PV and DPV treatments highly distort the abundance of metabolites and proteins in both rice types, demonstrating that microplastic toxicity effects on rice plants become more severe when combined with drought stress.
Collapse
Affiliation(s)
- Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Barkat Ali
- Food Science Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | | | - Xiaoqiang Cui
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Xiaohan Luo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zeshan Ali
- Ecotoxicology Research Program, Institute of Plant and Environmental Protection, National Agriculture Research Center, Islamabad 44000, Pakistan
| | - Waqar Ahmed
- Food Science Research Institute, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | - Jinglu Tan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Vladimir Lysenko
- Southern Federal University, Academy of Biology and Biotechnology, Rostov-on-Don 344041, Russia
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China; International Joint Research Center for Intelligent Optical Sensing and Applications at Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Che TH, Qiu GK, Yu HW, Wang QY. Impacts of micro/nano plastics on the ecotoxicological effects of antibiotics in agricultural soil: A comprehensive study based on meta-analysis and machine learning prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177076. [PMID: 39454772 DOI: 10.1016/j.scitotenv.2024.177076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Micro/nano plastics (M/NPs) and antibiotics, as widely coexisting pollutants in environment, pose serious threats to soil ecosystem. The purpose of this study was to systematically evaluate the ecological effects of the co-exposure of M/NPs and antibiotics on soil organisms through the meta-analysis and machine learning prediction. Totally, 1002 data set from 38 articles were studied. The co-exposure of M/NPs significantly promoted the abundance (62.68 %) and migration level (55.22 %) of antibiotic contamination in soil, and caused serious biotoxicity to plants (-12.31 %), animals (-12.03 %), and microorganisms (35.07 %). Using 10 variables, such as risk response categories, basic physicochemical properties, exposure objects, and exposure time of M/NPs, as data sources, Random Forests (RF) and eXtreme Gradient Boosting (XGBoost) models were developed to predict the impacts of M/NPs on the ecotoxicological effects of antibiotics in agricultural soil. The effective R2 values (0.58 and 0.60, respectively) indicated that both models can be used to predict the future ecological risk of M/NPs and antibiotics coexistence in soil. Particle size (13.54 %), concentration (5.02 %), and type (11.18 %) of M/NPs were the key characteristic parameters that affected the prediction results. The findings of this study indicate that the co-exposure of M/NPs and antibiotics in soil not only exacerbates antibiotic contamination levels but also causes severe toxic effects to soil organism. Furthermore, this study provides an effective approach for ecological risk assessment of the coexistence of M/NPs and antibiotics in environment.
Collapse
Affiliation(s)
- Tian-Hao Che
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Yanbian University, Agricultural college, Yanji 133002, China
| | - Guan-Kai Qiu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong-Wen Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Quan-Ying Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
10
|
Zhao B, Chen F, Zhou K, Lin M, Shi L, Mi S, Pan H, Yao Q, Zhao X. Polyethylene nanoplastics, tebuconazole and cadmium affect soil-wheat system by altering rhizosphere microenvironment under single or combined exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135843. [PMID: 39305587 DOI: 10.1016/j.jhazmat.2024.135843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 12/01/2024]
Abstract
Microplastics and nanoplastics (NPs) are pollutants of global concern. However, the understanding of the combined effects of NPs and other pollutants in the soil-plant system remains limited, particularly for polyethylene (PE), the primary component of agricultural films. This study investigated the effects of PE NPs (0.5 %, w/w), fungicide tebuconazole (Te, 10 mg·kg-1), and cadmium (Cd, 4.0 mg·kg-1) on the soil-wheat system under single and combined exposures. The synergistic toxicity observed between NPs and Te impacted the nutritional conditions and antioxidant mechanisms of the soil-wheat system. The NPs increased the concentration of Cd in roots and the proportion of bioavailable Cd, exacerbating oxidative stress in wheat and inhibiting biomass. The soil-wheat system responded to stress by upregulating or downregulating pathways related to carbohydrate, amino acid, and sugar metabolism under various treatments. Sixteen functional genes associated with carbohydrate metabolism, amino acid metabolism, energy utilization, and gene repair at KEGG level 3 were employed to sustain microenvironmental homeostasis. Correlation analysis between microorganisms and environmental factors showed that various PGPG played roles in maintaining the health of the soil-wheat system. These results help to elucidate the comprehensive effects of NPs with other pollutants on the soil-plant system and provide new perspectives for toxic mechanisms.
Collapse
Affiliation(s)
- Bo Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Fang Chen
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
| | - Kexin Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Manfeng Lin
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Lihu Shi
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Shican Mi
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Haixia Pan
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Qiang Yao
- Ocean College, Hebei Agriculture University, Qinhuangdao 066004, China.
| | - Xin Zhao
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
11
|
Guo A, Pan C, Zhou X, Bao Y. Effects of co-exposure of antibiotic and microplastic on the rhizosphere microenvironment of lettuce seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:175983. [PMID: 39245381 DOI: 10.1016/j.scitotenv.2024.175983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Antibiotics and microplastics (MPs) often coexist in facility agriculture soils due to the prevalent use of animal manure and plastic films. However, their combined impacts on the rhizosphere environment of lettuce remain unclear. This study assessed the effects of individual and combined exposure to polyethylene (PE) MPs (2 g·kg-1) and oxytetracycline (OTC) (0, 5, 50, and 150 mg·kg-1) on the growth of lettuce seedlings and enzyme activities, physicochemical properties, metabolite profiles and bacterial communities of rhizosphere soil of lettuce. Exposure to 150 mg·kg-1 OTC, either individually or combined, significantly increased lettuce seedling shoot biomass. All treatments decreased chlorophyll and carotenoid contents. Combined exposure notably increased the Simpson's index of rhizosphere bacterial communities and altered community composition. The number of differential genera of rhizosphere was less than that of non-rhizosphere. Combined exposure significantly changed both rhizosphere and non-rhizosphere metabolite profiles. Soil organic matter emerged as the key environmental factor influencing bacterial community variation. Mantel tests revealed strong positive associations between total potassium and rhizosphere bacterial communities under combined exposure. The correlation network identified stearic acid and palmitic acid as the core metabolites in the rhizosphere. These findings offer valuable insights into the impact of OTC combined with PE MPs on lettuce rhizosphere environment.
Collapse
Affiliation(s)
- Aiyun Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chengrong Pan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Party School of the CPC, Lanzhou Party Committee, Lanzhou Administration Institute, Lanzhou 790030, China
| | - Xu Zhou
- College of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
12
|
Ullah R, Farias J, Feyissa BA, Tsui MTK, Chow A, Williams C, Karanfil T, Ligaba-Osena A. Combined effects of polyamide microplastic and sulfamethoxazole in modulating the growth and transcriptome profile of hydroponically grown rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175909. [PMID: 39233070 DOI: 10.1016/j.scitotenv.2024.175909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
The use of reclaimed water from wastewater treatment plants for irrigation has a risk of introducing micropollutants such as microplastics (MPs) and antimicrobials (AMs) into the agroecosystem. This study was conducted to investigate the effects of single and combined treatment of 0.1 % polyamide (PA ∼15 μm), and varying sulfamethoxazole (SMX) levels 0, 10, 50, and 150 mg/L on rice seedlings (Oryza sativa L.) for 12 days. The study aimed to assess the impact of these contaminants on the morphological, physiological, and biochemical parameters of the rice plants. The findings revealed that rice seedlings were not sensitive to PA alone. However, SMX alone or in combination with PA, significantly inhibited shoot and root growth, total biomass, and affected photosynthetic pigments. Higher concentrations of SMX increased antioxidant enzyme activity, indicating oxidative stress. The roots had a higher SMX content than the shoots, and the concentration of minerals such as iron, copper, and magnesium were reduced in roots treated with SMX. RNA-seq analysis showed changes in the expression of genes related to stress, metabolism, and transport in response to the micropollutants. Overall, this study provides valuable insights on the combined impacts of MPs and AMs on food crops, the environment, and human health in future risk assessments and management strategies in using reclaimed water.
Collapse
Affiliation(s)
- Raza Ullah
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA
| | - Julia Farias
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | | | - Martin Tsz-Ki Tsui
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA; School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, New Territories, China; Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Alex Chow
- Earth and Environmental Sciences Program, The Chinese University of Hong Kong, Hong Kong SAR, Shatin, China
| | - Clinton Williams
- USDA-ARS, US Arid Land Agricultural Research Center, 21881 N. Cardon Ln, Maricopa, AZ 85138, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27402, USA.
| |
Collapse
|
13
|
Li M, Liu G, Cai Y, Guo T, Xu Y, Zhao X, Ji H, Ouyang D, Zhang H. Decreased Sulfamethoxazole Uptake in Lettuce (Lactuca sativa L.) due to Transpiration Inhibition by Polypropylene Microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117201. [PMID: 39426106 DOI: 10.1016/j.ecoenv.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Microplastics and antibiotics are emerging contaminants in agricultural soil that can have negative effects on crops. However, limited research has been conducted on the effects of the polypropylene (PP) microplastic and sulfamethoxazole (SMX) co-exposure on crops, specifically regarding the impact of PP microplastics on SMX uptake and transport in crops. In this study, hydroponic experiments were carried out using lettuce (Lactuca sativa L.), PP microplastics (1.0 g L-1), and SMX (0.5 mg L-1 or 2.5 mg L-1) to investigate the individual and co-exposure effects of PP microplastics and SMX on Lettuce growth, explore the uptake and translocation of SMX in lettuce and elucidate the underlying mechanism of PP microplastic impact on SMX uptake. Results demonstrated that co-exposure to 1.0 g L-1 of PP microplastics and 0.5 mg L-1 of SMX resulted in an enhanced toxic effect. However, no intensified toxic effect on the lettuce was observed when 1.0 g L-1 PP microplastics were added in the presence of 2.5 mg L-1 SMX, indicating that the SMX dominated the toxic effect on lettuce at high concentrations. Additionally, the study found that the water absorption process controlled by the aquaporin and transpiration contributed to the uptake and translocation of SMX in lettuce. When exposed to PP microplastics, no impact was observed on the aquaporin contents of the lettuce while the transpiration rate was significantly decreased by 31.6 % - 44.2 % resulting from microplastics adhered to the root surface. Therefore, in the presence of 2.5 mg L-1 SMX, the SMX uptake in the lettuce root was inhibited by 35.9 % (P < 0.05) when exposed to 1.0 g L-1 PP microplastic. This work deepens our understanding of the behaviour of microplastics and antibiotics in the terrestrial environment.
Collapse
Affiliation(s)
- Mei Li
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Guanlin Liu
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yimin Cai
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Guo
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yangyang Xu
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xinlin Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha 410205, China
| | - Haibao Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Da Ouyang
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Haibo Zhang
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
14
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
15
|
Zhang S, Zhang F, Cai L, Xu N, Zhang C, Yadav V, Zhou X, Wu X, Zhong H. Visual observation of polystyrene nano-plastics in grape seedlings of Thompson Seedless and assessing their effects via transcriptomics and metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135550. [PMID: 39173388 DOI: 10.1016/j.jhazmat.2024.135550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Micro/nano-plastics (MNPs) are emerging non-point source pollutants that have garnered increasing attention owing to their threat to ecosystems. Studies on the effects of MNPs on horticultural crops are scarce. Specifically, whether MNPs can be absorbed and transported by grapevines have not been reported. To fill this gap, we added polystyrene nanoplastics (PS-NPs, 100 nm) to a hydroponic environment and observed their distribution in grape seedlings of Thompson Seedless (TS, Vitis vinifera L.). After 15 d of exposure, plastic nanospheres were detected on the cell walls of the roots, stems, and leaves using confocal microscopy and scanning electron microscopy. This indicated that PS-NPs can also be absorbed by the root system through the epidermis-cortex interface in grapevines and transported upward along the xylem conduit. Furthermore, we analyzed the molecular response mechanisms of TS grapes to the PS-NPs. Through the measurement of relevant indicators and combined omics analysis, we found that plant hormone signal transduction, flavonoid and flavonol biosynthesis, phenylpropanoid biosynthesis, and MAPK signaling pathway biosynthesis played crucial roles in its response to PS-NPs. The results not only revealed the potential risk of MNPs being absorbed by grapevines and eventually entering the food chain but also provided valuable scientific evidence and data for the assessment of plant health and ecological risk.
Collapse
Affiliation(s)
- Songlin Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Fuchun Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Lu Cai
- College of grass industry, Xinjiang Agricultural University, Urumqi, China.
| | - Na Xu
- College of Life Science and Technology, Xinjiang University, Urumqi, China.
| | - Chuan Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Vivek Yadav
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiaoming Zhou
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xinyu Wu
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Haixia Zhong
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| |
Collapse
|
16
|
Tong M, Zhai K, Duan Y, Xia W, Zhao B, Zhang L, Chu J, Yao X. Selenium alleviates the adverse effects of microplastics on kale by regulating photosynthesis, redox homeostasis, secondary metabolism and hormones. Food Chem 2024; 450:139349. [PMID: 38631205 DOI: 10.1016/j.foodchem.2024.139349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Kale is a functional food with anti-cancer, antioxidant, and anemia prevention properties. The harmful effects of the emerging pollutant microplastic (MP) on plants have been widely studied, but there is limited research how to mitigate MP damage on plants. Numerous studies have shown that Se is involved in regulating plant resistance to abiotic stresses. The paper investigated impact of MP and Se on kale growth, photosynthesis, reactive oxygen species (ROS) metabolism, phytochemicals, and endogenous hormones. Results revealed that MP triggered a ROS burst, which led to breakdown of antioxidant system in kale, and had significant toxic effects on photosynthetic system, biomass, and accumulation of secondary metabolites, as well as a significant decrease in IAA and a significant increase in GA. Under MP supply, Se mitigated the adverse effects of MP on kale by increasing photosynthetic pigment content, stimulating function of antioxidant system, enhancing secondary metabolite synthesis, and modulating hormonal networks.
Collapse
Affiliation(s)
- Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Kuizhi Zhai
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Bingnan Zhao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Lulu Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
17
|
Zhang Z, Zhao L, Jin Q, Luo Q, He H. Combined contamination of microplastic and antibiotic alters the composition of microbial community and metabolism in wheat and maize rhizosphere soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134618. [PMID: 38761764 DOI: 10.1016/j.jhazmat.2024.134618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The widespread application of antibiotics and plastic films in agriculture has led to new characteristics of soil pollution. The impacts of combined contamination of microplastics and antibiotics on plant growth and rhizosphere soil bacterial community and metabolisms are still unclear. We conducted a pot experiment to investigate the effects of polyethylene (0.2%) and norfloxacin/doxycycline (5 mg kg-1), as well as the combination of polyethylene and antibiotics, on the growth, rhizosphere soil bacterial community and metabolisms of wheat and maize seedlings. The results showed that combined contamination caused more serious damage to plant growth than individual contamination, and aggravated root oxidative stress responses. The diversity and structure of soil bacterial community were not markedly altered, but the composition of the bacterial community, soil metabolisms and metabolic pathways were altered. The co-occurrence network analysis indicated that combined contamination may inhibit the growth of wheat and maize seedings by simplifying the interrelationships between soil bacteria and metabolites, and altering the relative abundance of specific bacteria genera (e.g. Kosakonia and Sphingomonas) and soil metabolites (including sugars, organic acids and amino acids). The results help to elucidate the potential mechanisms of phytotoxicity of the combination of microplastic and antibiotics.
Collapse
Affiliation(s)
- Zekun Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau / College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Le Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau / College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianwei Jin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau / College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qi Luo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau / College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Honghua He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau / College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Yangling, Chinese Academy of Sciences and Ministry of Water Resources, Shaanxi 712100, China; School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
18
|
Zhang L, García-Pérez P, Muñoz-Palazon B, Gonzalez-Martinez A, Lucini L, Rodriguez-Sanchez A. A metabolomics perspective on the effect of environmental micro and nanoplastics on living organisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172915. [PMID: 38719035 DOI: 10.1016/j.scitotenv.2024.172915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
The increasing trend regarding the use of plastics has arisen an exponential concern on the fate of their derived products to the environment. Among these derivatives, microplastics and nanoplastics (MNPs) have been featured for their associated environmental impact due to their low molecular size and high surface area, which has prompted their ubiquitous transference among all environmental interfaces. Due to the heterogenous chemical composition of MNPs, the study of these particles has focused a high number of studies, as a result of the myriad of associated physicochemical properties that contribute to the co-transference of a wide range of contaminants, thus becoming a major challenge for the scientific community. In this sense, both primary and secondary MNPs are well-known to be adscribed to industrial and urbanized areas, from which they are massively released to the environment through a multiscale level, involving the atmosphere, hydrosphere, and lithosphere. Consequently, much research has been conducted on the understanding of the interconnection between those interfaces, that motivate the spread of these contaminants to biological systems, being mostly represented by the biosphere, especially phytosphere and, finally, the anthroposphere. These findings have highlighted the potential hazardous risk for human health through different mechanisms from the environment, requiring a much deeper approach to define the real risk of MNPs exposure. As a result, there is a gap of knowledge regarding the environmental impact of MNPs from a high-throughput perspective. In this review, a metabolomics-based overview on the impact of MNPs to all environmental interfaces was proposed, considering this technology a highly valuable tool to decipher the real impact of MNPs on biological systems, thus opening a novel perspective on the study of these contaminants.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | | | - Alejandro Gonzalez-Martinez
- Department of Microbiology, Campus Universitario de Fuentenueva s/n, 18071, University of Granada, Spain; Institute of Water Research, Calle Ramon y Cajal 4, 18001, University of Granada, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alejandro Rodriguez-Sanchez
- Department of Microbiology, Campus Universitario de Fuentenueva s/n, 18071, University of Granada, Spain; Institute of Water Research, Calle Ramon y Cajal 4, 18001, University of Granada, Spain
| |
Collapse
|
19
|
Barceló D. Microplastics in the environment: analytical chemistry methods, sorption materials, risks and sustainable solutions. Anal Bioanal Chem 2024; 416:3479-3485. [PMID: 38717624 DOI: 10.1007/s00216-024-05319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
This Feature Article reports general and more specific aspects about microplastic (MP) contamination in continental and marine waters as well as in terrestrial environment. It describes a critical vision of the analytical methods commonly used for MP characterization and determination, including recommendations on green analytical chemistry (GAC) protocols. Insights into MPs as sorption materials and carriers for a variety of emerging contaminants like pharmaceuticals and pesticides are highlighted. Risks to biota living in aquatic and terrestrial environments and human-health-related effects with specific examples of surface and groundwater used for drinking water sources near contaminated sites like landfills are summarized. Lastly, sustainable solutions for how to improve the analysis and comparison of MP detection at the global level is given, including the need for standardized analytical protocols as well as the performance of additional interlaboratory exercises. Additional recommendations include a global database on MP levels made available to all authors to better compare their data qualitatively with that previously published. Policy and remediation actions on how to reduce and mitigate MP pollution may include different types of actions like an improved waste management and reuse system, the development of bioplastics and new plastic materials, as well as legally binding additional funding to cope with increasing plastic pollution at the global scale.
Collapse
Affiliation(s)
- Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034, Barcelona, Spain.
- Chemistry and Physics Department, University of Almeria, 04120, Almería, Spain.
| |
Collapse
|
20
|
Song Z, Chen Z, Dong Y, Deng H, Gao M. Response of garlic (Allium sativum L.) to the combined toxicity of microplastics and arsenic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171432. [PMID: 38442749 DOI: 10.1016/j.scitotenv.2024.171432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
The extensive utilization of mulch films in agricultural settings, coupled with the persistence of microplastic remnants in soil following the natural degradation of plastics, has given rise to detrimental microplastic impacts on crops. Arsenic (As) contamination in the environment is known to accumulate in crops through aquatic pathways or soil. Garlic (Allium sativum L.), a globally popular crop and seasoning, contains alliin, a precursor of its flavor compounds with medicinal properties. While alliin exhibits antimicrobial and antioxidant effects in garlic, its response to microplastics and arsenic has not been thoroughly investigated, specifically in terms of microplastic or As uptake. This study aimed to explore the impact of varied stress concentrations of microplastics on the toxicity, migration, and accumulation of As compounds. Results demonstrated that polystyrene (PS) fluorescent microspheres, with an 80 nm diameter, could permeate garlic bulbs through the root system, accumulating within vascular tissues and intercellular layers. Low concentrations of PS (10 and 20 mg L-1) and As (2 mg L-1) mitigated the production and accumulation of reactive oxygen species (ROS) and antioxidant enzymes in garlic. Conversely, garlic exhibited reduced root vigor, substance uptake, and translocation when treated with elevated As concentrations (4 mg L-1) in conjunction with PS concentrations of 40 and 80 mg L-1. An escalation in PS concentration facilitated As transport into bulbs but led to diminished As accumulation and biomass in the root system. Notably, heightened stress levels weakened garlic's antioxidant defense system, encompassing sulfur allicin and phytochelatin metabolism, crucial for combating the phytotoxicity of PS and As. In summary, PS exerted a detrimental influence on garlic, exacerbating As toxicity. The findings from this study offer insights for subsequent investigations involving Liliaceae plants.
Collapse
Affiliation(s)
- Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Zimin Chen
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Youming Dong
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Hui Deng
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China
| | - Minling Gao
- Department of Materials and Environmental Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
21
|
Du L, Wu D, Yang X, Xu L, Tian X, Li Y, Huang L, Liu Y. Joint toxicity of cadmium (II) and microplastic leachates on wheat seed germination and seedling growth. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:166. [PMID: 38592562 DOI: 10.1007/s10653-024-01942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/24/2024] [Indexed: 04/10/2024]
Abstract
Cadmium (Cd) pollution ranks first in soils (7.0%) and microplastics usually have a significant adsorption capacity for it, which could pose potential threats to agricultural production and human health. However, the joint toxicity of Cd and microplastics on crop growth remains largely unknown. In this study, the toxic effects of Cd2+ and two kinds of microplastic leachates, polyvinyl chloride (PVC) and low-density polyethylene (LDPE), on wheat seed germination and seedlings' growth were explored under single and combined conditions. The results showed that Cd2+ solution and two kinds of microplastic leachates stimulated the wheat seed germination process but inhibited the germination rate by 0-8.6%. The combined treatments promoted wheat seed germination but inhibited the seedlings' growth to different degrees. Specifically, the combination of 2.0 mg L-1 Cd2+ and 1.0 mgC L-1 PVC promoted both seed germination and seedlings' growth, but they synergistically increased the antioxidant enzyme activity of seedlings. The toxicity of the PVC leachate to wheat seedlings was stronger than LDPE leachate. The addition of Cd2+ could alleviate the toxicity of PVC leachate on seedlings, and reduce the toxicity of LDPE leachate on seedlings under the same concentration class combinations but aggravated stress under different concentration classes, consistent with the effect on seedlings' growth. Overall, Cd2+, PVC, and LDPE leachates have toxic effects on wheat growth, whether treated under single or combined treatments. This study has important implications for the joint toxicity of Cd2+ solution and microplastic leachates in agriculture.
Collapse
Affiliation(s)
- Ling Du
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Dongming Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Xi Yang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Li Xu
- Cuiping Ecological Environment Bureau of Yibin City, Yibin, 644000, China
| | - Xu Tian
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Youping Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Lijuan Huang
- Guangyuan Ecological Environment Monitoring Center Station, Guangyuan, 628040, China
| | - Yanmei Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
22
|
Khan AR, Ulhassan Z, Li G, Lou J, Iqbal B, Salam A, Azhar W, Batool S, Zhao T, Li K, Zhang Q, Zhao X, Du D. Micro/nanoplastics: Critical review of their impacts on plants, interactions with other contaminants (antibiotics, heavy metals, and polycyclic aromatic hydrocarbons), and management strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169420. [PMID: 38128670 DOI: 10.1016/j.scitotenv.2023.169420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Microplastic/nanoplastics (MPs/NPs) contamination is not only emerging threat to the agricultural system but also constitute global hazard to the environment worldwide. Recent review articles have addressed the environmental distribution of MPs/NPs and their single-exposure phytotoxicity in various plant species. However, the mechanisms of MPs/NPs-induced phytotoxicity in conjunction with that of other contaminants remain unknown, and there is a need for strategies to ameliorate such phytotoxicity. To address this, we comprehensively review the sources of MPs/NPs, their uptake by and effects on various plant species, and their phytotoxicity in conjunction with antibiotics, heavy metals, polycyclic aromatic hydrocarbons (PAHs), and other toxicants. We examine mechanisms to ameliorate MP/NP-induced phytotoxicity, including the use of phytohormones, biochar, and other plant-growth regulators. We discuss the effects of MPs/NPs -induced phytotoxicity in terms of its ability to inhibit plant growth and photosynthesis, disrupt nutrient metabolism, inhibit seed germination, promote oxidative stress, alter the antioxidant defense system, and induce genotoxicity. This review summarizes the novel strategies for mitigating MPs/NPs phytotoxicity, presents recent advances, and highlights research gaps, providing a foundation for future studies aimed at overcoming the emerging problem of MPs/NPs phytotoxicity in edible crops.
Collapse
Affiliation(s)
- Ali Raza Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zaid Ulhassan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Jiabao Lou
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Abdul Salam
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, People's Republic of China
| | - Sundas Batool
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Gomal University, Pakistan
| | - Tingting Zhao
- Institute of Biology, Freie Universität Berlin, Berlin 14195, Germany
| | - Kexin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qiuyue Zhang
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering,Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
23
|
Yao C, Liu C, Hong S, Zhou J, Gao Z, Li Y, Lv W, Zhou W. Potential nervous threat of nanoplastics to Monopterus albus: Implications from a metabolomics study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168482. [PMID: 37981139 DOI: 10.1016/j.scitotenv.2023.168482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Nanoplastics, as a new class of environmental pollutants, have been frequently detected in environmental media and organisms. Monopterus albus (M. albus) is an important economic aquatic product with a high dietary consumption. However, the potential biological effects of nanoplastics on M. albus remain unknown. In this study, the effects of polystyrene nanoplastics (PS-NPs) at different concentrations (0, 0.5, 1, 5 and 10 mg/L) on M. albus were investigated using an untargeted metabolomics approach. The results showed that 59, 44, 24, and 31 individual differential metabolites and 16, 9, 6, and 2 significant differential metabolic pathways were significantly changed in 0.5, 1, 5, and 10 mg/L respectively, indicating the greater effect of PS-NPs at the relatively low concentrations. After further analysis, there are four same significant differential metabolic pathways for the 0.5 and 1 mg/L groups, i.e., ABC transporters, cAMP signaling pathway, Neuroactive ligand-receptor interaction, and Synaptic vesicle cycle. In addition, there was one mutual differential metabolic pathway (Neuroactive ligand-receptor interaction) among the four groups, indicative of the probably universal nervous influence of nanoplastics on M. albus. In a word, the current work suggests that PS-NPs might affect the nervous systems of M. albus through disturbing their liver metabolism, and nanoplastics at relatively low concentrations may possess a greater effect, which provides significant information for assessing the toxic effect and exposure risk of nanoplastics to organisms in aquatic environment.
Collapse
Affiliation(s)
- Chunxia Yao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Food Quality Safety and Nutrition (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Chengbin Liu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Food Quality Safety and Nutrition (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Shuang Hong
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; College of Fisheries and Life Science, Shanghai Ocean university, Shanghai 201306, China
| | - Jiaxin Zhou
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Key Laboratory of Food Quality Safety and Nutrition (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Zhaoliang Gao
- Institute of Fruit and Forest, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Weiwei Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Wenzong Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
24
|
Rahman SU, Han JC, Ahmad M, Gao S, Khan KA, Li B, Zhou Y, Zhao X, Huang Y. Toxic effects of lead (Pb), cadmium (Cd) and tetracycline (TC) on the growth and development of Triticum aestivum: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166677. [PMID: 37659524 DOI: 10.1016/j.scitotenv.2023.166677] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
The environmental issue of lead (Pb), cadmium (Cd), and tetracycline (TC) contamination in cereal crops has become a growing concern worldwide. An in-depth understanding of this issue would be of importance to promote effective management strategies for heavy metals and antibiotics worldwide. The present study was conducted to assess the toxic effects of heavy metals (Cd, Pb) and antibiotics (TC) on Triticum aestivum (T. aestivum, common wheat) based on studies conducted in the past 22 years. Data pertaining to the growth and development of T. aestivum were extracted and analyzed from 89 publications spanning from 2000 to 2022. Our results showed that Pb, Cd and TC significantly reduced growth and development by 11 %, 9 %, and 5 %, respectively. Additionally, significant accumulation of Cd (42 %) and Pb (17 %) was observed in T. aestivum samples, although there was little change in TC accumulation, which showed limited absorption, accumulation, and translocation of TC in wheat plants. Pb had the greatest impact on the yield of T. aestivum, followed by Cd, while TC had no apparent effect. Furthermore, exposure to Cd, Pb and TC reduced the photosynthetic rate due to chlorophyll reduction, with Cd having the most pronounced effect (58 %), followed by Pb (37 %) and TC (8 %). Cd exposure also significantly enhanced gaseous exchange (37 %) compared to TC and Pb, which reduced gaseous exchange by 4 % and 10 %, respectively. However, the treatments with TC (>50-100 mgL-1), Pb (>1000-2000 mg L-1) and Cd (>500-1000 mg L-1) increased the defense system of T. aestivum samples by 38 %, 15 %, and 11 %, respectively. The obtained findings have significant implications for risk assessment, pollution prevention, and remediation strategies to address soil contamination from Pb, Cd and TC in farmland.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shuai Gao
- Department of Water Resources and Harbor Engineering, College of Civil Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia.
| | - Bing Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yuefei Huang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| |
Collapse
|
25
|
Li G, Tang Y, Khan KY, Son Y, Jung J, Qiu X, Zhao X, Iqbal B, Stoffella PJ, Kim GJ, Du D. The toxicological effect on pak choi of co-exposure to degradable and non-degradable microplastics with oxytetracycline in the soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115707. [PMID: 37988994 DOI: 10.1016/j.ecoenv.2023.115707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Microplastics and antibiotics are emerging as ubiquitous contaminants in farmland soil, harming crop quality and yield, and thus threatening global food security and human health. However, few studies have examined the individual and joint effects of degradable and/or non-degradable microplastics and antibiotics on crop plants. This study examined the individual and joint effects of polyethylene (PE) and polylactic acid (PLA) microplastics and the antibiotic oxytetracycline (OTC) on pak choi by measuring its growth, photosynthesis, antioxidant enzyme activity, and metabolite levels. Microplastics and/or oxytetracycline adversely affected root weight, photosynthesis, and antioxidant enzyme (superoxide dismutase, catalase, and ascorbate peroxidase) activities. The levels of leaf metabolites were significantly altered, causing physiological changes. Biosynthesis of plant secondary metabolites and amino acids was altered, and plant hormones pathways were disrupted. Separately and together, OTC, PE, and PLA exerted phytotoxic and antagonistic effects on pak choi. Separately and together with OTC, degradable microplastics altered the soil properties, thus causing more severe impacts on plant performance than non-degradable microplastics. This study elucidates the effects on crop plants of toxicity caused by co-exposure to degradable or non-degradable microplastic and antibiotics contamination and suggests mechanisms.
Collapse
Affiliation(s)
- Guanlin Li
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China; Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yi Tang
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Kiran Yasmin Khan
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Yowhan Son
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Xuchun Qiu
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Babar Iqbal
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Peter Joseph Stoffella
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, United States
| | - Gwang-Jung Kim
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Daolin Du
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
26
|
Dhevagi P, Keerthi Sahasa RG, Poornima R, Ramya A. Unveiling the effect of microplastics on agricultural crops - a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:793-815. [PMID: 37941363 DOI: 10.1080/15226514.2023.2275152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microplastics (MPs), ever since they were identified as a potential and widely distributed persistent contaminant, the number of studies highlighting their impacts on various terrestrial ecosystems have been increasing. Recently, the effect of MPs on the agricultural ecosystem has gained momentum. Hence, the present review examines the impact of microplastics on agricultural crop systems and the mechanism underlying its toxicity. The current review revealed that most of the studies were conducted at a laboratory scale and under controlled conditions. Additionally, it was observed that polystyrene (PS) followed by polyethylene (PE) are the most studied polymer type, while the most studied plants are wheat and maize. Hitherto, literature studies suggest that the microplastics' influence on plant growth can be negative or sometimes neutral; while in some cases it exerts a hormetic effect which depends on other factors determining plant growth. Notably, the main mechanisms through which microplastics influence plant growth are mechanical damage, alteration of soil properties, or by leaching of additives. Overall, with burgeoning research interest in this aspect, the current review has significant implications for the toxicity of MPs on plants and throws light on the need to develop novel guidelines toward the sustainable use of plastics in agricultural sector. However, realistic field-level studies and estimating the MPs concentration at various region are essential to develop remediation approaches. Future studies should also focus on translocation and accumulation of micron sized MPs in edible portion of crops and their effect on food safety.
Collapse
Affiliation(s)
- Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Ambikapathi Ramya
- Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
27
|
He Y, Qian J, Li Y, Wang P, Lu B, Liu Y, Zhang Y, Liu F. Responses of Phragmites communis and its rhizosphere bacteria to different exposure sequences of molybdenum disulfide and levofloxacin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122273. [PMID: 37506800 DOI: 10.1016/j.envpol.2023.122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The effect of the molybdenum disulfide (MoS2)/levofloxacin (LVF) co-exposure was explored on Phragmites communis and rhizosphere soil bacterial communities. The sequence of MoS2/LVF exposure and the different MoS2 dosages (10 mg/kg and 100 mg/kg) contributed to different degrees of effect on the plant after 42 days of exposure. The treatment with priority addition of low dosage MoS2 significantly ameliorated P. communis growth, with root length growing up to 532.22 ± 46.29 cm compared to the sole LVF stress (200.04 ± 29.13 cm). Besides, MoS2 served as an alleviator and reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA) in P. communis under LVF stress, and activated bacteria in rhizosphere soil. These rhizosphere soil microbes assisted in mitigating toxic pollution in the soil and inducing plant resistance to external stress, such as bacteria genera Bacillus, Microbacterium, Flavihumibacter and altererythrobacter. Potential functional profiling of bacterial community indicated the addition of MoS2 contributed to relieve the reduction in functional genes associated with amino acid metabolism and the debilitation of gram_negative and aerobic phenotypic traits caused by LVF stress. This finding reveals the effect of different exposure sequences of MoS2 nanoparticles and antibiotic for plant-soil systems.
Collapse
Affiliation(s)
- Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Yuanyuan Li
- China Machinery International Engineer Design&Research Institute Co.Ltd.(CMIE) East China Regional Center, 2 Zidong Road, Nanjing, 210046, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yuhang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Feng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
28
|
Li X, Ullah S, Chen N, Tong X, Yang N, Liu J, Guo X, Tang Z. Phytotoxicity assessment of dandelion exposed to microplastics using membership function value and integrated biological response index. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121933. [PMID: 37277069 DOI: 10.1016/j.envpol.2023.121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Microplastic (MP) pollution is a critical environmental issue. Dandelions could be used as a biomonitor of environmental pollution. However, the ecotoxicology of MPs in dandelions remains unclear. Therefore, the toxic effects of polyethylene (PE), polystyrene (PS), and polypropylene (PP) at concentrations of 0, 10, 100, and 1000 mg L-1 on the germination and early seedling growth of dandelion were investigated. PS and PP inhibited seed germination and decreased root length and biomass while promoting membrane lipid peroxidation, increasing O2•-, H2O2, SP, and proline contents, and enhancing the activities of SOD, POD, and CAT. Principal component analysis (PCA) and membership function value (MFV) analysis indicated that PS and PP could be more harmful than PE in dandelion, especially at 1000 mg L-1. In addition, according to the integrated biological response (IBRv2) index analysis, O2•-, CAT, and proline were sensitive biomarkers of dandelion contamination by MPs. Here we provide evidence that dandelion has the potential to be a biomonitor to assess the phytotoxicity of MPs pollution, especially PS with high toxicity. Meanwhile, we believe that if dandelion is to be used as a biomonitor for MPs, attention should also be paid to the practical safety of dandelion.
Collapse
Affiliation(s)
- Xingfan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shakir Ullah
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xin Tong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Nan Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150040, China
| | - Xiaorui Guo
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
29
|
Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L. Microplastic stress in plants: effects on plant growth and their remediations. FRONTIERS IN PLANT SCIENCE 2023; 14:1226484. [PMID: 37636098 PMCID: PMC10452891 DOI: 10.3389/fpls.2023.1226484] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/10/2023] [Indexed: 08/29/2023]
Abstract
Microplastic (MP) pollution is becoming a global problem due to the resilience, long-term persistence, and robustness of MPs in different ecosystems. In terrestrial ecosystems, plants are exposed to MP stress, thereby affecting overall plant growth and development. This review article has critically analyzed the effects of MP stress in plants. We found that MP stress-induced reduction in plant physical growth is accompanied by two complementary effects: (i) blockage of pores in seed coat or roots to alter water and nutrient uptake, and (ii) induction of drought due to increased soil cracking effects of MPs. Nonetheless, the reduction in physiological growth under MP stress is accompanied by four complementary effects: (i) excessive production of ROS, (ii) alteration in leaf and root ionome, (iii) impaired hormonal regulation, and (iv) decline in chlorophyll and photosynthesis. Considering that, we suggested that targeting the redox regulatory mechanisms could be beneficial in improving tolerance to MPs in plants; however, antioxidant activities are highly dependent on plant species, plant tissue, MP type, and MP dose. MP stress also indirectly reduces plant growth by altering soil productivity. However, MP-induced negative effects vary due to the presence of different surface functional groups and particle sizes. In the end, we suggested the utilization of agronomic approaches, including the application of growth regulators, biochar, and replacing plastic mulch with crop residues, crop diversification, and biological degradation, to ameliorate the effects of MP stress in plants. The efficiency of these methods is also MP-type-specific and dose-dependent.
Collapse
Affiliation(s)
- Li Jia
- College of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Lining Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Wenxuan Fu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Qianqian Wang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, College of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
30
|
Chokejaroenrat C, Sakulthaew C, Angkaew A, Pattanateeradetch A, Raksajit W, Teingtham K, Phansak P, Klongvessa P, Snow DD, Harris CE, Comfort SD. Adsorptive-Photocatalytic Performance for Antibiotic and Personal Care Product Using Cu 0.5Mn 0.5Fe 2O 4. Antibiotics (Basel) 2023; 12:1151. [PMID: 37508247 PMCID: PMC10376126 DOI: 10.3390/antibiotics12071151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
The amount of antibiotics and personal care products entering local sewage systems and ultimately natural waters is increasing and raising concerns about long-term human health effects. We developed an adsorptive photocatalyst, Cu0.5Mn0.5Fe2O4 nanoparticles, utilizing co-precipitation and calcination with melamine, and quantified its efficacy in removing paraben and oxytetracycline (OTC). During melamine calcination, Cu0.5Mn0.5Fe2O4 recrystallized, improving material crystallinity and purity for the adsorptive-photocatalytic reaction. Kinetic experiments showed that all four parabens and OTC were removed within 120 and 45 min. We found that contaminant adsorption and reaction with active radicals occurred almost simultaneously with the photocatalyst. OTC adsorption could be adequately described by the Brouers-Sotolongo kinetic and Freundlich isotherm models. OTC photocatalytic degradation started with a series of reactions at different carbon locations (i.e., decarboxamidation, deamination, dehydroxylation, demethylation, and tautomerization). Further toxicity testing showed that Zea mays L. and Vigna radiata L. shoot indexes were less affected by treated water than root indexes. The Zea mays L. endodermis thickness and area decreased considerably after exposure to the 25% (v/v)-treated water. Overall, Cu0.5Mn0.5Fe2O4 nanoparticles exhibit a remarkable adsorptive-photocatalytic performance for the degradation of tested antibiotics and personal care products.
Collapse
Affiliation(s)
- Chanat Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Chainarong Sakulthaew
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Athaphon Angkaew
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Apiladda Pattanateeradetch
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Wuttinun Raksajit
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Kanokwan Teingtham
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Piyaporn Phansak
- Division of Biology, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Pawee Klongvessa
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Daniel D Snow
- Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Clifford E Harris
- Department of Chemistry and Biochemistry, Albion College, Albion, MI 49224, USA
| | - Steve D Comfort
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
31
|
Qian F, Su X, Zhang Y, Bao Y. Variance of soil bacterial community and metabolic profile in the rhizosphere vs. non-rhizosphere of native plant Rumex acetosa L. from a Sb/As co-contaminated area in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131681. [PMID: 37245371 DOI: 10.1016/j.jhazmat.2023.131681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/29/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Heavy metals (HMs) contamination poses a serious threat to soil health. However, the rhizosphere effect of native pioneer plants on the soil ecosystem remains unclear. Herein, how the rhizosphere (Rumex acetosa L.) influenced the process of HMs threatening soil micro-ecology was investigated by coupling various fractions of HMs, soil microorganisms and soil metabolism. The rhizosphere effect alleviated the HMs' stress by absorbing and reducing HMs' direct bioavailability, and the accumulation of ammonium nitrogen increased in the rhizosphere soil. Meanwhile, severe HMs contamination covered the rhizosphere effect on the richness, diversity, structure and predicted function pathways of soil bacterial community, but the relative abundance of Gemmatimonadota decreased and Verrucomicrobiota increased. The content of total HMs and physicochemical properties played a more important role than rhizosphere effect in shaping soil bacterial community. Furthermore, As was observed to have a more significant impact compared to Sb. Moreover, plant roots improved the stability of bacterial co-occurrence network, and significantly changed the critical genera. The process influenced bacterial life activity and nutrient cycling in soil, and the conclusion was further supported by the significant difference in metabolic profiles. This study illustrated that in Sb/As co-contaminated area, rhizosphere effect significantly changed soil HMs content and fraction, soil properties, and microbial community and metabolic profiles.
Collapse
Affiliation(s)
- Fanghan Qian
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Xiangmiao Su
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Ying Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China
| | - Yanyu Bao
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, PR China.
| |
Collapse
|
32
|
Song U, Kim J, Rim H. Assessing phytotoxicity of microplastics on aquatic plants using fluorescent microplastics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27621-x. [PMID: 37204581 DOI: 10.1007/s11356-023-27621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Although studies on microplastics are increasing every year, still very little is known about their toxicity. Especially for plant species, even studies of uptake of microplastics are only few, not to mention phytotoxicity of microplastics. Therefore, we conducted a pilot study on the phytotoxicity of 1-μm-sized fluorescent microplastics (FMPs) on the free-floating aquatic plants Spirodela polyrhiza and Salvinia natans and the emergent aquatic plant Phragmites australis using 0.1% and 0.01% FMP treatment. Furthermore, uptake of FMPs by plants was verified by detecting fluorescence of FMPs by laser. A free-floating aquatic plant S. polyrhiza and emergent aquatic plant P. australis showed significantly decreased harvested biomass after 3 weeks indicating phytotoxicity of FMPs, but S. natans did not show any differences of harvested biomass or chlorophyll contents among treatments. Detection of fluorescence from plant leaves provided evidence of active FMPs uptake by plants. The emission spectra of plant leaves in 0.1% FMP treatment showed similar peaks to those of free fluorescent microplastics, providing a firm evidence of FMPs uptake by plants. This study is one of the pioneering studies to explore fluorescent microplastic uptake and toxicity in aquatic plants and therefore provides a baseline for further studies.
Collapse
Affiliation(s)
- Uhram Song
- Department of Biology, Jeju National University, 9207, Natural Science Building 1, 102 Jeju University Road, Jeju, 63243, Korea.
| | - Jungkil Kim
- Department of Physics, Jeju National University, Jeju, 63243, Korea
| | - Hojun Rim
- Crop Protection Division, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Korea
| |
Collapse
|
33
|
Deng D, Wang J, Xu S, Sun Y, Shi G, Wang H, Wang X. The physiological effect of organophosphate flame retardants (OPFRs) on wheat (Triticum aestivum L.) seed germination and seedling growth under the presence of copper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27312-7. [PMID: 37147540 DOI: 10.1007/s11356-023-27312-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
This study investigated the physiological and biochemical impacts of organophosphate flame retardants (OPFRs) on wheat (Triticum aestivum L.) germination and growth performance in the presence and absence of copper. The study evaluated seed germination, growth, OPFRs concentrations, chlorophyll fluorescence index (Fv/Fm and Fv/F0), and antioxidant enzyme activity. It also calculated the root accumulation of OPFRs and their root-stem translocation. At the germination stage, at a concentration of 20 μg·L-1 OPFR exposure, wheat germination vigor, root, and shoot lengths were significantly decreased compared to the control. However, the addition of a high concentration of copper (60 mg·L-1) decreased by 80%, 82%, and 87% in the seed germination vitality index and root and shoot elongation, respectively, compared to 20 μg·L-1 of OPFR treatment. At the seedling stage, a concentration of 50 μg·L-1 of OPFRs significantly decreased by 42% and 5.4% in wheat growth weight and the photochemical efficiency of photosystem II (Fv/Fm) compared to the control. However, the addition of a low concentration of copper (15 mg·L-1) slightly enhanced the growth weight compared to the other two co-exposure treatments, but the results were not significant (p > 0.05). After 7 days of exposure, the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) (indicates lipid peroxidation) content in wheat roots significantly increased compared to the control and was higher than in leaves. MDA contents in wheat roots and shoots were decreased by 18% and 6.5% when OPFRs were combined with low Cu treatment compared with single OPFRs treatment, but SOD activity was slightly improved. These results suggest that the co-exposure of copper and OPFRs enhances reactive oxygen species (ROS) production and oxidative stress tolerance. Seven OPFRs were detected in wheat roots and stems, with root concentration factors (RCFs) and translocation factors (TFs) ranging from 67 to 337 and 0.05 to 0.33, respectively, for the seven OPFRs in a single OPFR treatment. The addition of copper significantly increased OPFR accumulation in the root and aerial parts. In general, the addition of a low concentration of copper promoted wheat seedling elongation and biomass and did not significantly inhibit the germination process. OPFRs could mitigate the toxicity of low-concentration copper on wheat but had a weak detoxification effect on high-concentration copper. These results indicated that the combined toxicity of OPFRs and Cu had antagonistic effects on the early development and growth of wheat.
Collapse
Affiliation(s)
- Dengxian Deng
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Junxia Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China.
| | - Sijie Xu
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Yueying Sun
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Guangyu Shi
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Huili Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Xuedong Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| |
Collapse
|
34
|
Yan G, Sun Y, Yang L, Zhang Y, Zhang W. Polystyrene microplastics protect lettuce ( Lactuca sativa) from the hazardous effects of Cu(OH) 2 nanopesticides. FRONTIERS IN PLANT SCIENCE 2022; 13:1087754. [PMID: 36570908 PMCID: PMC9772688 DOI: 10.3389/fpls.2022.1087754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Copper-based nanopesticides are released into the environment during foliar spray application, and they could, on their own or in combination with microplastics (MPs), pose threats to environmental safety and human health. In this study, Cu(OH)2 nanowires greatly decreased the vigor of lettuce seeds (p< 0.01) and the root length of lettuce seedlings (p< 0.01) and significantly altered the lettuce antioxidant defence system and MDA content (p< 0.05). Released Cu2+ played a critical role in the toxicity mechanism of Cu(OH)2 nanowires in lettuce seedlings, as evidenced by the substantial accumulation of Cu in the seedling roots (p< 0.01) rather than in the leaves. Polystyrene (PS) MPs (1 mg/L) stimulated lettuce seedling growth, as shown by the (highly) significant increase in root and leaf length and in the seed vigor index (p< 0.01 or 0.05). Notably, PS MPs (1 mg/L) neutralized the hazardous effects of 1 mg/L Cu(OH)2 nanowire treatment on lettuce growth, as reflected by the vitality and root length of the seedlings returning to normal levels. The PS MPs (1 mg/L) absorbed on middle root surfaces and strongly hindered Cu accumulation in lettuce roots, which was the predominant mechanism by which PS MPs suppressed the hazardous effects of the Cu(OH)2 nanowires. This study strengthens the understanding of the toxicity and toxicity mechanisms of Cu(OH)2 nanowires with or without PS MPs in the environment.
Collapse
Affiliation(s)
- Guanjie Yan
- China‐UK‐NYNU‐RRes Joint Laboratory of Insect Biology, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - YongHao Sun
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Liting Yang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Yao Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Weicheng Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
35
|
Li J, Yu S, Yu Y, Xu M. Effects of Microplastics on Higher Plants: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:241-265. [PMID: 35752996 DOI: 10.1007/s00128-022-03566-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Microplastics pose great risks to terrestrial systems owing to their large quantity and strong persistence. Higher plants, an irreplaceable part of the terrestrial ecosystem, are inevitably exposed to microplastics. This review highlights the effects of microplastics on higher plant growth and performance. The tested microplastics, plant species, and cultural methods used in existing studies were summarized. We discussed the reasons why these microplastics, plants, and methods were selected. The various responses of higher plants to microplastics in both soils and waters were critically reviewed. We also highlighted the influencing mechanisms of microplastics on higher plants. Conclusively, more than 13 types of common microplastics and more than 30 species of higher plants have been selected and studied by the published literatures. Soil culture tests and hydroponic experiments are almost equally divided. The effects of microplastics on higher plants varied among microplastic properties, plant species, and environmental factors. Microplastics had no or positive effects on higher plants under certain experimental conditions. However, more studies showed that microplastics can inhibit higher plant growth and performance. We reduced the inhibitory mechanisms into direct and indirect mechanisms. The direct mechanisms include blocking pores or light, causing mechanical damage to roots, hindering genes expression, and releasing additives. The indirect mechanisms contain changing soil properties, affecting soil microbes or soil animals, and affecting bioavailability of other pollutants. This review improves the understanding of effects and influencing mechanisms of microplastics on higher plants.
Collapse
Affiliation(s)
- Jia Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Songguo Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Yufei Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| |
Collapse
|
36
|
Guo A, Pan C, Su X, Zhou X, Bao Y. Combined effects of oxytetracycline and microplastic on wheat seedling growth and associated rhizosphere bacterial communities and soil metabolite profiles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119046. [PMID: 35217135 DOI: 10.1016/j.envpol.2022.119046] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The widespread application of antibiotics and plastic films in agriculture leads to new characteristics of soil pollution with the coexistence of antibiotics and microplastics. However, their combined effects on wheat seedling growth and associated rhizosphere bacterial communities and soil metabolite profiles remain unclear. Here, in the potted experiment, wheat was treated with individual oxytetracycline (0, 5.0, 50.0, and 150.0 mg kg-1) and the combination of oxytetracycline and polyethylene microplastic (0.2%). Results showed that 150 mg kg-1 oxytetracycline combined with microplastic significantly reduced the biomass and height of the plant. Compared with CK, all the treatments exposed to the combination of oxytetracycline and polyethylene microplastic significantly promoted carotenoid content and peroxidase activity in wheat leaves. Soil dehydrogenase and urease activities were more sensitive to current pollutant exposure than sucrase activity. Oxytetracycline (150 mg kg-1) alone and in combination with polyethylene significantly decreased the abundances of certain genera belonging to plant growth-promoting rhizobacteria (PGPR) in soil, such as Arthrobacter, Gemmatimonas, Massilia, and Sphingomonas. Combined exposure of 150 mg kg-1 oxytetracycline and polyethylene microplastic significantly altered multiple metabolites including organic acids and sugars. Network analysis indicated that co-exposure of 150 mg kg-1 oxytetracycline and microplastic may affect the colonization and succession of PGPR by regulating soil metabolites, thereby indirectly inhibiting wheat seedling growth. The results help to elucidate the potential mechanisms of phytotoxicity of the combination of oxytetracycline and polyethylene microplastic.
Collapse
Affiliation(s)
- Aiyun Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chengrong Pan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Party School of the CPC, Lanzhou Party Committee, Lanzhou Administration Institute, Lanzhou, 790030, China
| | - Xiangmiao Su
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xu Zhou
- College of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yanyu Bao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
37
|
Jin T, Tang J, Lyu H, Wang L, Gillmore AB, Schaeffer SM. Activities of Microplastics (MPs) in Agricultural Soil: A Review of MPs Pollution from the Perspective of Agricultural Ecosystems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4182-4201. [PMID: 35380817 DOI: 10.1021/acs.jafc.1c07849] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastics are emerging persistent pollutants which have attracted increasing attention worldwide. Although microplastics have been widely detected in aquatic environments, their presence in soil ecosystems remains largely unexplored. Plastic debris accumulates in farmland, causing serious environmental problems, which may directly affect food substances or indirectly affect the members in each trophic level of the food chain. This review summarizes the origins, migration, and fate of microplastics in agricultural soils and discusses the interaction between microplastics and the components in farmland from the perspectives of toxicology and accumulation and deduces impacts on ecosystems by linking the organismal response to an ecological role. The effects on farmland ecosystem function are also discussed, emphasizing the supply of agricultural products, food chain pathways, carbon deposition, and nitrogen cycling and soil and water conservation, as microplastic pollution will affect agricultural ecosystems for a long period, posing an ecological risk. Finally, several directions for future research are proposed, which is important for reducing the effect of microplastics in agricultural systems.
Collapse
Affiliation(s)
- Tianyue Jin
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee - Knoxville, 2506 East J. Chapman Drive, Knoxville, Tennessee 37996, United States
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee - Knoxville, 2506 East J. Chapman Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
38
|
The Effect of Temperature and Water Stresses on Seed Germination and Seedling Growth of Wheat (Triticum aestivum L.). SUSTAINABILITY 2022. [DOI: 10.3390/su14073887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Temperature and moisture are essential factors in germination and seedling growth. The purpose of this research was to assess the germination and growth of wheat (Triticum aestivum L.) seeds under various abiotic stressors. It was conducted in the Agronomy Institute of the Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary. Six distinct temperature levels were used: 5, 10, 15, 20, 25, and 30 °C. Stresses of drought and waterlogging were quantified using 25 water levels based on single-milliliter intervals and as a percentage based on thousand kernel weight (TKW). Seedling density was also tested. Temperature significantly influenced germination duration and seedling development. 20 °C was ideal with optimal range of 15 °C to less than 25 °C. Germination occurred at water amount of 75% of the TKW, and its ideal range was lower and narrower than the range for seedling development. Seed size provided an objective basis for defining germination water requirements. The current study established an optimal water supply range for wheat seedling growth of 525–825 percent of the TKW. Fifteen seeds within a 9 cm Petri dish may be preferred to denser populations.
Collapse
|