1
|
Chen J, Yu K, Yu X, Zhang R, Chen B. Transcriptomic and physiological analyses reveal the toxic effects of inorganic filters (nZnO and nTiO 2) on scleractinian coral Galaxea fascicularis. ENVIRONMENTAL RESEARCH 2025; 267:120663. [PMID: 39709120 DOI: 10.1016/j.envres.2024.120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The effects of sunscreen on scleractinian corals have garnered widespread attention; however, the toxic effects and mechanisms remain unclear. This study investigated the toxicological effects of two common inorganic filters used in sunscreens, nano zinc oxide and titanium dioxide (nZnO and nTiO₂), on the reef-building coral Galaxea fascicularis, focusing on the phenotypic, physiological, and transcriptomic responses. The results showed that after exposure to 0.8 mg/L of nZnO and 30 mg/L of nTiO₂ for 48 h, all coral polyps exhibited retraction. Zn and Ti ions were detected in coral tissues at concentrations of 67.18 and 24.87 μg/g, respectively, indicating the accumulation of nZnO and nTiO2 in coral tissues. The zooxanthellae density, Fv/Fm, and chlorophyll-a content decreased significantly. The activity of antioxidant enzymes showed an increasing trend. Meanwhile, glutamine synthetase and glutamate dehydrogenase activities exhibited a decreasing trend. The health status of corals was impacted as a result of nZnO and nTiO2 stress. Transcriptomic analysis showed that the toxicity mechanisms of nZnO and nTiO2 differed in corals. Following exposure to nZnO, differentially expressed genes (DEGs) in corals were mainly enriched in signaling pathways related to immune response. The genes related to innate immunity, such as MASP1, MUC5AC, TLRs, and C2, were significantly upregulated, indicating that nZnO exposure induces an innate immune response in corals. Meanwhile, following nTiO2 exposure, the upregulated DEGs were mainly enriched in signaling pathways related to transporter activity. In contrast, the downregulated DEGs were mainly enriched in energy metabolism pathways, indicating that nTiO2 disrupted the energy supply of corals, thereby leading to an increased demand for nutrient transport. This study reveals the toxic effects of nZnO and nTiO2, and their mechanisms of action on scleractinian corals, providing a reference for further assessing the toxicity of sunscreen on corals.
Collapse
Affiliation(s)
- Jian Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
2
|
Sun Y, Sheng H, Rädecker N, Lan Y, Tong H, Huang L, Jiang L, Diaz-Pulido G, Zou B, Zhang Y, Kao SJ, Qian PY, Huang H. Symbiodiniaceae algal symbionts of Pocillopora damicornis larvae provide more carbon to their coral host under elevated levels of acidification and temperature. Commun Biol 2024; 7:1528. [PMID: 39558079 PMCID: PMC11573989 DOI: 10.1038/s42003-024-07203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
Climate change destabilizes the symbiosis between corals and Symbiodiniaceae. The effects of ocean acidification and warming on critical aspects of coral survical such as symbiotic interactions (i.e., carbon and nitrogen assimilation and exchange) during the planula larval stage remain understudied. By combining physiological and stable isotope techniques, here we show that photosynthesis and carbon and nitrogen assimilation (H13CO3- and 15NH4+) in Pocillopora damicornis coral larvae is enhanced under acidification (1000 µatm) and elevated temperature (32 °C). Larvae maintain high survival and settlement rates under these treatment conditions with no observed decline in symbiont densities or signs of bleaching. Acidification and elevated temperature both enhance the net and gross photosynthesis of Symbiodiniaceae. This enhances light respiration and elevates C:N ratios within the holobiont. The increased carbon availability is primarily reflected in the 13C enrichment of the host, indicating a greater contribution of the algal symbionts to the host metabolism. We propose that this enhanced mutualistic symbiotic nutrient cycling may bolster coral larvae's resistance to future ocean conditions. This research broadens our understanding of the early life stages of corals by emphasizing the significance of symbiotic interactions beyond those of adult corals.
Collapse
Affiliation(s)
- Youfang Sun
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Huaxia Sheng
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Nils Rädecker
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Yi Lan
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Haoya Tong
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Lintao Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Guillermo Diaz-Pulido
- School of Environment and Science, Coastal and Marine Research Centre, Nathan Campus, Griffith University, Brisbane, Nathan Campus, QLD, 4111, Australia
| | - Bobo Zou
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Yuyang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research and Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, 572000, China.
| |
Collapse
|
3
|
Huffmyer AS, Ashey J, Strand E, Chiles EN, Su X, Putnam HM. Coral larvae increase nitrogen assimilation to stabilize algal symbiosis and combat bleaching under increased temperature. PLoS Biol 2024; 22:e3002875. [PMID: 39531470 PMCID: PMC11556732 DOI: 10.1371/journal.pbio.3002875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Rising sea surface temperatures are increasingly causing breakdown in the nutritional relationship between corals and algal endosymbionts (Symbiodiniaceae), threatening the basis of coral reef ecosystems and highlighting the critical role of coral reproduction in reef maintenance. The effects of thermal stress on metabolic exchange (i.e., transfer of fixed carbon photosynthates from symbiont to host) during sensitive early life stages, however, remains understudied. We exposed symbiotic Montipora capitata coral larvae in Hawai'i to high temperature (+2.5°C for 3 days), assessed rates of photosynthesis and respiration, and used stable isotope tracing (4 mM 13C sodium bicarbonate; 4.5 h) to quantify metabolite exchange. While larvae did not show any signs of bleaching and did not experience declines in survival and settlement, metabolic depression was significant under high temperature, indicated by a 19% reduction in respiration rates, but with no change in photosynthesis. Larvae exposed to high temperature showed evidence for maintained translocation of a major photosynthate, glucose, from the symbiont, but there was reduced metabolism of glucose through central carbon metabolism (i.e., glycolysis). The larval host invested in nitrogen cycling by increasing ammonium assimilation, urea metabolism, and sequestration of nitrogen into dipeptides, a mechanism that may support the maintenance of glucose translocation under thermal stress. Host nitrogen assimilation via dipeptide synthesis appears to be used for nitrogen limitation to the Symbiodiniaceae, and we hypothesize that nitrogen limitation contributes to retention of fixed carbon by favoring photosynthate translocation to the host. Collectively, our findings indicate that although these larvae are susceptible to metabolic stress under high temperature, diverting energy to nitrogen assimilation to maintain symbiont population density, photosynthesis, and carbon translocation may allow larvae to avoid bleaching and highlights potential life stage specific metabolic responses to stress.
Collapse
Affiliation(s)
- Ariana S. Huffmyer
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, Washington United States of America
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island United States of America
| | - Jill Ashey
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island United States of America
| | - Emma Strand
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island United States of America
- Gloucester Marine Genomics Institute, Gloucester, Massachusetts United States of America
| | - Eric N. Chiles
- Microbial Biology Graduate Program, Rutgers University, New Brunswick, New Jersey United States of America
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey United States of America
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey United States of America
- Department of Medicine, Division of Endocrinology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey United States of America
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island United States of America
| |
Collapse
|
4
|
Williams A. Multiomics data integration, limitations, and prospects to reveal the metabolic activity of the coral holobiont. FEMS Microbiol Ecol 2024; 100:fiae058. [PMID: 38653719 PMCID: PMC11067971 DOI: 10.1093/femsec/fiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Since their radiation in the Middle Triassic period ∼240 million years ago, stony corals have survived past climate fluctuations and five mass extinctions. Their long-term survival underscores the inherent resilience of corals, particularly when considering the nutrient-poor marine environments in which they have thrived. However, coral bleaching has emerged as a global threat to coral survival, requiring rapid advancements in coral research to understand holobiont stress responses and allow for interventions before extensive bleaching occurs. This review encompasses the potential, as well as the limits, of multiomics data applications when applied to the coral holobiont. Synopses for how different omics tools have been applied to date and their current restrictions are discussed, in addition to ways these restrictions may be overcome, such as recruiting new technology to studies, utilizing novel bioinformatics approaches, and generally integrating omics data. Lastly, this review presents considerations for the design of holobiont multiomics studies to support lab-to-field advancements of coral stress marker monitoring systems. Although much of the bleaching mechanism has eluded investigation to date, multiomic studies have already produced key findings regarding the holobiont's stress response, and have the potential to advance the field further.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
5
|
Cheng M, Luo Y, Yu XL, Huang LT, Lian JS, Huang H. Effects of elevated temperature and copper exposure on the physiological state of the coral Galaxea fascicularis. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106218. [PMID: 38039737 DOI: 10.1016/j.marenvres.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 12/03/2023]
Abstract
The co-occurrence of elevated seawater temperature and local stressors (heavy metal contamination) affects the ecophysiology of phototrophic species, and represents a risk to the environmental quality of coral reefs. Therefore, we investigated the effects of both Cu alone and Cu in combination with elevated temperature (ET) on the physiology of the coral Galaxea fascicularis, and measured the parameters related to the photo-physiology and oxidative state. G.fascicularis is one of the dominant coral species in the South China Sea which exhibits strong adaptability to environmental stress. We exposed the common coral species G.fascicularis to a series of environmentally relevant concentrations of Cu at 29 °C (normal temperature, NT) and 32 °C (elevated temperature, ET) for 96 h. Single polyps were used in the experiments, which reduced individual variability when compared to the coral colonies. The results suggested that: i) Cu or ET had significant negative effects on the actual operating ability of photosystem Ⅱ (PSII), but not on the maximal chlorophyll fluorescence in darkness (Fv/Fm). ii) Symbiodiniaceae density was significantly reduced by high Cu concentrations, for Cu-NT and Cu-ET, a high concentration of Cu (40 μg/L) significantly impacted Symbiodiniaceae density, causing a 75.4% and 81.0% decrease, respectively. iii) the content of malondialdehyde (MDA) in coral tissues increased significantly under Cu-ET. iv) a certain range of copper concentration (25-30 μg/L) increased the pigment content of the Symbiodiniacea. Our results indicated that the combined stressors of Cu and ET made the coral tissue sloughed, caused the coral tissue damaged by lipid oxidation, reduced the photosynthetic capacity of the Symbiodiniacea, and led to the excretion of Symbiodiniacea.
Collapse
Affiliation(s)
- Meng Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yong Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao-Lei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Tao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Sheng Lian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, SCSIO, Sanya, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
6
|
Hansani KUDN, Thilakarathne EPDN, Koongolla JB, Gunathilaka WGIT, Perera BGDO, Weerasingha WMPU, Egodauyana KPUT. Contamination of microplastics in tropical coral reef ecosystems of Sri Lanka. MARINE POLLUTION BULLETIN 2023; 194:115299. [PMID: 37499569 DOI: 10.1016/j.marpolbul.2023.115299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Microplastics (MPs) in different marine compartments are a global concern. This study investigated the abundance, distribution, and characteristics of microplastics from ten coral reef ecosystems in Sri Lanka, a non-quantified threat for some context. Microplastics were isolated and quantified in terms of abundance, shape, size, color, and polymer type with average abundances 546.7 ± 170.3 items kg-1, 9.8 ± 7.6 items m-3, and 46.3 ± 29.7 items kg-1 in corals, water, and sediments respectively. The most dominant microplastic type was blue, LDPE fibres. Acropora exhibited the highest amount. The significant differences in average microplastic abundances among corals suggest that they are capable of enriching microplastics depending on species-specific characteristics. Similar microplastic characteristics in corals and reef environment indicate that corals may have enriched microplastics from surface water and surface sediments. Microplastics being ubiquitous in selected reefs highlights the importance of coral reefs as a long-term microplastic sink in the ocean, contributing to the missing plastic phenomena.
Collapse
Affiliation(s)
- K U D N Hansani
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka.
| | - E P D N Thilakarathne
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka
| | - J Bimali Koongolla
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
| | - W G I T Gunathilaka
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka
| | - B G D O Perera
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka
| | - W M P U Weerasingha
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka
| | - K P U T Egodauyana
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
| |
Collapse
|
7
|
Manullang C, Singh T, Sakai K, Miyagi A, Iwasaki A, Nojiri Y, Iguchi A. Separate and combined effects of elevated pCO 2 and temperature on the branching reef corals Acropora digitifera and Montipora digitata. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106030. [PMID: 37267662 DOI: 10.1016/j.marenvres.2023.106030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Ocean acidification (OA) and warming (OW) are major global threats to coral reef ecosystems; however, studies on their combined effects (OA + OW) are scarce. Therefore, we evaluated the effects of OA, OW, and OA + OW in the branching reef corals Acropora digitifera and Montipora digitata, which have been found to respond differently to environmental changes. Our results indicate that OW has a greater impact on A. digitifera and M. digitata than OA and that the former species is more vulnerable to OW than the latter. OW was the main stressor for increased mortality and decreased calcification in the OA + OW group, and the effect of OA + OW was additive in both species. Our findings suggest that the relative abundance and cover of M. digitata are expected to increase whereas those of A. digitifera may decrease in the near future in Okinawa.
Collapse
Affiliation(s)
- Cristiana Manullang
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, Japan
| | - Tanya Singh
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, Japan
| | - Kazuhiko Sakai
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Motobu, Okinawa, Japan.
| | - Aika Miyagi
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Nago-City, Okinawa, Japan
| | - Aiko Iwasaki
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Aomori, Japan
| | - Yukihiro Nojiri
- Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan; Graduate School of Earth and Environmental Sciences, Hirosaki University, Hirosaki, Aomori, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; Research Laboratory on Environmentally-conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|