1
|
Wu G, Li S, Luo L, Li Y, Zhang W, Wang H, Liu S, Du C, Wang J, Cheng J, Wu Y, Shen Y. Exploring Single-Atom Nanozymes Toward Environmental Pollutants: Monitoring and Control. NANO-MICRO LETTERS 2025; 17:238. [PMID: 40293645 PMCID: PMC12037469 DOI: 10.1007/s40820-025-01734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025]
Abstract
As environmental pollutants pose a serious threat to socioeconomic and environmental health, the development of simple, efficient, accurate and cost-effective methods for pollution monitoring and control remains a major challenge, but it is an unavoidable issue. In the past decade, the artificial nanozymes have been widely used for environmental pollutant monitoring and control, because of their low cost, high stability, easy mass production, etc. However, the conventional nanozyme technology faces significant challenges in terms of difficulty in regulating the exposed crystal surface, complex composition, low catalytic activity, etc. In contrast, the emerging single-atom nanozymes (SANs) have attracted much attention in the field of environmental monitoring and control, due to their multiple advantages of atomically dispersed active sites, high atom utilization efficiency, tunable coordination environment, etc. To date, the insufficient efforts have been made to comprehensively characterize the applications of SANs in the monitoring and control of environmental pollutants. Building on the recent advances in the field, this review systematically summarizes the main synthesis methods of SANs and highlights their advances in the monitoring and control of environmental pollutants. Finally, we critically evaluate the limitations and challenges of SANs, and provide the insights into their future prospects for the monitoring and control of environmental pollutants.
Collapse
Affiliation(s)
- Guojian Wu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Si Li
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, People's Republic of China.
| | - Heng Wang
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Sha Liu
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Chenxing Du
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Research Unit of Food Safety, China National Center for Food Safety Risk Assessment (CFSA), Chinese Academy of Medical Sciences (No. 2019RU014), Beijing, 100022, People's Republic of China
| | - Yizhong Shen
- Engineering Research Center of Bio-Process, Ministry of Education, School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| |
Collapse
|
2
|
Mei Y, Zhuang S, Wang J. Adsorption of heavy metals by biochar in aqueous solution: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178898. [PMID: 39986038 DOI: 10.1016/j.scitotenv.2025.178898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Heavy metal pollution (e.g., Cd, Hg, Pb, Cu, Ni, Zn, As and Cr) has become a crucial issue worldwide. Among various remediation strategies, adsorption is widely recognized for its environmental sustainability, cost-effectiveness, and operational simplicity. In this context, biochar has gained significant attention due to its promising adsorption performance. To systematically support adsorption studies, this review compiled essential models for adsorption experiments, including commonly used adsorption kinetics models, isotherm models, and thermodynamic analysis methods. Moreover, we systematically analyzed key factors affecting heavy metal adsorption by biochar, such as its physicochemical properties, environmental pH, temperature, initial concentration, dosage, and the presence of coexisting ions, to identify the conditions that govern adsorption capacity. In addition, the adsorption performance of biochar toward eight significant heavy metals is reviewed in detail, with a focus on elucidating the underlying mechanisms, including complexation, ion exchange, cation-π bonding, electrostatic interactions, and precipitation. Finally, based on identified research gaps and critical challenges, we discuss emerging research tools, including machine learning and advanced surface modifications, to guide the targeted design of biochar materials for enhanced adsorption capacity.
Collapse
Affiliation(s)
- Yichuan Mei
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Shuting Zhuang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Rahman MH, Marufuzzaman M, Rahman MA, Mondal MIH. Adsorption kinetics and mechanisms of nano chitosan coated cotton fiber for the removal of heavy metals from industrial effluents. Heliyon 2025; 11:e42932. [PMID: 40084024 PMCID: PMC11903808 DOI: 10.1016/j.heliyon.2025.e42932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
The present study successfully removed heavy metals from industrial effluent using nanochitosan-coated cotton fiber (NCCF) crosslinked with citric acid, demonstrating the potential of advanced technologies in removing heavy metals from large amounts of wastewater caused by the world's unchecked population growth and widespread industrialization that has caused pollution. Structural, morphological, and thermal properties of NCCF were determined. Results revealed that the nanochitosan component improves the adsorption capacity of cotton fiber (CF) through the increased surface area and porosity of NCCF. Sorption studies were conducted based on pH, kinetics, isotherms, and desorption results. The Langmuir and Freundlich adsorption isotherms were utilized to examine the CF and NCCF adsorption mechanisms. NCCF exhibited maximum Langmuir adsorption capacities of 4.76 mmol/g for Cd2+, 6.40 mmol/g for Pb2+, and 12.50 mmol/g for Cr6+. Kinetic studies revealed that the pseudo-first-order kinetics model best describes the adsorption process. The results of the adsorption kinetics study showed that NCCF has a shorter half-time of adsorption than CF does during the adsorption process. This suggests that NCCF has a greater initial adsorption rate and adsorption capacity than CF. These findings are expected to lead to industrial applications in wastewater treatment as sustainable and highly effective materials.
Collapse
Affiliation(s)
- Md. Hasinur Rahman
- Polymer and Textile Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh
- Jamuna Fertilizer Company Ltd., Bangladesh Chemical Industries Corporation (BCIC), Jamalpur-2055, Bangladesh
| | - Md. Marufuzzaman
- Polymer and Textile Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md. Aminur Rahman
- Polymer and Textile Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh
- Department of Public Health Engineering (DPHE), Zonal Laboratory, Khulna-9100, Bangladesh
| | - Md. Ibrahim H. Mondal
- Polymer and Textile Research Laboratory, Department of Applied Chemistry and Chemical Engineering, Rajshahi University, Rajshahi 6205, Bangladesh
| |
Collapse
|
4
|
Wang J, Zhu H, Hu Y, Hu L, Wei Z, Li YY, Hu X. Mn oxide-modified biochars with high adsorption capacity for Pb(II) in wastewater: Preparation and adsorption mechanisms. ENVIRONMENTAL RESEARCH 2025; 266:120553. [PMID: 39647685 DOI: 10.1016/j.envres.2024.120553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
The occurrence of excessive levels of bivalent plumbum (Pb(II)) in wastewater poses a notable threat to both human health and ecological safety. In this study, orthogonal experiments were conducted to prepare coprecipitation-modified biochar (C-BC) and impregnation pyrolysis-modified biochar (I-BC) via potassium permanganate (KMnO4) for removing Pb(II) from wastewater. Three types of modified biochars (BCs) (Mn-BCs) namely, C-BC400, I-BC400, and I-BC700, were selected as high-efficiency adsorbents on the basis of their high removal rates (87.2%, 88.0%, and 91.2%, respectively) for 400 mg/L Pb(II) solutions. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM)‒energy-dispersive X-ray spectroscopy (EDS) analysis results indicated that Mn elements were distributed only on the outer surfaces of the C-BC400 particles but occurred on the outer surface and were stably embedded in the I-BC400 and I-BC700 particles. Compared with those of the pristine (BCs), the Pb(II) adsorption rates of C-BC400, I-BC400, and I-BC700 increased by factors of 3.75, 2.09, and 5.70, respectively. The Pb(II) adsorption capacities of C-BC400, I-BC400, and I-BC700 (182.28, 133.16, and 69.25 mg/g, respectively) were significantly greater than those of the pristine BCs produced at 400 °C (45.43 mg/g) and 700 °C (40.71 mg/g). The excellent adsorption ability of Mn-BCs for Pb(II) depends on various adsorption mechanisms, including complexation, electrostatic attraction, surface adsorption, and ion exchange. These results suggest that Mn-BCs exhibit high application potential in the remediation of Pb(II)-contaminated wastewater.
Collapse
Affiliation(s)
- Jiabo Wang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, 610059, China; College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Hongxia Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, 610059, China; College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China.
| | - Yue Hu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), Chengdu, 610059, China; College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Laigang Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Zeming Wei
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Yan Ying Li
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Xinglu Hu
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, 610059, China
| |
Collapse
|
5
|
Shahzad K, Hasan A, Hussain Naqvi SK, Parveen S, Hussain A, Ko KC, Park SH. Recent advances and factors affecting the adsorption of nano/microplastics by magnetic biochar. CHEMOSPHERE 2025; 370:143936. [PMID: 39667528 DOI: 10.1016/j.chemosphere.2024.143936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The increase in nano/microplastics (NPs/MPs) from various everyday products entering aquatic environments highlights the urgent need to develop mitigation strategies. Biochar (BC), known for its excellent adsorption capabilities, can effectively target various harmful organic and inorganic pollutants. However, traditional methods involving powdered BC necessitate centrifugation and filtration, which can lead to the desorption of pollutants and subsequent secondary pollution. Magnetic biochar (MBC) offers a solution that facilitates straightforward and rapid separation from water through magnetic techniques. This review provides the latest insights into the progress made in MBC applications for the adsorption of NPs/MPs. This review further discusses how external factors such as pH, ionic strength, temperature, competing ions, dissolved organic matter, aging time, and particle size impact the MBC adsorption efficiency of MPs. The use of machine learning (ML) for optimizing the design and properties of BC materials is also briefly addressed. Finally, this review addresses existing challenges and future research directions aimed at improving the large-scale application of MBC for NPs/MPs removal.
Collapse
Affiliation(s)
- Khurram Shahzad
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Areej Hasan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Syed Kumail Hussain Naqvi
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Saima Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyong-Cheol Ko
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34113, Republic of Korea.
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Khan WA, Arain MB, Balal S, Niaz A, Mollahosseini A, Soylak M. Eco-Friendly and Green Biochar Sorbent-Extraction Techniques for Pharmaceuticals, Environmental, and Food Analysis-A Review. J Sep Sci 2025; 48:e70074. [PMID: 39806533 DOI: 10.1002/jssc.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
The most important aspect of sorbent-based approaches is the use of a sustainable, readily available, and cost-effective sorbent material for sample analysis. Biochar is an emerging and prominent sorbent material for various applications in sorbent-based techniques due to its availability, affordability, eco-friendly nature, porosity, pore structure, abundance of aliphatic and aromatic carbon structures, and abundant oxygen-containing functional groups. On the basis of the numerous benefits of biochar, this review discusses why biochar is the preferred sorbent in sorptive-based techniques. In addition, this review provides a brief evaluation of various biochar-based sorptive approaches, including biochar-based solid-phase extraction (SPE)/microextraction (SPME), magnetic SPE/SPME, in-tube SPME, pipette-tip micro SPE, and thin-film microextraction. Furthermore, each section briefly overviews various studies for various sample analyses and applications, including pharmaceuticals, environmental, and food. Most importantly, on the basis of the literature review, biochar is an emerging sorbent material for various sorbent-based techniques that require further investigation for various applications.
Collapse
Affiliation(s)
- Wajid Ali Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Balal Arain
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sana Balal
- Department of Nanoscience and Nanotechnology, Erciyes University, Kayseri, Türkiye
| | - Abdul Niaz
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye
- Department of Chemistry, University of Science & Technology, Bannu, Pakistan
| | - Afsaneh Mollahosseini
- Research Laboratory of Spectroscopy and Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Türkiye
- Nano Bioanalytical Chemistry Center (NBAC), Khazar University, Baku, Azerbaijan
| |
Collapse
|
7
|
Liu B, Wu Y, Xing Z, Zhang J, Xue Y. Optimization of Magnetic Biochar Preparation Process, Based on Methylene Blue Adsorption. Molecules 2024; 29:5213. [PMID: 39519853 PMCID: PMC11547553 DOI: 10.3390/molecules29215213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The search for low-cost and effective adsorbents for the removal of organic dyes from contaminated water is urgently needed. The substantial amount of waste mushroom cultivation substrates generated in practical production can serve as an ideal material for the preparation of adsorbents. In this study, we investigated the main control parameters affecting the performance of magnetic mushroom substrate biochar and optimized the process of preparing biochar by using the Plackett-Burman and central composite design methods. Various analytical techniques including SEM, EDX, BET, and VSM were used to characterize the biochar. The results indicate that the carbonization temperature had the most significant impact on the yield and adsorption performance of biochar. Under the conditions of a carbonization temperature of 600 °C, a carbonization retention time of 1 h, and an impregnation ratio of 0.1, the yield and methylene blue adsorption value of magnetic biochar were 42.54% and 2297.04 μg/g, respectively, with a specific surface area of 37.17 m2/g. This biochar effectively removed methylene blue from the solution, demonstrating a high economic efficiency for wastewater treatment and pollution control. Furthermore, the adsorption-desorption cycle studies revealed its excellent stability and reusability. Additionally, based on the response surface methodology, a three-dimensional surface model of the adsorption performance of magnetic biochar under different carbonization conditions was established, providing a theoretical basis for the preparation of magnetic biochar from agricultural wastes.
Collapse
Affiliation(s)
- Bin Liu
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.); (J.Z.); (Y.X.)
| | - Yixuan Wu
- College of Food, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Zebing Xing
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.); (J.Z.); (Y.X.)
| | - Ji Zhang
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.); (J.Z.); (Y.X.)
| | - Yuxin Xue
- College of Agricultural Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (B.L.); (J.Z.); (Y.X.)
| |
Collapse
|
8
|
Li Z, Xiao X, Xu T, Chu S, Wang H, Jiang K. Removal of Pb(II) and Cd(II) from a Monometallic Contaminated Solution by Modified Biochar-Immobilized Bacterial Microspheres. Molecules 2024; 29:4757. [PMID: 39407684 PMCID: PMC11477854 DOI: 10.3390/molecules29194757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Lead (Pb) and cadmium (Cd) are toxic pollutants that are prevalent in wastewater and pose a serious threat to the natural environment. In this study, a new immobilized bacterial microsphere (CYB-SA) was prepared from corn stalk biochar and Klebsiella grimontii by sodium alginate encapsulation and vacuum freeze-drying technology. The removal effect of CYB-SA on Pb(II) and Cd(II) in a monometallic contaminated solution was studied. The results showed that the removal of Pb(II) and Cd(II) by CYB-SA was 99.14% and 83.35% at a dosage of 2.0 g/L and pH = 7, respectively, which was 10.77% and 18.58% higher than that of biochar alone. According to the Langmuir isotherm model, the maximum adsorption capacities of Pb(II) and Cd(II) by CYB-SA at 40 °C were 278.69 mg/g and 71.75 mg/g, respectively. A combination of the kinetic model, the isothermal adsorption model, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analyses showed that the main adsorption mechanisms of CYB-SA encompass functional group complexation, ion exchange, electrostatic attraction and physical adsorption. The findings of this study offer practical and theoretical insights into the development of highly efficient adsorbents for heavy metals.
Collapse
Affiliation(s)
- Zaiquan Li
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Xu Xiao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Tao Xu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Shiyu Chu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Hui Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Ke Jiang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
- Engineering Research Center of Green and Low-Carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
9
|
Hu J, Mi B, Chen L, Yuan Y, Zhang J, Wu F. An economical preparation strategy of magnetic biochar with high specific surface area for efficient removal of methyl orange. Int J Biol Macromol 2024; 276:134156. [PMID: 39098458 DOI: 10.1016/j.ijbiomac.2024.134156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Magnetic biochar (MBC) was obtained from pepper straw by impregnation-microwave pyrolysis method. The pyrolysis temperature and FeCl3 impregnation concentration were investigated on the structural properties of MBC and the adsorption of methyl orange (MO) in water. Characterization results showed that pyrolysis temperature and iron species significantly increased the specific surface area of MBC, which could reach the maximum of 2038.61 m2/g, and also provided more active adsorption sites by promoting the generation of graphitized structures and surface polar functional groups. MBC0.2-900 was selected as the adsorbent for MO with the maximum adsorption capacity reached 437.18 mg·g-1, 3.4 times higher than the virgin biochar. The adsorption process was dominated by chemisorption as well as spontaneous and exothermic. The adsorption mechanisms included pore-filling interaction, π-π EDA interaction, electrostatic interaction, hydrogen bonding, and Lewis acid-base electron interaction. In addition, MBC also exhibited excellent separability and reusability as a low-cost adsorbent. This study provided some theoretical foundation and technological support for producing high-performance biochar and developing pollutant removal technology in wastewater.
Collapse
Affiliation(s)
- Jian Hu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Baobin Mi
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Research Institute of Vegetables, Hunan Academy of Agriculture Sciences, Changsha 410125, China.
| | - Long Chen
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yifan Yuan
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jilong Zhang
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fangfang Wu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
10
|
Yang YX, Meng LL, Zhou S, Xia M, Bate B. The physicochemical interacting mechanisms and real-time spectral induced polarization monitoring of lead remediation by an aeolian soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134744. [PMID: 38850933 DOI: 10.1016/j.jhazmat.2024.134744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024]
Abstract
Compared to traditional lead-remediating materials, natural-occurring paleosol is ubiquitous and could be a promising alternative due to its rich content in calcite, a substance known for its lead-removal ability via carbonate dissolution-PbCO3 precipitation process. Yet, the capability of paleosol to remediate aqueous solutions polluted with heavy metals, lead included, has rarely been assessed. To fill this gap, a series of column permeation experiments with influent Pb2+ concentrations of 2000, 200, and 20 mg/L were conducted and monitored by the spectral induced polarization technique. Meanwhile, the SEM-EDS, XRD, XPS, FTIR and MIP tests were carried out to unveil the underlying remediation mechanisms. The Pb-retention capacity of paleosol was 1.03 mmol/g. The increasing abundance of Pb in the newly-formed crystals was confirmed to be PbCO3 by XRD, SEM-EDS and XPS. Concurrently, after Pb2+ permeation, the decreasing calcite content in paleosol sample from XRD test, and the appearance of Ca2+ in the effluent confirmed that the dissolution of CaCO3 followed by the precipitation of PbCO3 was the major mechanism. The accumulated Pb (i.e., the diminished Ca) in paleosol was inversely proportional (R2 >0.82) to the normalized chargeability (mn), an SIP parameter denoting the quantity of polarizable units (primarily calcite).
Collapse
Affiliation(s)
- Yi-Xin Yang
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China
| | - Long-Long Meng
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China
| | - Sheng Zhou
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China
| | - Min Xia
- The Architectural Design & Research Institute of Zhejiang University Co., Ltd, China
| | - Bate Bate
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Hamid Y, Chen Y, Lin Q, Haris M, Usman M, Saqib Rashid M, Anastopoulos I, Hussain B, Ali HM, Hannan F, Yin X, Yang X. Functionality of wheat straw-derived biochar enhanced its efficiency for actively capping Cd and Pb in contaminated water and soil matrices: Insights through batch adsorption and flow-through experiments. CHEMOSPHERE 2024; 362:142770. [PMID: 38969230 DOI: 10.1016/j.chemosphere.2024.142770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The impact of functionality of biochar on pressing environmental issue of cadmium (Cd) and lead (Pb) co-contamination in simultaneous soil and water systems has not sufficiently reported. This study investigated the impact of Fe- and Mg-functionalized wheat straw biochar (Fe-WSBC and Mg-WSBC) on Cd and Pb adsorption/immobilization through batch sorption and column leaching trials. Importantly, Fe-WSBC was more effective in adsorbing Cd and Pb (82.84 and 111.24 mg g-1), regeneration ability (removal efficiency 94.32 and 92.365), and competitive ability under competing cations (83.15 and 84.36%) compared to other materials (WSBC and Mg-WSBC). The practical feasibility of Fe-WSBC for spiked river water verified the 92.57% removal of Cd and 85.73% for Pb in 50 mg L-1 and 100 mg L-1 contamination, respectively. Besides, the leaching of Cd and Pb with Fe-WSBC under flow-through conditions was lowered to (0.326 and 17.62 mg L-1), respectively as compared to control (CK) (0.836 and 40.40 mg L-1). In short, this study presents the applicable approach for simultaneous remediation of contaminated water and soil matrices, offering insights into environmentally friendly green remediation strategies for heavy metals co-contaminated matrices.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonglong Chen
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47100, Arta, Greece
| | - Bilal Hussain
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Xianyuan Yin
- Beautiful Village Construction Center of Quzhou Agriculture and Rural Affairs Bureau, Quzhou, 324002, China.
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Saawarn B, Mahanty B, Hait S. Adsorptive removal of perfluorooctanoic acid from aqueous matrices using peanut husk-derived magnetic biochar: Statistical and artificial intelligence approaches, kinetics, isotherm, and thermodynamics. CHEMOSPHERE 2024; 360:142397. [PMID: 38782130 DOI: 10.1016/j.chemosphere.2024.142397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Removal of perfluorooctanoic acid (PFOA) from water matrices is crucial owing to its pervasiveness and adverse ecological and human health effects. This study investigates the adsorptive removal of PFOA using magnetic biochar (MBC) derived from FeCl3-treated peanut husk at different temperatures (300, 600, and 900 °C). Preliminary experiments demonstrated that MBC600 exhibited superior performance, with its characterization confirming the presence of γ-Fe2O3. However, efficient PFOA removal from water matrices depends on determining the optimum combination of inputs in the treatment approaches. Therefore, optimization and predictive modeling of the PFOA adsorption were investigated using the response surface methodology (RSM) and the artificial intelligence (AI) models, respectively. The central composite design (CCD) of RSM was employed as the design matrix. Further, three AI models, viz. artificial neural network (ANN), support vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) were selected to predict PFOA adsorption. The RSM-CCD model applied to optimize three input process parameters, namely, adsorbent dose (100-400 mg/L), pH (3-10), and contact time (20-60 min), showed a statistically significant (p < 0.05) effect on PFOA removal. Maximum PFOA removal of about 98.3% was attained at the optimized conditions: adsorbent dose: 400 mg/L, pH: 3.4, and contact time: 60 min. Non-linear analysis showed PFOA adsorption was best fitted by pseudo-second-order kinetics (R2 = 0.9997). PFOA adsorption followed Freundlich isotherm (R2 = 0.9951) with a maximum adsorption capacity of ∼307 mg/g. Thermodynamics and spectroscopic analyses revealed that PFOA adsorption is a spontaneous, exothermic, and physical phenomenon, with electrostatic interaction, hydrophobic interaction, and hydrogen bonding governing the process. A comparative analysis of the statistical and AI models for PFOA adsorption demonstrated high R2 (>0.99) for RSM-CCD, ANN, and ANFIS. This research demonstrates the applicability of the statistical and AI models for efficient prediction of PFOA adsorption from water matrices using MBC (MBC600).
Collapse
Affiliation(s)
- Bhavini Saawarn
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Byomkesh Mahanty
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar, 801 106, India.
| |
Collapse
|
13
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
14
|
He Y, Liu Z, Chen J, Deng Y. Performance and mechanism of sulfadiazine and norfloxacin adsorption from aqueous solution by magnetic coconut shell biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48561-48575. [PMID: 39031314 DOI: 10.1007/s11356-024-34359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
In this study, magnetic coconut shell biochar loaded with spherical Fe3O4 and γ-Fe2O3 particles was successfully synthesized using a chemical coprecipitation method. The magnetic biochar exhibited a good magnetic separability and environmental security. The maximum sulfadiazine (SDZ) and norfloxacin (NOR) removal efficiencies were 94.8% and 92.3% at pH 4 and 25 °C with adsorbent dosage of 2.5 g/L, respectively. When antibiotic concentrations ranged from 5 to 50 mg/L, the theoretical maximum adsorption capacities of SDZ and NOR were 16.7 mg/g and 25.8 mg/g, respectively. The Langmuir isotherm and pseudo-second-order kinetic models could better describe the adsorption process of both antibiotics, implying the monolayer chemical adsorption. The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. The ionic strength had no significant effect on the adsorption behavior of either antibiotic. Combined with BET, FTIR, and XPS results, the dominant mechanisms for SDZ and NOR adsorption were pore filling, π-π electron-donor-acceptor interaction, hydrogen bonds and surface complexation. Moreover, Lewis acid-base interaction also contributed to SDZ adsorption.
Collapse
Affiliation(s)
- Yan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Ziruo Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Jiale Chen
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yuehua Deng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
15
|
Masuku M, Nure JF, Atagana HI, Hlongwa N, Nkambule TTI. Pinecone biochar for the Adsorption of chromium (VI) from wastewater: Kinetics, thermodynamics, and adsorbent regeneration. ENVIRONMENTAL RESEARCH 2024; 258:119423. [PMID: 38889839 DOI: 10.1016/j.envres.2024.119423] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
High concentration of chromium in aquatic environments is the trigger for researchers to remediate it from wastewater environments. However, conventional water treatment methods have not been satisfactory in removing chromium from water and wastewater over the last decade. Similarly, many adsorption studies have been focused on one aspect of the treatment, but this study dealt with all aspects of adsorption packages to come up with a concrete conclusion. Therefore, this study aimed to prepare pinecone biochar (PBC) via pyrolysis and apply it for Cr(VI) removal from wastewater. The PBC was characterized using FTIR, SEM-EDX, BET surface area, pHpzc, Raman analyses, TGA, and XRD techniques. Chromium adsorption was studied under the influence of PBC dose, solution pH, initial Cr(VI) concentration, and contact time. The characteristics of PBC are illustrated by FTIR spectroscopic functional groups, XRD non-crystallite structure, SEM rough surface morphology, and high BET surface area125 m2/g, pore volume, 0.07 cm3/g, and pore size 1.4 nm. On the other hand, the maximum Cr (VI) adsorption of 69% was found at the experimental condition of pH 2, adsorbent dosage 0.25 mg/50 mL, initial Cr concentration 100 mg/L, and contact time of 120 min. Similarly, the experimental data were well-fitted with the Langmuir adsorption isotherm at R2 0.96 and the pseudo-second-order kinetics model at R2 0.99. This implies the adsorption process is mainly attributed to monolayer orientation between the adsorbent and adsorbate. In the thermodynamics study of adsorption, ΔG was found to be negative implying the adsorption process was feasible and spontaneous whereas the positive values of ΔH and ΔS indicated the adsorption process was endothermic and increasing the degree of randomness, respectively. Finally, adsorbent regeneration and reusability were successful up to three cycles. In conclusion, biochar surface modification and reusability improvements are urgently required before being applied at the pilot scale.
Collapse
Affiliation(s)
- Makhosazana Masuku
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Jemal Fito Nure
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| | - Harrison I Atagana
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Ntuthuko Hlongwa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Johannesburg, South Africa.
| |
Collapse
|
16
|
Ghahremani P, Nezamzadeh-Ejhieh A, Vakili MH. A comparison of adsorption capacity of several synthesis methods of cellulose-based absorbent towards Pb(II) removal: Optimization with response surface methodology. Int J Biol Macromol 2023; 253:127115. [PMID: 37774820 DOI: 10.1016/j.ijbiomac.2023.127115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
The effects of various synthesis methods of a novel biodegradable magnetically recyclable cellulose-based adsorbent (a magnetized modified silica aerogel) on Pb(II) removal efficiency were studied. QSM (quince seed mucilage) was modified via hydrothermal and ultrasonic modes. Oven-drying and freeze-drying procedures were then used to obtain the final adsorbents. The adsorbents were named A1 to A4 and B1 to B4, depending on the synthesis and drying techniques. XRD, FTIR, BET, and SEM are characterization techniques for identifying the adsorbents. Average crystallite sizes of 15.5, 8.3, 10.9, and 2.7 nm were obtained for A1, A2, A3, and A4 samples (Scherrer formula). SEM image confirmed a Sticky bullets-like morphology. The pHpzc values of 3.4, 6.0, and 4.1 were also determined for Fe-silica aerogel, Fe-QSM, and Fe-silica aerogel-QSM samples. The highest adsorption efficiency of the A2 adsorbent towards Pb(II) cations was followed via the experimental design by the RSM (response surface methodology) approach. ANOVA results showed model F value 185 (>F0.05, 14, 15 = 2.42) and LOF F-value of 0.3831 (
Collapse
Affiliation(s)
- Parastoo Ghahremani
- Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, P.O. Box 31186145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 31186145, Shahreza, Isfahan, Iran.
| | - Mohammad Hassan Vakili
- Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, P.O. Box 31186145, Shahreza, Isfahan, Iran.
| |
Collapse
|
17
|
Kang K, Hu Y, Khan I, He S, Fetahi P. Recent advances in the synthesis and application of magnetic biochar for wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 390:129786. [PMID: 37758029 DOI: 10.1016/j.biortech.2023.129786] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Magnetic biochar (MBC) is a novel bio-carbon material with both desired properties as adsorbent and magnetic characteristics. This review provides an up-to-date summary and discussion on the latest development of MBC, which covers the progress on its synthesis, application, and techno-economic analysis. The review indicates that the direct hydrothermal synthesis has been catching more research attention to produce MBC due to its mild reaction conditions. Instead of the Fe-loaded MBC, there is a trend of using Mn for the magnetization. For the MBC application, how to improve its adsorption performance for water decontamination, ideally to match that of the biochar (BC) or activated carbon, is important. In addition, more studies on the environmental impacts of MBC and life-cycle assessment decoding the process optimization options are necessary. This review will provide valuable references for the development of MBC and MBC-based materials for wastewater treatment.
Collapse
Affiliation(s)
- Kang Kang
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada
| | - Yulin Hu
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown PE C1A 4P3, Prince Edward Island, Canada
| | - Iltaf Khan
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada
| | - Sophie He
- Department of Engineering, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Pedram Fetahi
- Biorefining Research Institute (BRI) and Chemical Engineering Department, Lakehead University, Thunder Bay, Ontario, P7B 5E1, 955 Oliver Road, Canada.
| |
Collapse
|
18
|
Bahadir T, Şimşek İ, Tulun Ş, Çelebi H. Use of different food wastes as green biosorbent: isotherm, kinetic, and thermodynamic studies of Pb 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103324-103338. [PMID: 37688702 DOI: 10.1007/s11356-023-29745-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Lead (Pb2+) can contaminate waters from many sources, especially industrial activities. This heavy metal is an amphoteric, toxic, endocrine-disrupting, bioaccumulative, and carcinogenic pollutant. One of the effective and economical processes used to remove lead from water is adsorption. The fact that the adsorbents used in this method are easily available and will contribute to waste minimization is the primary reason for preference. In this study, the adsorption abilities and surface properties of tea waste (TW), banana peels (BP), almond shells (AS), and eggshells (ES) which are easily available do not need modification and have very high (> 90%) removal efficiencies presented with isotherm, kinetic, and thermodynamic perspectives as detail. The surface structures and elemental distribution of raw adsorbents were revealed with SEM/EDX. Using FTIR analysis, carboxylic (-COOH) and hydroxyl groups (-OH) in the structure of TW, AS, BP, and ES were determined. It was determined that the Pb2+ adsorption kinetics conformed to the pseudo-quadratic model and its isotherm conformed to the Langmuir. The optimum adsorption of Pb2+ was ranked as BP > ES > AS > TW with 100, 68.6, 51.7, and 47.8 mg/g qm, respectively. The fact that the process has negative ΔG° and positive ΔH° values from a thermodynamic point of view indicates that it occurs spontaneously and endothermically. According to the experimental data, the possible adsorption mechanism for Pb2+ has occurred in the form of physisorption (van der Waals, electrostatic attraction) and cooperative adsorption including chemisorption (complexation, ion exchange) processes.
Collapse
Affiliation(s)
- Tolga Bahadir
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye
| | - İsmail Şimşek
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye.
| | - Şevket Tulun
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye
| | - Hakan Çelebi
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, 68100, Türkiye
| |
Collapse
|
19
|
Sun M, Ma Y, Yang Y, Zhu X. Effect of iron impregnation ratio on the properties and adsorption of KOH activated biochar for removal of tetracycline and heavy metals. BIORESOURCE TECHNOLOGY 2023; 380:129081. [PMID: 37100302 DOI: 10.1016/j.biortech.2023.129081] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/14/2023]
Abstract
The effect of iron impregnation ratio on magnetic biochars (MBCs) prepared by biomass pyrolysis accompanied by KOH activation has been less reported. In this study, MBCs were produced by one-step pyrolysis/KOH-activation of walnut shell, rice husk and cornstalk with different impregnation ratios (0.3-0.6). The properties, adsorption capacity and cycling performance for Pb(II), Cd(II) and tetracycline of MBCs were determined. MBCs prepared with low impregnation ratio (0.3) showed stronger adsorption capacity on tetracycline. The adsorption capacity of WS-0.3 toward tetracycline was up to 405.01 mg g-1, while that of WS-0.6 was only 213.81 mg g-1. It is noteworthy that rice husk and cornstalk biochar with an impregnation ratio of 0.6 were more effective in removing Pb(II) and Cd(II), and the content of Fe0 crystals on surface strengthened the ion exchange and chemical precipitation. This work highlights that the impregnation ratio should be changed according to the actual application scenarios of MBC.
Collapse
Affiliation(s)
- Mengchao Sun
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yakai Ma
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yaojun Yang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xifeng Zhu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
20
|
Wang Z, Guo J, Jia J, Liu W, Yao X, Feng J, Dong S, Sun J. Magnetic Biochar Derived from Fenton Sludge/CMC for High-Efficiency Removal of Pb(II): Synthesis, Application, and Mechanism. Molecules 2023; 28:4983. [PMID: 37446645 DOI: 10.3390/molecules28134983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Magnetic biochar composites (MBC) were developed by a simple one-step pyrolysis method using Fenton sludge waste solid and carboxymethyl cellulose sodium. Detailed morphological, chemical, and magnetic characterizations corroborate the successful fabrication of MBC. Batch adsorption experiments show that the synthesized MBC owns high-efficiency removal of Pb(II), accompanied by ease-of-separation from aqueous solution using magnetic field. The experiment shows that the equilibrium adsorption capacity of MBC for Pb(II) can reach 199.9 mg g-1, corresponding to a removal rate of 99.9%, and the maximum adsorption capacity (qm) reaches 570.7 mg g-1, which is significantly better than that of the recently reported magnetic similar materials. The adsorption of Pb(II) by MBC complies with the pseudo second-order equation and Langmuir isotherm model, and the adsorption is a spontaneous, endothermic chemical process. Investigations on the adsorption mechanism show that the combination of Pb(II) with the oxygen-containing functional groups (carboxyl, hydroxyl, etc.) on biochar with a higher specific surface area are the decisive factors. The merits of reusing solid waste resource, namely excellent selectivity, easy separation, and simple preparation make the MBC a promising candidate of Pb(II) purifier.
Collapse
Affiliation(s)
- Zongwu Wang
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Juan Guo
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Junwei Jia
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Wei Liu
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Xinding Yao
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Jinglan Feng
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Shuying Dong
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Jianhui Sun
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
21
|
Hama Aziz KH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Adv 2023; 13:17595-17610. [PMID: 37312989 PMCID: PMC10258679 DOI: 10.1039/d3ra00723e] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Heavy metal contamination of water sources has emerged as a major global environmental concern, threatening both aquatic ecosystems and human health. Heavy metal pollution in the aquatic environment is on the rise due to industrialization, climate change, and urbanization. Sources of pollution include mining waste, landfill leachates, municipal and industrial wastewater, urban runoff, and natural phenomena such as volcanic eruptions, weathering, and rock abrasion. Heavy metal ions are toxic, potentially carcinogenic, and can bioaccumulate in biological systems. Heavy metals can cause harm to various organs, including the neurological system, liver, lungs, kidneys, stomach, skin, and reproductive systems, even at low exposure levels. Efforts to find efficient methods to remove heavy metals from wastewater have increased in recent years. Although some approaches can effectively remove heavy metal contaminants, their high preparation and usage costs may limit their practical applications. Many review articles have been published on the toxicity and treatment methods for removing heavy metals from wastewater. This review focuses on the main sources of heavy metal pollution, their biological and chemical transformation, toxicological impacts on the environment, and harmful effects on the ecosystem. It also examines recent advances in cost-effective and efficient techniques for removing heavy metals from wastewater, such as physicochemical adsorption using biochar and natural zeolite ion exchangers, as well as decomposition of heavy metal complexes through advanced oxidation processes (AOPs). Finally, the advantages, practical applications, and future potential of these techniques are discussed, along with any challenges and limitations that must be considered.
Collapse
Affiliation(s)
- Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Medical Laboratory Analysis Department, College of health sciences, Cihan University-Sulaimaniya Sulaimaniya 46001 Kurdistan region Iraq
| | - Fryad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Sarkawt Hama
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Rebaz Fayaq Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Kaiwan Othman Rahman
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Razga Company Sulaimani City 46001 Kurdistan Region Iraq
| |
Collapse
|
22
|
Zhang N, Reguyal F, Praneeth S, Sarmah AK. A novel green synthesized magnetic biochar from white tea residue for the removal of Pb(II) and Cd(II) from aqueous solution: Regeneration and sorption mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121806. [PMID: 37172772 DOI: 10.1016/j.envpol.2023.121806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
A novel biochar-based magnetic nanocomposite (GSMB) was prepared from white tea waste via green synthesis method. The sorption properties and regeneration of GSMB were studied using Pb(II) and Cd(II) to better understand its ability in heavy metal recovery. The adsorption kinetics data were modelled using pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models, while Pb(II) and Cd(II) isotherms were modelled with Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. Results showed that Pb(II) adsorption was well described by pseudo-second order while the Elovich model best described the Cd(II) adsorption trend, indicating the sorption of Pb(II) and Cd(II) onto GSMB were dominated by chemisoprtion than physisorption. Langmuir model gave the best fit to Pb(II) sorption, and the Cd(II) adsorption was well described by Temkin model. The maximum adsorption capacity of Pb(II) and Cd(II) onto GSMB were 81.6 mg/g and 38.6 mg/g, respectively. Scanning electron microscope coupled with energy dispersive x-ray, X-ray diffraction and Fourier transform infrared spectroscopy analyses revealed that iron oxides played a key role during adsorption process and the adsorption mechanisms include surface electrostatic attraction and surface complexation for both metals. Among the five regenerating agents studied, 0.1 M EDTA-2Na was favoured for the desorption of Pb(II) onto GMSB. The findings from the regeneration studies revealed ∼54% of Pb(II) adsorption capacity was remained after three sorption-desorption cycles implying the adsorbent could potentially be further reused.
Collapse
Affiliation(s)
- Na Zhang
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Febelyn Reguyal
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sai Praneeth
- Department of Civil & Environmental Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Nedlands, WA, 6009, Australia.
| |
Collapse
|
23
|
Wang J, Li Z, Zhu Q, Wang C, Tang X. Review on arsenic environment behaviors in aqueous solution and soil. CHEMOSPHERE 2023; 333:138869. [PMID: 37156290 DOI: 10.1016/j.chemosphere.2023.138869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Arsenic pollution in environment has always been an important environmental problem that has attracted wide attention in recent years. Adsorption is one of the main methods of treatment for arsenic in the aqueous solution and soil because of the advantages of high efficiency, low cost and wide application. Firstly, this report summarizes the commonly and widely used adsorbent materials such as metal-organic frameworks, layered bimetallic hydroxides, chitosan, biochar and their derivatives. The adsorption effects and mechanisms of these materials are further discussed, and the application prospects of these adsorbents are considered. Meanwhile, the gaps and deficiencies in the study of adsorption mechanism was pointed out. Then, this study comprehensively evaluated the effects of various factors on arsenic transport, including (i) the effects of pH and redox potential on the existing form of As; (ii) complexation mechanism of dissolved organic matter and As; (iii) factors affecting the plant enrichment of As. Finally, the latest scientific researches on microbial remediation of arsenic and the mechanisms were summarized. The review finally enlightens the subsequent development of more efficient and practical adsorption material.
Collapse
Affiliation(s)
- Jingang Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Zihao Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
24
|
Effect of CeO 2-Reinforcement on Pb Absorption by Coconut Coir-Derived Magnetic Biochar. Int J Mol Sci 2023; 24:ijms24031974. [PMID: 36768305 PMCID: PMC9916585 DOI: 10.3390/ijms24031974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Magnetic separable biochar holds great promise for the treatment of Pb2+-contaminated wastewater. However, the absorption effect of unmodified magnetic biochar is poor. Considering this gap in knowledge, CeO2-doped magnetic coconut coir biochar (Ce-MCB) and magnetic coconut coir biochar (MCB) for Pb2+ absorption were prepared by the impregnation method, and the efficiency of Ce-MCB for Pb2+ absorption was evaluated in comparison with MCB. Conducting the absorption experiments, the study provided theoretical support for the exploration of the absorption mechanism. The quantitative analysis exposed that the enhanced absorption capacity of Ce-MCB was attributed to the increase in oxygen-containing functional groups and mineral precipitation. The Langmuir and Freundlich isotherm model showed that Ce-MCB is a suitable adsorbent for Pb2+. The absorption characteristics of Ce-MCB was fit well with the pseudo-second-order (PSO) and Langmuir models, which revealed that the absorption of Pb2+ in water was monolayer chemisorption with a maximum theoretical adsorption capacity of 140.83 mg·g-1. The adsorption capacity of Ce-MCB for Pb(II) was sustained above 70% after four cycles. In addition, the saturation magnetization intensity of Ce-MCB was 7.15 emu·g-1, which was sufficient to separate out from the solution. Overall, Ce-MCB has wide application prospects in terms of biomass resources recycling and environmental conservation.
Collapse
|
25
|
Tian J, Guo K, Sun Y, Lin R, Chen T, Zhang B, Liu Y, Yang T. Solvent-Free Synthesis of Magnetic Sewage Sludge-Derived Biochar for Heavy Metal Removal from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:155. [PMID: 36612475 PMCID: PMC9820038 DOI: 10.3390/ijerph20010155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The commonly used two-step and one-pot synthesis methods for producing biochar require the use of iron salt solutions, resulting in the undesirable consequences of energy consumption for dewatering and potential pollution risks. To address this drawback, a magnetic sewage sludge-derived biochar (MSBC-2) was synthesized by a solvent-free method in this study. The pseudo-second-order kinetic model and Langmuir model provided the best fit to the experimental data, implying a monolayered chemisorption process of Pb2+, Cd2+and Cu2+ onto MSBC-2. As the reaction temperature increased from 25 °C to 45 °C, the maximum adsorption capacities increased from 113.64 mg·g−1 to 151.52 mg·g−1 for Pb2+, from 101.01 mg·g−1 to 109.89 mg·g−1 for Cd2+ and from 57.80 mg·g−1 to 74.07 mg·g−1 for Cu2+, respectively. Thermodynamic parameters (ΔG0 < 0, ΔS0 > 0, ΔH0 > 0) revealed that the adsorption processes of all three metals by MSBC-2 were favourable, spontaneous and endothermic. Surface complexation, cation-π interaction, ion exchange and electrostatic attraction mechanisms were involved in the adsorption of Pb2+, Cd2+ and Cu2+ onto MSBC-2. Overall, this study will provide a new perspective for the synthesis of magnetic biochar and MSBC-2 shows great potential as an adsorbent for heavy metal removal.
Collapse
Affiliation(s)
- Jiayi Tian
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Kexin Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yucan Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ruoxi Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
26
|
Rashid MS, Liu G, Yousaf B, Hamid Y, Rehman A, Arif M, Ahmed R, Ashraf A, Song Y. A critical review on biochar-assisted free radicals mediated redox reactions influencing transformation of potentially toxic metals: Occurrence, formation, and environmental applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120335. [PMID: 36202269 DOI: 10.1016/j.envpol.2022.120335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Potentially toxic metals have become a viable threat to the ecosystem due to their carcinogenic nature. Biochar has gained substantial interest due to its redox-mediated processes and redox-active metals. Biochar has the capacity to directly adsorb the pollutants from contaminated environments through several mechanisms such as coprecipitation, complexation, ion exchange, and electrostatic interaction. Biochar's electron-mediating potential may be influenced by the cyclic transition of surface moieties and conjugated carbon structures. Thus, pyrolysis configuration, biomass material, retention time, oxygen flow, and heating time also affect biochar's redox properties. Generally, reactive oxygen species (ROS) exist as free radicals (FRs) in radical and non-radical forms, i.e., hydroxyl radical, superoxide, nitric oxide, hydrogen peroxide, and singlet oxygen. Heavy metals are involved in the production of FRs during redox-mediated reactions, which may contribute to ROS formation. This review aims to critically evaluate the redox-mediated characteristics of biochar produced from various biomass feedstocks under different pyrolysis conditions. In addition, we assessed the impact of biochar-assisted FRs redox-mediated processes on heavy metal immobilization and mobility. We also revealed new insights into the function of FRs in biochar and its potential uses for environment-friendly remediation and reducing the dependency on fossil-based materials, utilizing local residual biomass as a raw material in terms of sustainability.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yu Song
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
27
|
Removal of Reactive Black Dye in Water by Magnetic Mesoporous Carbon from Macadamia Nutshell. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9884474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The novel and intriguing role of Fe(NO3)3 as a chemical activator in carbonization of macadamia nutshell is introduced in this work. Magnetic mesoporous carbon was achieved by chemical activation of macadamia nutshell with Fe(NO3)3 under nitrogen atmosphere at 850°C (MMC-850). Porosity of MMC-850 included SBET 317 m2/g with Vmicro 0.0796 cm3/g and considerably high Vmeso 0.4318 cm3/g. Not only did MMC-850 possesses good magnetic properties with saturation magnetization and coercive force of 31.48 emu/g and 506.6 Oe, respectively, but MMC-850 also showed high-removal efficiency of reactive black dye (RB5) with maximum adsorption capacity at 123.51 mg/g. The experimental data fit the Langmuir isotherm and Elovich model. Thermal regeneration was effective in degrading RB5 and removal ability was above 90% after two regeneration cycles. RB5 removal from water by MMC-850 as an adsorbent is considered a facile and inexpensive method since macadamia nutshell is a food by-product which is a green and renewable carbon precursor. MMC-850 is a potential adsorbent because it can be separated from wastewater treatment system using magnetic force. Besides, MMC-850 particle is not brittle compared to other porous biochar/activated carbon with similar size; therefore, it is an excellent candidate for column packing or scaling up for wastewater treatment facilities in the future.
Collapse
|
28
|
Study on Efficient Adsorption Mechanism of Pb 2+ by Magnetic Coconut Biochar. Int J Mol Sci 2022; 23:ijms232214053. [PMID: 36430526 PMCID: PMC9693327 DOI: 10.3390/ijms232214053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Lead ion (Pb2+) in wastewater cannot be biodegraded and destroyed. It can easily be enriched in living organisms, which causes serious harm to the environment and human health. Among the existing treatment technologies, adsorption is a green and efficient way to treat heavy metal contamination. Novel KMnO4-treated magnetic biochar (KFBC) was successfully synthesized by the addition of Fe(NO3)3 and KMnO4 treatment during carbonization following Pb2+ adsorption. SEM-EDS, XPS, and ICP-OES were used to evaluate the KFBC and magnetic biochar (FBC) on the surface morphology, surface chemistry characteristics, surface functional groups, and Pb2+ adsorption behavior. The effects of pH on the Pb2+ solution, initial concentration of Pb2+, adsorption time, and influencing ions on the adsorption amount of Pb2+ were examined, and the adsorption mechanisms of FBC and KFBC on Pb2+ were investigated. The results showed that pH had a strong influence on the adsorption of KFBC and the optimum adsorption pH was 5. The saturation adsorption capacity fitted by the model was 170.668 mg/g. The successful loading of manganese oxides and the enhanced oxygen functional groups, as evidenced by XPS and FTIR data, improved KFBC for heavy metal adsorption. Mineral precipitation, functional group complexation, and π-electron interactions were the primary adsorption processes.
Collapse
|
29
|
Multi-hydroxyl containing organo-vermiculites for enhanced adsorption of coexisting methyl blue and Pb(II) and their adsorption mechanisms. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Khurshid H, Mustafa MRU, Isa MH. Adsorption of chromium, copper, lead and mercury ions from aqueous solution using bio and nano adsorbents: A review of recent trends in the application of AC, BC, nZVI and MXene. ENVIRONMENTAL RESEARCH 2022; 212:113138. [PMID: 35364043 DOI: 10.1016/j.envres.2022.113138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Recent trends in adsorption of Chromium (Cr), Copper (Cu), Lead (Pb) and Mercury (Hg) in wastewater using (i) carbonaceous materials including activated carbon (AC) and biochar (BC), and (ii) nanomaterials including nano zero-valent iron (nZVI) and MXenes have been discussed in this paper. It has been found that adsorption capacity depends largely on the adsorbent modification technique, initial pH of wastewater, dosage of adsorbent, contact time and initial concentration of the pollutants. The pH value ranges for maximum removal of Cr, Cu, Pb and Hg have been reported as 2-4, 5-6, 5-8 and 3-8, respectively. Up to 99% removal of metals has been reported using AC, BC, nZVI and MXene. The mechanism involves the reduction and chemical adsorption of metals. AC and BC have a higher surface area (up to 5000 m2/g) compared to nZVI (up to 500 m2/g) and MXene (up to 67.66 m2/g). However, the higher reactivity and regeneration capacity of nZVI and MXene make them suitable adsorbents. From a practical point of view the application of adsorbents for real effluents, cost analysis, regeneration capability and reuse of heavy metals are some aspects that need attention in future studies. The removal efficiencies of AC and BC are comparable to the nZVI and MXene. The cost analysis may be an attractive aspect to decide the future application of these adsorbents at large scale.
Collapse
Affiliation(s)
- Hifsa Khurshid
- Department of Civil & Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Muhammad Raza Ul Mustafa
- Department of Civil & Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
| | - Mohamed Hasnain Isa
- Civil Engineering Programme, Faculty of Engineering, Universiti Teknologi Brunei, Tungku Highway, Gadong, BE1410, Brunei Darussalam
| |
Collapse
|
31
|
Duan L, Wang Q, Li J, Wang F, Yang H, Guo B, Hashimoto Y. Zero valent iron or Fe 3O 4-loaded biochar for remediation of Pb contaminated sandy soil: Sequential extraction, magnetic separation, XAFS and ryegrass growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119702. [PMID: 35787422 DOI: 10.1016/j.envpol.2022.119702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, the feasibility of using zero-valent iron (ZVI) and Fe3O4-loaded biochar for Pb immobilization in contaminated sandy soil was investigated. A 180-day incubation study, combined with dry magnetic separation, chemical extraction, mineralogical characterization, and model plant (ryegrass, namely the Lilium perenne L.) growth experiment was conducted to verify the performance of these two materials. The results showed that both amendments significantly transferred the available Pb (the exchangeable and carbonates fraction) into more stable fractions (mainly Fe/Mn oxides-bound Pb), and ZVI alone showed a better performance than the magnetic biochar alone. The magnetic separation and extended X-ray absorption fine structure (EXAFS) analysis proved that Fe (oxyhydr)oxides on aged ZVI particles were the major scavengers of Pb in ZVI-amended soils. In comparison, the reduced Pb availability in magnetic biochar-amended soil could be explained by the association of Pb with Fe/Mn (oxyhydr)oxides in aged magnetic biochar, also the possible precipitation of soil Pb with soluble anions (e.g. OH-, PO43-, and SO42-) released from magnetic biochar. ZVI increased ryegrass production while Fe3O4-loaded biochar had a negative effect on the ryegrass growth. Moreover, both markedly decreased the Pb accumulation in aboveground and root tissues. The simple dry magnetic separation presents opportunities for the removal of Pb from soils, even though the efficiencies were not high (17.5% and 12.9% of total Pb from ZVI and biochar-treated soils, respectively). However, it should be noted that the ageing process easily result in the loss of magnetism of ZVI while the magnetic biochar tends to be more stable and has high retrievability during the dry magnetic separation application.
Collapse
Affiliation(s)
- Lunchao Duan
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China; Jiangsu Province Science and Technology Resources Coordination and Service Center, Nanjing, Jiangsu, 210000, China
| | - Qianhui Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China.
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Hao Yang
- School of Geography, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Binglin Guo
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|