1
|
Zveushe OK, Nkoh JN, de Dios VR, Manjoro TT, Suanon F, Zhang H, Chen W, Lin L, Zhou L, Zhang W, Sesu F, Li J, Han Y, Dong F. Enhancing hexavalent chromium stable reduction via sodium alginate encapsulation of newly isolated fungal and bacterial consortia. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136994. [PMID: 39740549 DOI: 10.1016/j.jhazmat.2024.136994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings. The results revealed that (i) fungal treatments demonstrated an elevated tolerance and reduction ability for Cr(VI) compared to bacterial treatments; (ii) combined application of fungi and bacteria was more effective in degrading Cr(VI) in soil compared to the individual treatments; (iii) microbial encapsulation improved microbial response to Cr(VI) toxicity thereby increasing their lifespan and Cr(VI) degrading ability; (iv) microbial consortia significantly decreased soil pH, electrical conductivity, and redox potential while simultaneously increasing soil enzyme activities (urease, sucrase, phosphatase, catalase, and laccase); and (v) The improved tolerance in the inoculated treatment resulted in increased microbial diversity and a substantial variation in microbial community structures, with 10,753 bacterial and 2697 fungal amplicon sequence variants identified across the treatment groups. This study underscores the critical importance of microbial diversity in bioremediation, emphasizing that encapsulation with the right material could improve the effectiveness of environmental remediation strategies.
Collapse
Affiliation(s)
- Obey Kudakwashe Zveushe
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jackson Nkoh Nkoh
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Víctor Resco de Dios
- Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida 25198, Spain; Department of Forest and Agricultural Sciences and Engineering, University of Lleida, Lleida 25198, Spain
| | - Tendai Terence Manjoro
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Fidèle Suanon
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hengxing Zhang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenfang Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Lin
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhang
- Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang 621010, China
| | - Frank Sesu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ying Han
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
2
|
Zhou J, Liu Z, Li Z, Xie R, Jiang X, Cheng J, Chen T, Yang X. Heavy metals release in lead-zinc tailings: Effects of weathering and acid rain. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136645. [PMID: 39603131 DOI: 10.1016/j.jhazmat.2024.136645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Heavy metals (HMs) release from lead (Pb)-zinc (Zn) tailings poses significant environmental risks to surrounding areas. Furthermore, with the natural weathering and frequently happened acid rain events, the release of HMs could be elevated. This study conducted a series of laboratory column experiments with thermodynamics and hydrogeochemical analysis to investigate the environmental behavior of HMs release in Pb-Zn tailings under natural weathering conditions and acid rain events. Results showed that the weathering of calcite facilitates the release of Pb (17.9 mg/kg) and cadmium (Cd) (0.15 mg/kg), while acid rain promotes Zn release (10.5 mg/kg) from the Fe-Mn oxides, with no significant change for arsenic (As). Among the influencing factors during the column experiments, the oxidation-reduction potential (ORP) was identified as the primary indicator for the predictions of the HMs release behavior based upon the Random Forest model (R2 = 0.973 - 0.997). Correlation analysis revealed a strong relationship between coexistent ions and HM release patterns. Therefore, saturation index (SI) could effectively identify the influence range of each mineral phase on HM release. This study provides scientific evidence for effective management in carbonate-type tailings ponds.
Collapse
Affiliation(s)
- Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenyuan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhen Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Ruoni Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xueqing Jiang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiayi Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Qiu J, Bai J, Wang Y, Zhai Y, Zhang X, Xu Y, Wang Y. Cadmium contamination decreased bacterial network complexity and stability in coastal reclamation areas. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134896. [PMID: 38909464 DOI: 10.1016/j.jhazmat.2024.134896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
Cadmium(Cd) contamination can exert significantly adverse effects on soil microbiota in reclaimed areas, however, its effects on bacterial network structure are still limitedly understood. Here we collected soil samples from typical reclaimed wetlands (RW) and ditch wetlands (DW) in coastal reclamation areas and examined the effects of Cd contamination on the bacterial network complexity and stability. The results showed that the bacterial networks were destabilized by the Cd contamination, while bacteria in DW soils showed robust invulnerability characterized by higher node constancy and compositional stability compared with RW soils. Soil bacteria resisted Cd stress by forming a network with intensive connections in the module but sparser connections among the modules. Especially, network modularity was higher in DW soils than in RW soils, but made it more vulnerable to nodes removal. In addition, Cd contamination promoted bacterial positive cohesion but decreased negative cohesion in RW soils. Flavobacteriaceae, Xanthomonadaceae, and Alcaligenaceae were identified as core phylotypes, which played pivotal roles in regulating interspecies interactions due to higher contributions to cohesion and significant correlations with soil nutrients. The findings of this work indicate the changes of bacterial network structure and the indispensable role of core phylotypes in regulating interactions and maintaining network sustainability under Cd contamination.
Collapse
Affiliation(s)
- Jichen Qiu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Yimeng Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yujia Zhai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xuehui Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuhao Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yaqi Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Tian S, Liu Z, Mao Q, Ye H, Tian C, Zhu Y, Zhang L. Leaching characteristics and environmental impact of heavy metals in tailings under rainfall conditions: A case study of an ion-adsorption rare earth mining area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116642. [PMID: 38941660 DOI: 10.1016/j.ecoenv.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
Following ion-adsorption rare earth mining, the residual tailings experience considerable heavy metal contamination and gradually evolve into a pollution source. Therefore, the leaching characteristics and environmental impact of heavy metals in ion-adsorption rare earth tailings require immediate and thorough investigation. This study adopted batch and column experiments to investigate the leaching behaviour of heavy metals in tailings and assess the impact of tailings on paddy soil, thereby providing a scientific basis for environmental protection in mining areas. The results showed that Mn, Zn, and Pb contents were 431.67, 155.05, and 264.33 mg·kg-1, respectively, which were several times higher than their respective background values, thereby indicating significant heavy metal contamination in the tailings. The batch leaching experiment indicated that Mn and Pb were priority control heavy metals. Heavy metals were divided into fast and slow leaching stages. The Mn and Pb leaching concentrations far exceeded environmental limits. The DoseResp model perfectly fitted the leaching of all heavy metals from the tailings (R2 > 0.99). In conjunction with the findings of the column experiment and correlation analysis, the chemical form, rainfall pH, ammonia nitrogen, and mineral properties were identified as the primary factors controlling heavy metal release from tailings. Rainfall primarily caused heavy metal migration in the acid-extraction form from the tailings. The tailing leachate not only introduced heavy metals into the paddy soil but also caused the transformation of the chemical form of heavy metals in the paddy soil, further exacerbating the environmental risk posed by heavy metals. The study findings are significant for environmental conservation in mining areas and implementing environmentally friendly practices in rare earth mining.
Collapse
Affiliation(s)
- Shuai Tian
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zuwen Liu
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Environmental Geotechnical Engineering and Hazards Control, Jiangxi University of Science and Technology, Ganzhou 341000, China; National-local Joint Engineering Laboratory of Water Engineering Safety and Efficient Utilization of Resources in Poyang Lake Watershed, Nanchang Institute of Technology, Nanchang 330099, China.
| | - Qing Mao
- Jiangxi Province Key Laboratory of Environmental Geotechnical Engineering and Hazards Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Hongmei Ye
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Changshun Tian
- School of Resources and Architectural Engineering, Gannan University of Science and Technology, Ganzhou 341000, China.
| | - Yichun Zhu
- School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Environmental Geotechnical Engineering and Hazards Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Linan Zhang
- Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China; School of Resources Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
5
|
Lu Y, Xiao X, Liang Y, Li J, Guo C, Xu L, Liu Q, Xiao Y, Zhou S. Distribution and transformation of potentially toxic elements in cracks under coal mining disturbance in farmland. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:312. [PMID: 39001963 DOI: 10.1007/s10653-024-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
The ground cracks resulting from coal mining activities induce alterations in the physical and chemical characteristics of soil. However, limited knowledge exists regarding the impact of subsidence caused by coal mining on the distribution of potentially toxic elements (PTEs) fractions in farmland soil. In this study, we collected 19 soil profiles at varying depths from the soil surface and at horizontal distances of 0, 1, 2, and 5 m from the vertical crack. Using BCR extraction fractionation, we determined the geochemical fractions and total concentrations of Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb) to investigate their ecological risk, spatial fraction distribution, and main influencing factors. Results showed that the E r i values of Cd appearing in 68.7% of the samples were higher than 40 and less than 80, presented a moderate ecological risk. Chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), and lead (Pb) were mainly bound to residual fractions (> 60%) with lower mobility and Cd was dominated by F1 (acid-soluble fractions, 50%) and F2 (reducible fractions, 29%) in surface soil (0-20 cm). The geochemical fractionation revealed that the mobile fractions (F1-acid-soluble and F2-reducible) of PTEs were primarily located near the crack, influenced by available potassium. In contrast, the less mobile fractions (F3-oxidizable and F4-residual) exhibited higher concentrations at distances of 2 and 5 m from the crack, except for arsenic, influenced by the presence of clay particles and available phosphorus.
Collapse
Affiliation(s)
- Yin Lu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Xin Xiao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Yan Liang
- Beijing Invision Ruida Technology Co., Ltd, Huaxia Happiness Entrepreneurship Center, Beijing, 100000, China
| | - Junchi Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Chunying Guo
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Lili Xu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Qingfeng Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Yu Xiao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, 1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Shiyuan Zhou
- College of Architecture and Design, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
6
|
Zhou Q, Yang S, Sun L, Ye J, Sun Y, Qin Q, Xue Y. Evaluating the protective capacity of soil heavy metals regulation limits on human health: A critical analysis concerning risk assessment - Importance of localization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 361:121197. [PMID: 38820791 DOI: 10.1016/j.jenvman.2024.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
Heavy metal pollution of agricultural soil is a major global concern, prompting the establishment of maximum allowable limits (MALs) to ensure food safety and protect human health. This study collected and compared MALs for six heavy metals (As, Cd, Hg, Pb, Zn, and Cu) in agricultural soils from representative countries and organizations (EU and WHO/FAO). The research evaluated the critical health risks and efficacy of these MALs under the hypothetical scenario of metals concentrations reaching the maximum allowable level. Safe thresholds for heavy metals were then derived based on maximum acceptable health risk levels. The comparative analysis revealed significant variations in the specific limit values and terms of MALs across countries and organizations, even for the same metal. This suggests that there is no consensus among countries and organizations regarding the level of metal-related health risks. Furthermore, the risk analysis of metal concentrations reaching the maximum level accentuated heightened risks associated with As, suggesting that the current risk of soil As exposure was underestimated, particularly for children. However, soil Cu, Cd, and Zn limits generally resulted in low health risks, implying that the current limits may overestimate their hazard. Overall, the results highlight that the current MALs for soil heavy metals may not fully safeguard human health. There is a critical need to optimize current soil MALs based on localized risks and the actual impact of these metals on human health. It is suggested to appropriately lower the limits of metals (such as As) whose impact on health risks is underestimated, and cautiously increase the limits of metals (such as Cu, Cd, and Zn) that currently pose minor health risks. This approach aims to reduce both over and insufficient protection problems of soil heavy metal MALs, emphasizing the importance of considering the locality in setting these limits.
Collapse
Affiliation(s)
- Qianhang Zhou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418, China; Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China
| | - Shiyan Yang
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China
| | - Lijuan Sun
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 201418, China.
| | - Yafei Sun
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China
| | - Qin Qin
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China
| | - Yong Xue
- Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China; Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, 201403, China.
| |
Collapse
|
7
|
Luo X, Xiang C, Wu C, Gao W, Ke W, Zeng J, Li W, Xue S. Geochemical fractionation and potential release behaviour of heavy metals in lead‒zinc smelting soils. J Environ Sci (China) 2024; 139:1-11. [PMID: 38105037 DOI: 10.1016/j.jes.2023.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 12/19/2023]
Abstract
The lack of understanding of heavy metal speciation and solubility control mechanisms in smelting soils limits the effective pollution control. In this study smelting soils were investigated by an advanced mineralogical analysis (AMICS), leaching tests and thermodynamic modelling. The aims were to identify the partitioning and release behaviour of Pb, Zn, Cd and As. The integration of multiple techniques was necessary and displayed coherent results. In addition to the residual fraction, Pb and Zn were predominantly associated with reducible fractions, and As primarily existed as the crystalline iron oxide-bound fractions. AMICS quantitative analysis further confirmed that Fe oxyhydroxides were the common dominant phase for As, Cd, Pb and Zn. In addition, a metal arsenate (paulmooreite) was an important mineral host for Pb and As. The pH-stat leaching indicted that the release of Pb, Zn and Cd increased towards low pH values while release of As increased towards high pH values. The separate leaching schemes were associated with the geochemical behaviour under the control of minerals and were confirmed by thermodynamic modelling. PHREEQC calculations suggested that the formation of arsenate minerals (schultenite, mimetite and koritnigite) and the binding to Fe oxyhydroxides synchronously controlled the release of Pb, Zn, Cd and As. Our results emphasized the governing role of Fe oxyhydroxides and secondary insoluble minerals in natural attenuation of heavy metals, which provides a novelty strategy for the stabilization of multi-metals in smelting sites.
Collapse
Affiliation(s)
- Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chao Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Wenshun Ke
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Jiaqing Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong 999077, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China.
| |
Collapse
|
8
|
Xu D, Wang Z, Tan X, Xu H, Zhu D, Shen R, Ding K, Li H, Xiang L, Yang Z. Integrated assessment of the pollution and risk of heavy metals in soils near chemical industry parks along the middle Yangtze River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170431. [PMID: 38301773 DOI: 10.1016/j.scitotenv.2024.170431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Industrialization in riparian areas of critical rivers has caused significant environmental and health impacts. Taking eight industrial parks along the middle Yangtze River as examples, this study proposes a multiple-criteria approach to investigate soil heavy metal pollution and associated ecological and health risks posed by industrial activities. Aiming at seven heavy metals, the results show that nickel (Ni), cadmium (Cd), and copper (Cu) exhibited the most significant accumulation above background levels. The comprehensive findings from Pearson correlation analysis, cluster analysis, principal component analysis, and industrial investigation uncover the primary sources of Cd, arsenic (As), mercury (Hg), and lead (Pb) to be chemical processing, while Ni and chromium (Cr) are predominantly derived from mechanical and electrical equipment manufacturing. In contrast, Cu exhibits a broad range of origins across various industrial processes. Soil heavy metals can cause serious ecological and carcinogenic health risks, of which Cd and Hg contribute to >70 % of the total ecological risk, and As contributes over 80 % of the total health risk. This study highlights the importance of employing multiple mathematical and statistical models in determining and evaluating environmental hazards, and may aid in planning the environmental remediation engineering and optimizing the industry standards.
Collapse
Affiliation(s)
- Dong Xu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Zejun Wang
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China.
| | - Xiaoyu Tan
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430072, China
| | - Haohan Xu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Dongbo Zhu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Ruili Shen
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Kang Ding
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Hongcheng Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China
| | - Luojing Xiang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430074, China.
| | - Zhibing Yang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
9
|
Tu Z, Tang L, Khan FU, Hu M, Shen H, Wang Y. Low-frequency noise aggravates the toxicity of cadmium in sea slug Onchdium reevesii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169558. [PMID: 38135081 DOI: 10.1016/j.scitotenv.2023.169558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Industrial development not only triggers heavy metal pollution but also introduces a less easily discernible disturbance: low-frequency noise pollution. Low-frequency noise can disrupt wildlife behavior, potentially exerting complex effects through interacting with heavy metals. Nevertheless, the cumulative impacts of low-frequency noise and cadmium (Cd) pollution on marine organisms remain largely unexplored. This study aimed to evaluate the immune defense response of sea slugs (Onchdium reevesii) exposed to Cd (1.32 mg/L) and low-frequency noise (500 Hz, 1000 Hz). Our results show that Cd exposure results in Cd2+ accumulation in the sea slug's hepatopancreas, leading to a decrease in total antioxidant capacity (TAC) and a significant increase in enzyme activities, including glutathione (GSH), lipid peroxidation (LPO), and aspartate transferase (AST). Additionally, there is a substantial upregulation in the expression of genes related to tumor protein p53 (p53), Cytochrome C (CytC), Caspase 3, and Caspase 9, as well as metallothionein (MT) and heat shock protein 70 (Hsp70) genes. Concurrently, an excessive production of reactive oxygen species (ROS) occurs in the hemocytes, resulting in apoptosis and subsequent diminished cell viability, with these effects positively correlating with the exposure duration. Furthermore, when sea slugs were exposed to both Cd and low-frequency noise, there was a decrease in the hepatopancreas's antioxidant capacity and an enhancement in hemocytes immune responses, which positively correlated with low-frequency noise frequency. The comprehensive assessment of biomarker responses highlights that low-frequency noise has the potential to amplify the deleterious effects of Cd on sea slug physiology, with this negative impact positively linked to noise frequency. Consequently, our study underscores that the combined influence of low-frequency noise and Cd pollution magnifies the effects on sea slug health. This could potentially disrupt the population stability of this species within its natural habitat, providing fresh insights into the evaluation of cumulative environmental pollution risks.
Collapse
Affiliation(s)
- Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Liusiqiao Tang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Heding Shen
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
10
|
Xiao M, Qian L, Yang B, Zeng G, Ren S. Risk assessment of heavy metals in agricultural soil based on the coupling model of Monte Carlo simulation-triangular fuzzy number. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:62. [PMID: 38294573 DOI: 10.1007/s10653-024-01866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Soils in areas wherein agriculture and mining coexist are experiencing serious heavy metal contamination, posing a great threat to the ecological environment and human health. In this study, heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) in agricultural soil samples from mining areas were analyzed to explore pollution status, bioavailability, potential sources, and ecological/health risks. Particularly, the coupling model of Monte Carlo simulation-triangular fuzzy number (MCS-TFN) was established to quantify ecological/health risks accurately. Results showed that Cd was heavily enriched in soil and had the highest bioavailability based on both geo-accumulation index (Igeo) and chemical speciation analysis. Pollution sources apportioned with the absolute principal component score-multiple linear regression (APCS-MLR) model demonstrated that heavy metals were mainly derived from agricultural activities, followed by mining activities and natural sources. The MCS-TFN ecological risk assessment classified Cd into the high-risk category with a probability of 40.96%, whereas other heavy metals were categorized as the low risk. Cd was regarded as the major pollutant for the ecosystem. Moreover, the MCS-TFN health risk assessment indicated that As showed high noncarcinogenic risk (0.07% probability) and moderate carcinogenic risk (1.87% probability), and Cd presented low carcinogenic risk (80.19% probability). As and Cd were identified as the main heavy metals that pose a threat to human health. The MCS-TFN risk assessment is superior to the traditional deterministic risk assessment since it can obtain the risk level and the corresponding probability, and significantly reduce the uncertainty in risk assessment.
Collapse
Affiliation(s)
- Minsi Xiao
- Jiangxi Provincial Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Lidan Qian
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Bing Yang
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Guangcong Zeng
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Sili Ren
- Jiangxi Provincial Key Laboratory of Mining and Metallurgy Environmental Pollution Control, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Low-Carbon Processing and Utilization of Strategic Metal Mineral Resources, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China.
| |
Collapse
|
11
|
Ma JY, Li WY, Yang ZY, Su JZ, Li L, Deng YR, Tuo YF, Niu YY, Xiang P. The spatial distribution, health risk, and cytotoxicity of metal(loid)s in contaminated field soils: The role of Cd in human gastric cells damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162942. [PMID: 36940749 DOI: 10.1016/j.scitotenv.2023.162942] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 05/13/2023]
Abstract
The spatial distribution and pollution level of heavy metal(loid)s in soil (0-6 m) from a typical industrial region in Jiangmen City, Southeast China was investigated. Their bioaccessibility, health risk, and human gastric cytotoxicity in topsoil were also evaluated using an in vitro digestion/human cell model. The average concentrations of Cd (87.52 mg/kg), Co (106.9 mg/kg), and Ni (1007 mg/kg) exceeded the risk screening values. The distribution profiles of metal(loid)s showed a downward migration trend to reach a depth of 2 m. The highest contamination was found in topsoil (0-0.5 m), with the concentrations of As, Cd, Co, and Ni being 46.98, 348.28, 317.44, and 2395.60 mg/kg, respectively, while Cd showed the highest bioaccessibility in the gastric phase (72.80 %), followed by Co (21.08 %), Ni (18.27 %), and As (5.26 %) and unacceptable carcinogenic risk. Moreover, the gastric digesta of topsoil suppressed the cell viability and triggered cell apoptosis, evidenced by disruption of mitochondrial transmembrane potential and increase of Cytochrome c (Cyt c) and Caspases 3/9 mRNA expression. Bioaccessible Cd in topsoil was responsible for those adverse effects. Our data suggest the importance to reduce Cd in the soil to decrease its adverse impacts on the human stomach.
Collapse
Affiliation(s)
- Jiao-Yang Ma
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Wei-Yu Li
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510000, China
| | - Zi-Yue Yang
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Jin-Zhou Su
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Li Li
- Precious Metal Testing Co. LTD of Yunnan Gold Mining Group, Kunming 650215, China
| | - Yi-Rong Deng
- Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510000, China
| | - Yun-Fei Tuo
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - You-Ya Niu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China.
| | - Ping Xiang
- Yunnan Province Innovative Research Team of Environmental pollution, Food Safety, and Human Health, Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
12
|
Wang Y, Cheng H. Soil heavy metal(loid) pollution and health risk assessment of farmlands developed on two different terrains on the Tibetan Plateau, China. CHEMOSPHERE 2023:139148. [PMID: 37290519 DOI: 10.1016/j.chemosphere.2023.139148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
The quality of farmland soils on the Tibetan Plateau is important because of the region's ecological vulnerability and their close link with local food security. Investigation on the pollution status of heavy metal (loid)s (HMs) in the farmlands of Lhasa and Nyingchi on the Tibetan Plateau, China revealed that Cu, As, Cd, Tl, and Pb were apparently enriched, with the soil parent materials being the primary sources of the soil HMs. Overall, the farmlands in Lhasa had higher contents of HMs compared to those in the farmlands of Nyingchi, which could be attributed to the fact that the former were mainly developed on river terraces while the latter were mainly developed on the alluvial fans in mountainous areas. As displayed the most apparent enrichment, with the average concentrations in the vegetable field soils and grain field soils of Lhasa being 2.5 and 2.2 times higher compared to those of Nyingchi. The soils of vegetable fields were more heavily polluted than those of grain fields, probably due to the more intensive input of agrochemicals, particularly the use of commercial organic fertilizers. The overall ecological risk of the HMs in the Tibetan farmlands was low, while Cd posed medium ecological risk. Results of health risk assessment show that ingestion of the vegetable field soils could pose elevated health risk, with children facing greater risk than adults. Among all the HMs targeted, Cd had relatively high bioavailability of up to 36.2% and 24.9% in the vegetable field soils of Lhasa and Nyingchi, respectively. Cd also showed the most significant ecological and human health risk. Thus, attention should be paid to minimize further anthropogenic input of Cd to the farmland soils on the Tibetan Plateau.
Collapse
Affiliation(s)
- Yafeng Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
13
|
Mosa A, Hawamdeh OA, Rady M, Taha AA. Ecotoxicological monitoring of potentially toxic elements contamination in Eucalyptus forest plantation subjected to long-term irrigation with recycled wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121739. [PMID: 37121299 DOI: 10.1016/j.envpol.2023.121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 05/04/2023]
Abstract
Afforestation is an evergreen technology for restraining greenhouse gases (GHGs) emission and improving soil carbon sink in arid and semi-arid regions. Nonetheless, the long-term impact of woody forests irrigation using recycled wastewater resources remains inconclusive so far. For this purpose, the ecological risk benchmarks of potentially toxic elements (PTEs) were investigated on Eucalyptus forest plantation in order to gauge their bioavailability in the rhizospheric layer of Typic Torripsammentsoil and their accretion capacity in the biosphere. Water quality guidelines pointed to a moderate degree of restriction on use with elevated levels of PTEs. Notably, concentrations of As, B, Cd, Cr, Cu, Mn, Ni, V and Zn were above the permissible limits for irrigation. The geospatial mapping of PTEs concentration in soil pointed to elevated levels of most PTEs, particularly in the deforestated areas. Some of PTEs (Cd, Cu, Hg and Zn) showed values above the permissible limits. A spectrum of ecological risk indices showed considerable to high degree of contamination. Among PTEs, the water-soluble and exchangeable fractions showed high values of As, Cd and Hg (20.7, 17.2 and 11.0%, respectively). Sequential extraction showed variations among PTEs in their tendency to bind with different soil geochemical fractions: (i) carbonate (Cd, Zn and Cu), (ii) Fe-Mn oxides (Pb, Zn and Mn) and (iii) organic matter (B, Pb and Hg). Eight fungal species including Aspergillus flavus, Fusarium solani, Cephalosporimsp., Penicilliumsp., Rhizoctonia solani, Aspergillus niger, Botrytissp. and Verticilliumsp. were dominated in soil. Meanwhile, Agrobacteriumsp., phosphate solubilizing bacteria, nitrogen fixing bacteria and Escherichia coli were the dominant bacterial strains. Values of bioaccumulation index varied among PTEs, wherein B (5.15), Ni (1.98), Mn (1.62) and Cd (1.02) exhibited higher phytoextraction potentials. Other PTEs, however, exhibited values below 1.0 confirming their low phytoextraction potentials. Findings of this investigation, therefore, provide insights into biochemical signals of PTEs contamination in woody forest plantations and the urgent need to contextualize the large-scale utilization of recycled wastewater resources in such vulnerable areas.
Collapse
Affiliation(s)
- Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt.
| | - Olfat A Hawamdeh
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt; Chemistry Department, Faculty of Agriculture and Science, Jerash Private University, 26150, Jerash, Jordan
| | - Mohamed Rady
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| | - Ahmed A Taha
- Soils Department, Faculty of Agriculture, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
14
|
Li Q, Li X, Bu C, Wu P. Distribution, Risk Assessment, and Source Apportionment of Heavy Metal Pollution in Cultivated Soil of a Typical Mining Area in Southwest China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:888-900. [PMID: 36799334 DOI: 10.1002/etc.5586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/28/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The present study investigates heavy metal pollution and its sources in cultivated soils in Bijie City, Guizhou Province, China. The ground accumulation index method was used to evaluate the associated risks, while correlation, principal component, and positive matrix factor model analyses were used to identify sources. The results show that the overall contamination levels, except for Cd, were not serious. Agricultural materials, industrial activities, transportation, coal combustion and atmospheric deposition, parent rock, and irrigation accounted for 19.66%, 14.11%, 14.54%, 16.33%, 20.70%, and 14.67% of the total accumulation of metals, respectively. Copper, Ni, Zn, and Cr came mainly from parent rocks; Pb was mainly from traffic emissions; Hg was mainly from coal deposition; As was mainly from irrigation; and Cd was mainly from industrial activities. The main sources of soil metals were irrigation, agricultural activities, and coal deposition in the east and industrial activities and soil-forming parent rocks in the west. Environ Toxicol Chem 2023;42:888-900. © 2023 SETAC.
Collapse
Affiliation(s)
- Qihang Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, China
| | - Xuexian Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Chujie Bu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Shi H, Wang P, Zheng J, Deng Y, Zhuang C, Huang F, Xiao R. A comprehensive framework for identifying contributing factors of soil trace metal pollution using Geodetector and spatial bivariate analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159636. [PMID: 36280075 DOI: 10.1016/j.scitotenv.2022.159636] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The accurate identification of pollution sources is important for controlling soil pollution. However, the widely used Positive matrix factorization (PMF) model generally relies on knowledge and experience to accurately identify pollution sources; thus, this method faces significant challenges in objectively identifying soil pollution sources. Herein, we established a comprehensive source analysis framework using factor identification and geospatial analysis, and revealed the factors contributing to trace metal(loid) (TM) pollution in soil in the Pearl River Delta (PRD), China. Using the PMF model, we initially considered that the PRD may be affected by natural, atmospheric, traffic and industrial, and agricultural sources. Moreover, Geodetector model detected the relationship between TMs and 12 environmental variables based on the strong spatial "source-sink" relationship of pollutants. The parent material and digital elevation model were the key factors predicting the accumulation of Cr, Ni, and Cu. Industries and roads were the most important determinants of Pb, Zn, and Cd, whereas atmospheric deposition was more important for Hg accumulation. The accumulation of As was found to be closely related to agricultural activities such as the application of chemical fertilizers and pesticides. The spatial autocorrelation between soil TM pollution and environmental variables further supports this hypothesis. Overall, the obtained results showed that proposed approach improved the accuracy of source apportionment and provided a basis for soil pollution control.
Collapse
Affiliation(s)
- Hangyuan Shi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiatong Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510006, China
| | - Changwei Zhuang
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510006, China
| | - Fei Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Rongbo Xiao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
16
|
Yang J, Sun Y, Wang Z, Gong J, Gao J, Tang S, Ma S, Duan Z. Heavy metal pollution in agricultural soils of a typical volcanic area: Risk assessment and source appointment. CHEMOSPHERE 2022; 304:135340. [PMID: 35709847 DOI: 10.1016/j.chemosphere.2022.135340] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are naturally occurring elements with high natural background levels in the volcanic area. Therefore, it is necessary to conduct a risk assessment and identify potential sources of heavy metals. In this study, 4488 soil samples (0-20 cm) were collected in Chengmai County, a typical volcanic area in Hainan Province, and analyzed for eight heavy metals and major oxides. Pollution level, ecological risks, and health risks were evaluated by geo-accumulation index (Igeo), pollution index (PI), potential ecological risk index (RI), hazard index (HI), and carcinogenic risks (CR). The positive matrix factorization (PMF) model was further used to determine the priority source of heavy metals. The average values of heavy metal concentrations in soil were 7.06, 0.07, 156.88, 33.43, 0.05, 72.47, 19.48, and 67.51 mg kg-1 for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively. Except for Pb, the average concentrations of all heavy metals exceeded background concentration in Hainan soils, indicating different degrees of heavy metal enrichment. The Igeo and PI showed that the main pollutant element in volcanic soils was Ni, followed by Cr and Cu. The RI shows that the percentage of soil samples with considerable or worse potential ecological risk was 44.4% of the total samples, with Hg, As, Cd, and Ni causing high ecological risks. The estimated average daily doses of heavy metals were below the tolerable limits and the HI values were below one for both adults and children, indicating that the residents had an acceptable potential non-carcinogenic risk. However, the potential carcinogenic risk of exposure to Cr, Ni, and As was unacceptable for residents, with high CR values exceeding 10-4, especially for children. Based on the PMF, five major sources of heavy metals were found in the study area: Ni, Cu, and Zn mainly from parent materials, As and Pb from daily life and vehicle emissions, Cd from agricultural activities, Hg from industrial activities, and Cr from parent materials under different environmental conditions. Significant positive correlations between Al2O3, TFe2O3, Mn, soil organic carbon (SOC), and heavy metals reflect that aluminium-rich minerals, Fe-Mn oxides, and SOC are the most critical factors affecting heavy metal accumulation in volcanic agricultural soils.
Collapse
Affiliation(s)
- Jianzhou Yang
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China.
| | - Yanling Sun
- School of Earth Sciences, China University of Geoscience, Wuhan, 430074, China
| | - Zhenliang Wang
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Jingjing Gong
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Jianweng Gao
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Shixin Tang
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Shengming Ma
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| | - Zhuang Duan
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China; Key Laboratory of Geochemical Exploration Technology, Ministry of Natural Resources, Langfang, 065000, China
| |
Collapse
|
17
|
Liu L, Lu Y, Shan Y, Mi J, Zhang Z, Ni F, Zhang J, Shao W. Pollution characteristics of soil heavy metals around two typical copper mining and beneficiation enterprises in Northwest China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:788. [PMID: 36104572 DOI: 10.1007/s10661-022-10416-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
In order to investigate the situation of heavy metal pollution in the heavy metal industry in Gansu Province, a large copper mining province, two large and typical copper mining and beneficiation enterprises with differences in topographic features, climatic conditions, and soil types were selected as the target of this study based on similar ore types and beneficiation processes. Around these two enterprises, geochemical baselines of the six heavy metals were established, while the degree of local soil heavy metal pollution and potential hazards to humans were assessed based on statistical analysis, single-factor and multi-factor index analysis, and health risk evaluation models. In addition, Spearman's correlation analysis and hierarchical cluster analysis were used to explore the intrinsic association between each heavy metal in the two mining industries to reveal the pattern of soil heavy metal pollution in the copper mining and beneficiation industry and to propose targeted measures to improve and prevent soil heavy metal pollution. The results showed that the heavy metal pollution in the soil around Shengxi Mining Co., Ltd. of Subei County (SX enterprise) was higher than that around Yangba Copper Co., Ltd. of Gansu Province (YB enterprise), but the two enterprises had similar patterns of pollution, with an overall medium level of pollution. The carcinogenic and non-carcinogenic risks for children and adults were within acceptable limits for both enterprises. Besides, the correlation between the different heavy metals to similarity in their sources of contamination and the different degrees of association between the soil heavy metals of the two enterprises due to their environmental characteristics.
Collapse
Affiliation(s)
- Lei Liu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Yajing Lu
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Yuxin Shan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Jimin Mi
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Zepeng Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Fei Ni
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Jun Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China
| | - Wenyan Shao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
- Gansu Solid Waste and Chemicals Center, Lanzhou, 730000, China.
| |
Collapse
|
18
|
Zhang X, Gong Z, Allinson G, Xiao M, Li X, Jia C, Ni Z. Environmental risks caused by livestock and poultry farms to the soils: Comparison of swine, chicken, and cattle farms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115320. [PMID: 35642811 DOI: 10.1016/j.jenvman.2022.115320] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The lack of treatment systems for pollutants in family-livestock and poultry sites results in large amounts of untreated manure and urine being directly discharged to environment. The risks from veterinary antibiotic (VA) and heavy metal (HM) exposure in the rural environment require further research. In this investigation, 221 samples (feed, manure, surface soil, soil profiles, water, and plant) were collected from 41 livestock and poultry farms (swine, chichen, and cattle). Copper (Cu), zinc (Zn), oxytetracycline (OTC), and enrofloxacin (ENR) were frequently detected in the samples. Metals and VAs in sandy loam soils were more inclined to migrate to deep layers than those in loam soils. Copper and Zn in the polluted soils mainly existed in available forms, which facilitated their migration to deep soil layers. In this study, OTC was also observed to migrate more easily to deeper soil layers than ENR due to its relatively high pKa value. Eighteen antibiotic resistance genes (ARGs) and 5 metal resistance genes (MRGs) along with one mobile genetic element (MGE) occurred in the soils at 80 cm depth. Luteimonas, Clostridium_sensu_stricto_1, and Rhodanobacter were dominant genera detected in the soil samples from different sites, which might increase migration of ARGs or degradation of VAs. An ecological risk assessment suggested that VAs posed threats to the growth of Triticum aestivum L, Cucumis sativus L, and Brassiaca chinensis L. Remediation techniques including biochar/modified biochar, anaerobic digestion, and manure composting should be developed urgently for joint HM and VA pollution.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Graeme Allinson
- School of Science, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Mei Xiao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Zijun Ni
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
19
|
Guo Y, Zhang Y, Zhao X, Xu J, Qiu G, Jia W, Wu J, Guo F. Multifaceted evaluation of distribution, occurrence, and leaching features of typical heavy metals in different-sized coal gasification fine slag from Ningdong region, China: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154726. [PMID: 35331771 DOI: 10.1016/j.scitotenv.2022.154726] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The coal gasification fine slag (CGFS) from the entrained-flow coal gasification unit faces the challenge of safe disposal and clean utilization in the Ningdong region, China. This study aims to provide complete and thorough understanding of the distribution features, chemical speciation, environmental impact, and leaching behavior of typical heavy metals (i.e., V, Cr, Mn, Ni, Cu, Zn, Ba, and Pb) in the CGFS with different size fractions. The results show that the distribution of selected heavy metals in the CGFS has evident particle size dependence. Except for Zn, the other heavy metals in different size fractions mainly exist in chemical speciation of residual form with the ratio of 50.11-86.69 wt%. Moreover, it is found that the heavy metals in the different-sized CGFS show different RAC (risk assessment code) environmental risk levels and TCLP (Toxicity Characteristic Leaching Procedure) leaching concentrations. Especially, Zn in SGFS-C and SGFS-D posed a high-risk level to the environment, while the heavy metal elements of Cr, Mn, Ni, Zn, and Ba in other size fractions are classified as a medium environmental risk. In addition, the TCLP test results indicate that the leaching concentration of Cr, Mn, Ni, Zn, Ba, and Pb exceeds the groundwater-related regulatory limit in China. The pH-dependent leaching experiments suggest that Pb shows the amphoteric behavior, while the leaching mode of other heavy metals seems to be the cationic pattern. Furthermore, the leachability of the selected heavy metals in small-size fractions of the CGFS should be given more consideration at both acid and alkaline pH ranges. The leaching kinetic results demonstrate that the most effective mechanism to describe the leaching process of Cr, Ni, Zn, and Pb in different CGFS size fractions is the diffusion-controlled theory, which is supported by the different morphological traits of spherical mineral particles and carbon particles in the CGFS.
Collapse
Affiliation(s)
- Yang Guo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Yixin Zhang
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China; Shandong Xuanyuan Scientific Engineering and Industrial Technology Research Institute Co., Ltd., Heze 274918, China
| | - Xu Zhao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Jie Xu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Guofeng Qiu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Wenke Jia
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China
| | - Jianjun Wu
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China.
| | - Fanhui Guo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China; National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
20
|
Afra Z, Rezapour S, Sabbaghtazeh E, Dalalian MR, Rafieyan O. Long-term orchard practice affects the ecological and human health risk of soil heavy metals in a calcareous environment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:433. [PMID: 35575815 DOI: 10.1007/s10661-022-10084-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The contamination of agroecosystems with heavy metals, caused by the long-term agricultural practices (e.g., the application of extensive agrochemical), has become a high-priority issue for soil-food-human health. Our study aimed to estimate the effect of the agricultural activities on contamination severity and health risk potential of heavy metals in the soil-urban apple orchards versus control soils across various soil types and apple cultivars. This research assessed pollution index (PI), pollution load index (PLI), ecological risk (ER), bio-concentration factor (BCF), hazard quotient (HQ), and overall hazard index (HI). The results revealed a significant increase in the concentration of all metals of the orchard soils, ranging 30-51%, 19-24%, 70-137%, 25-33%, and 16-23% for Zn, Cu, Cd, Pb, and Ni, respectively, versus those in the control soils. Compared to the control soils, PI, PLI, and ER reflected a significant increase in the orchard soils ranging 13-67%, 18-45%, and 18-33%, respectively, which has downgraded their scoring class by one grade. Cd and Pb were not detected in the samples collected from the apple cultivars 'Golden Delicious' (GD) and 'Red Delicious' (RD), indicating no toxic levels of Cd and Pb. Compared to the GD, the concentration of Zn, Cu, and Ni was comparatively higher in RD, implying varying heavy metal accumulation potentials in two different apple cultivars. The mean HQ and HI were in the low category (0.1 ≤ HQ and HI < 1) in both GD and RD cultivars, meaning that GD and RD are safe for local residents to be consumed and do not pose a significant potential risk to the health of consumers. However, HQ and HI were significantly higher in the RD cultivar than in the GD cultivar in most apple samples.
Collapse
Affiliation(s)
- Zhleh Afra
- Department of Soil Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Salar Rezapour
- Soil Science Department, Urmia University, P. O. Box 165, 57134, Urmia, Iran.
| | - Elnaz Sabbaghtazeh
- Department of Soil Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | - Omid Rafieyan
- Department of Environmental Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|