1
|
Nayak SK, Nandimandalam JR. Unravelling the signatures of submarine groundwater discharge and seawater intrusion along the coastal plains of Odisha, India: a multi-proxy approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:254. [PMID: 38884664 DOI: 10.1007/s10653-024-02010-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024]
Abstract
Submarine Groundwater Discharge (SGD) and Seawater Intrusion (SWI) are two contrary hydrological processes that occur across the land-sea continuum and understanding their nature is essential for management and development of coastal groundwater resource. Present study has attempted to demarcate probable zones of SGD and SWI along highly populated Odisha coastal plains which is water stressed due to indiscriminate-exploitation of groundwater leading to salinization and fresh groundwater loss from the alluvial aquifers. A multi-proxy investigation approach including decadal groundwater level dynamics, LANDSAT derived sea surface temperature (SST) anomalies and in-situ physicochemical analysis (pH, EC, TDS, salinity and temperature) of porewater, groundwater and seawater were used to locate the SGD and SWI sites. A total of 340 samples for four seasons (85 samples i.e., 30 porewater, 30 seawater and 25 groundwater in each season) were collected and their in-situ parameters were measured at every 1-2 km gap along ~ 145 km coastline of central Odisha (excluding the estuarine region). Considering high groundwater EC values (> 3000 μS/cm), three probable SWI and low porewater salinities (< 32 ppt in pre- and < 25 ppt in post-monsoons), four probable SGD zones were identified. The identified zones were validated with observed high positive hydraulic gradient (> 10 m) at SGD and negative hydraulic gradient (< 0 m) at SWI sites along with anomalous SST (colder in pre- and warmer in post-monsoon) near probable SGD locations. This study is first of its kind along the Odisha coast and may act as initial basis for subsequent investigations on fresh-saline interaction along the coastal plains where environmental integrity supports the livelihood of coastal communities and the ecosystem.
Collapse
Affiliation(s)
- Soumya Kanta Nayak
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
2
|
R P, V J L, Kessarkar PM, Kumar A, Pesso C, Gomes C. Fresh and recirculated submarine groundwater discharge zones along the central west coast of India. ENVIRONMENTAL RESEARCH 2024; 250:118406. [PMID: 38382659 DOI: 10.1016/j.envres.2024.118406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
The study area receives an average of 2840.0 mm of rainfall within four months every year. A portion of the rainwater is flown to the sea as surface water, and the other part is percolated into the bottom as groundwater. In coastal aquifers, the groundwater is transported to the sea due to a hydraulic gradient, and it contains a significant quantity of dissolved materials and nutrients. SGD processes impact the ocean productivity, mangrove and coral growth, local acidification and many. To isolate the SGD on the central west coast of India, different data was referred. The GWL concerning MSL contributed significantly to demarcating the SGD zones by considering the positive (>0 m) and negative (<0 m) values of GWL concerning above MSL. Thermal images for SST of pre-monsoon and post-monsoon periods of 2020 exhibit cooler surrounded by warmer, which might be the SGD buffering zones in the off-central west coast of India. By considering the results from GWL and SST, 8 SGD beach sites were identified for the further particularized study. The water samples were collected in March 2022, and analyzed using standard procedures and instruments. Fresh and mixing (recirculated) zones have been isolated by piper, hydrochemical facies evolution, and Ca2++Mg2+/K++Na + Vs log Cl- ionic ratio plots. The aquifer water chemical elements are converting possibly due to ionic exchange processes. The decrease in salinity and conductivity observed in the pore water just below the seawater might be due to the influence of freshwater inputs, helping to isolate the fresh SGD and recirculated SGD zones in the study area. Among 8 sites, 3 were found to be fresh SGD sites and 5 were noticed to be mixing/recirculated SGD sites. Most of these Beaches are bounded by hills, which helps to lead the SGD along the central west coast of India.
Collapse
Affiliation(s)
- Prakash R
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| | - Loveson V J
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| | - Pratima M Kessarkar
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| | - Ashwini Kumar
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| | | | - Concy Gomes
- Geological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403 004, India.
| |
Collapse
|
3
|
Vishnudattan NK, Tait DR, Nandan SB, Aravind EH, Babu DSS, Jayachandran PR. The seasonal distribution and pollution potential of dissolved heavy metals and nutrients in subterranean estuaries in southern India. MARINE POLLUTION BULLETIN 2023; 194:115339. [PMID: 37517279 DOI: 10.1016/j.marpolbul.2023.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
In order to better understand the distribution pattern, pollution degree and the submarine groundwater discharge (SGD) of dissolved heavy metals, 15 subterranean estuaries (STEs) along southwest Indian coast were sampled over three contrasting seasons. The average concentration of metals were ranked as, pre-monsoon > monsoon > post-monsoon with 3 to 12-fold higher groundwater metal concentrations than the adjacent seawater. Average SGD derived essential metal fluxes were five times higher than the toxic metal fluxes of which Fe and Zn together contributed >90 %. Using the Single Factor Contamination Index, the majority of sites were minimally contaminated with only two sites indicating moderate ecological risk due to As. Higher fluxes of Fe, Cu and Zn were likely a result of rising anthropogenic activities. The SGD derived nutrient fluxes were an important source of DIP for primary production in coastal waters and represented 30 % and 44 % of the DIN and DIP inputs respectively.
Collapse
Affiliation(s)
- N K Vishnudattan
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science & Technology, Fine Arts Avenue, Cochin 682016, Kerala, India
| | - Douglas R Tait
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - S Bijoy Nandan
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science & Technology, Fine Arts Avenue, Cochin 682016, Kerala, India.
| | - E H Aravind
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science & Technology, Fine Arts Avenue, Cochin 682016, Kerala, India
| | - D S Suresh Babu
- National Centre for Earth Sciences Studies, Akkulam, Thiruvananthapuram 695031, Kerala, India
| | - P R Jayachandran
- Applied Research Center for Environment and Marine Studies (ARC-EMS), Research Institute, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
4
|
Bhagat C, Kumar M, Mahlknecht J, Hdeib R, Mohapatra PK. Seawater intrusion decreases the metal toxicity but increases the ecological risk and degree of treatment for coastal groundwater: An Indian perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119771. [PMID: 35863708 DOI: 10.1016/j.envpol.2022.119771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/05/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Contaminant vulnerability in the critical zones like groundwater (GW)-seawater (SW) continuum along the entire Gujarat coast was investigated for the first time through an extensive water monitoring survey. The prime focus of the study was to evaluate whether or not: i) seawater intrusion induced metal load translates to toxicity; ii) in the coastal groundwater, metal distribution follows the pattern of other geogenic and anthropogenic contaminants like NO3- and F-; and iii) what future lies ahead pertaining to metal fate in association with saturation conditions of the coastal aquifers. The spatial distribution of contaminants depicts that the Gulf of Khambhat area is highly contaminated. Ecological risk assessment (ERA) indicates that the Gujarat coast is experiencing a high ecological risk compared to the southeast coast of India. Investigation results revealed that metals, pH, NO3, and CO3 are more vulnerable at the SW-GW mixing interface. An increase in pH is reflected in fewer ionic species of metals in the GW. Salinity ingress due to seawater intrusion (SWI) reduces the toxicities of all trace metals except Cu, attributed to the increase of Ca in GW, leading to dissociation of CuCO3. Reactive species are dominant for Zn and Cd; and M-CO3 ligands are dominant for Cu and Pb owing to the undersaturation of dolomite and calcite in the aquifer system. SWI tends to increase the metal load but the toxicity of metals varies with the density of industries, anthropogenic activities, changes in the mixing-induced saturation conditions, and intensive salt production across the coast. Multivariate analysis confirmed that the hydrogeochemical processes change due to GW-SW mixing and dictates over natural weathering. The ecological risk index (ERI) for the Arabian sea is experiencing moderate (300 ≥ ERI>150) to high ecological risk (ERI >600). Children population is likely to encounter a high health risk through ingestion and dermal exposure than adults. Overall, the study emphasizes the complexity of toxicity-related health impacts on coastal communities and suggests the dire need for frequent water monitoring along the coastal areas for quick realization of sustainable development goals.
Collapse
Affiliation(s)
- Chandrashekhar Bhagat
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar Gujarat, 382855, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Uttarakhand, 248007, India
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Uttarakhand, 248007, India.
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Rouya Hdeib
- College of Engineering, Applied Science University (ASU), Kingdom of Bahrain
| | - Pranab Kumar Mohapatra
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar Gujarat, 382855, India
| |
Collapse
|
5
|
Bhagat C, Kumar M. Muddy (silty-sand) beaches in semi-arid regions attenuate the contaminants flowing into the sea as a submarine groundwater discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155111. [PMID: 35398430 DOI: 10.1016/j.scitotenv.2022.155111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/20/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Urbanized coastal areas are well-recognized hotspots for the contaminant-enriched groundwater discharge, influencing sensitive coastal ecosystems. The present study investigates how muddy beaches in the semi-arid region alter the contaminant flux flowing into the sea using submarine groundwater discharge (SGD) estimation and hydrogeochemical analysis of coastal waters (groundwater, porewater, and seawater). Fresh SGD carries contaminants such as nutrients and trace metals in the coastal ecosystem, causing increased vulnerability towards eutrophication, harmful algal blooms, and human health. We found that SGD reaching the coast carries immense nutrient flux (155.6 mmol NO3- · day-1; 35 mmol P · day-1 and 12.4 mmol DSi · day-1) and trace metal load ranging from 0.1 to 14.9 mmol · day-1. The nutrient fluxes were higher in the upper saline plume compared to the lower plume. The muddy beach attenuates the nutrients in varying percentages of 9.7 to 22% of NO3-, 1.9 to 25.5% of P due to denitrification and phosphorus absorption, and also caused 19.6% reduction of SO42-. The reduction in SO42- leads to the formation of sulfide (HS-) that promotes the metal precipitation, resulting in the removal of Pb and Cu. This attenuation of nutrients leads to a change in the nutrient ratio (N/P = 7-11) approaching the Redfield ratio, implying the vulnerability of algal bloom at the Dehri beach. Overall, the muddy beach can serve as a natural biogeochemical reactor as it attenuates the nutrient and serves as a source for certain trace metals (Fe, Mn, Zn, and Ni), altering the composition of SGD. Probably this is the first study that emphasizes the attenuation of trace metals in the muddy beaches of a semi-arid region.
Collapse
Affiliation(s)
- Chandrashekhar Bhagat
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Palaj Gandhinagar, Gujarat 382355, India
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| |
Collapse
|
6
|
Misra A, Bhagat C, Kumar M. Geochemical ratios mediated understanding of estuarine dynamics in submarine groundwater discharge prevalent basaltic aquifer. MARINE POLLUTION BULLETIN 2022; 181:113812. [PMID: 35749978 DOI: 10.1016/j.marpolbul.2022.113812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Submarine groundwater discharge (SGD) has been recognized as an integral pathway of hydrological cycle. The role of SGD as a mechanism for material transport from terrestrial to marine ecosystems has also been investigated, considering the large hydrological flux and a massive load of solutes is found to be carried as SGD to the coastal oceans. However, there are challenges in recognizing the process and delineating specific areas which are susceptible to SGD. Considering the unique geochemical signature of groundwaters found in varied lithology, this paper investigates the possibility of using geochemical ratios and their variability in coastal areas as a tracer for the identification of SGD. The Br-/Cl- ratio, prevalently used for identification of seawater-groundwater mixing is investigated. The study raises questions over the viability of Br-/Cl- as a tracer as Br- rich groundwater in the SGD prevalent area may be a cause of elevated Br-/Cl- ratio in the coastal oceans. Furthermore, the peculiar observation of Fe+2 enrichment in coastal seawater also indicated the influence of differential weathering on the subterranean estuarine (STE) sediments releasing Fe+2 as the groundwater in the area is not enriched in groundwater. This observation is very important in the context of rising sea levels as a larger STE due to rising sea levels can cause higher mobilization of Fe+2 in coastal oceans causing a direct influence on the coastal ecosystem.
Collapse
Affiliation(s)
- Anant Misra
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, India
| | | | - Manish Kumar
- Sustainability Cluster, School of Engineering, UPES, Dehradun, India.
| |
Collapse
|