1
|
Liu Y, Zhang Z, Fang Y, Song Y, Li J, Feng Y. Assessing the long-term impact of incorporating GAC and Fe&G mediators for enhancing phenol containing simulated wastewater treatment in UASB reactor. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138459. [PMID: 40334595 DOI: 10.1016/j.jhazmat.2025.138459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/25/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
Phenol containing wastewater (PCW) is highly toxic and difficult to be treated by traditional methods. This study utilized granular activated carbon (GAC) and Fe (Sponge iron) &GAC (Fe&G) in a laboratory-scale UASB reactor to mitigate the toxicity of phenol containing simulated wastewater (PCSW) and enhance treatment performance. Compared with GAC, Fe&G mediators achieves approximately 7 % and 24 % higher removal rates for COD and phenolic compounds, respectively. The methane accumulation in Fe&G group was about 10 % higher than that in GAC group and 22 % higher than that in blank group. Microbial analysis showed that compared with GAC, Fe&G mediators could enrich Petronas and Methanothrix to intensify Direct Interspecies Electron Transfer (DIET) to augment PCSW treatment and boost methane production. PICRUSt analysis showed that these mediators enriched key genes such as TCA cycle and CO2 methanogenesis pathway to improve microbial resistance to PCSW toxicity and enhance microbial metabolism. This study provides a new method for anaerobic treatment of highly polluted industrial wastewater.
Collapse
Affiliation(s)
- Yanbo Liu
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbin Fang
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yanfang Song
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, No73, Huanghe Road, Nangang District, Harbin 150090, China; National Joint Research Center for Ecological Conservation and High Quality Development of the Yellow River Basin, China.
| |
Collapse
|
2
|
Sebe E, Nagy G, Kállay AA. Steam gasification of char derived from refuse-derived fuel pyrolysis: adsorption behaviour in phenol solutions. ENVIRONMENTAL TECHNOLOGY 2024; 45:5025-5036. [PMID: 37970831 DOI: 10.1080/09593330.2023.2283794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
The increasing waste generation trends resulted in growing attention to the technologies that aim to reduce or prevent landfilling. The pyrolysis and gasification of refuse-derived fuel (RDF) allow waste to be turned into new raw materials, like pyrolysis gas and syngas. However, the wet gas cleaning processes result in the production of highly contaminated liquid waste. Phenolic compounds are common constituents of this wastewater and often appear in the wastewater of other industries as well. In this research, the laboratory-scale steam gasification of an RDF char was performed to produce syngas and adsorbent simultaneously. The RDF was previously pyrolyzed at 700 °C maximum temperature in a Hungarian pyrolysis pilot plant with approximately 120 kg h-1 capacity. In this thermal waste processing plant, the pyrolysis gas is already utilised by burning, but currently, the char ends up in landfills. The gasification of char samples was examined with different steam-to-carbon ratios (0.56, 0.84, and 1.12) and duration (30, 60, and 120 min) at 900 °C. Following gasification, the phenol removal capability of the solid by-products was investigated. The results show that its composition and energetic properties make the produced syngas more suitable to use as a raw material in the chemical industry rather than a fuel. At lower concentrations, the effectiveness of the solid by-product for phenol removal was comparable to commercial activated carbon. These are promising results about producing activated carbon from waste without any chemical treatment.
Collapse
Affiliation(s)
- Emese Sebe
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, Miskolc, Hungary
| | - Gábor Nagy
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, Miskolc, Hungary
| | - András Arnold Kállay
- Institute of Energy, Ceramics and Polymer Technology, University of Miskolc, Miskolc, Hungary
| |
Collapse
|
3
|
Li Q, Zhu Y, Jiang N, Li J, Liu Y, Chen X, Xu X, Wang H, Ma Y, Huang M. Enhanced Sb(V) removal of sulfate-rich wastewater by anaerobic granular sludge assisted with Fe/C amendment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172113. [PMID: 38580110 DOI: 10.1016/j.scitotenv.2024.172113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Antimony (Sb) and sulfate are two common pollutants in Sb mine drainage and Sb-containing textile wastewater. In this paper, it was found that iron‑carbon (Fe/C) enhanced Sb(V) removal from sulfate-rich wastewater by anaerobic granular sludge (AnGS). Sulfate inhibited Sb(V) removal (S + Sb, k = 0.101), while Fe/C alleviated the inhibition and increased Sb(V) removal rate by 2.3 times (Fe/C + S + Sb, k = 0.236). Fe/C could promote the removal of Sb(III), and Sb(III) content decreased significantly after 8 h. Meanwhile, Fe/C enhanced the removal of sulfate. The 3D-EEM spectrum of supernatant in Fe/C + S + Sb group (at 24 h) showed that Fe/C stimulated the production of soluble microbial products (SMP) in wastewater. SMP alleviated the inhibition of sulfate, promoting AnGS to reduce Sb(V). Sb(V) could be reduced to Sb(III) both by AnGS and sulfides produced from sulfate reduction. Further analysis of extracellular polymeric substances (EPS) and AnGS showed that Fe/C increased the adsorbed Sb(V) in EPS and the c-type cytochrome content in AnGS, which may be beneficial for Sb(V) removal. Sb(V) reduction in Fe/C + S + Sb group may be related to the genus Acinetobacter, while in Sb group, several bacteria may be involved in Sb(V) reduction, such as Acinetobacter, Pseudomonas and Corynebacterium. This study provided insights into Fe/C-enhanced Sb(V) removal from sulfate-rich wastewater.
Collapse
Affiliation(s)
- Qi Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nan Jiang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jun Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoyang Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huangyingzi Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yimeng Ma
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
4
|
Yu N, Bai J, Cao H, Yao H, Shi G, Yuan H, Xu Z, Luo F, Li M, Si R. Electrocatalysis coupled heterogeneous electro-Fenton like treatment of coal gasification wastewater using tourmaline as catalyst: process parameters and response surface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20207-20221. [PMID: 38369660 DOI: 10.1007/s11356-024-32457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Coal gasification technology is essential for realizing clean and efficient conversion of coal, as well as for reducing carbon emissions. However, coal gasification technology is accompanied by a large amount of coal gasification wastewater that is biodegradable. In this work, tourmaline was applied as a catalyst in electro-Fenton like process for treating coal gasification wastewater. The optimal applied parameters of coal gasification wastewater were investigated as follows: current density of 90 mA cm-2, tourmaline dosage of 8 g L-1, electrode gap of 1 cm, and temperature at 25 °C; the COD removal ratio reached 91.24% after 240-min treatment. In addition, the current density and tourmaline dosage were further optimized by response surface method. The result was about current density with 82.4 mA cm-2 and catalyst with 7.57 g L-1; the predicted COD removal efficiency was 86.91%. Under the optimal parameters the actual COD removal efficiency was 88.25% a little high than the predicted value. To explore the reusability of tourmaline as Fenton reaction catalyst, five cycles of experiments were carried out. The result demonstrated that tourmaline could be used as catalyst for treating coal gasification wastewater by electro-Fenton like process.
Collapse
Affiliation(s)
- Naichuan Yu
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China.
- Tianjin Key Laboratory of Nano-Optoelectronic Display Materials and Components, Tianjin, 301830, China.
| | - Junxue Bai
- School of Biological and Environmental Engineering, Tianjin Vocational Institute, Tianjin, 300410, China
| | - Hanfei Cao
- College of Food Science& Nutritional Engineering, China Agricultural University, Beijing, 100091, China
| | - Hao Yao
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
| | - Guangyao Shi
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
| | - Hao Yuan
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
| | - Zhilong Xu
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
- Tianjin Key Laboratory of Nano-Optoelectronic Display Materials and Components, Tianjin, 301830, China
| | - Fuchen Luo
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
| | - Mingyu Li
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
| | - Rongmei Si
- Tianjin College, University of Science and Technology Beijing, Tianjin, 301830, China
- Tianjin Key Laboratory of Nano-Optoelectronic Display Materials and Components, Tianjin, 301830, China
| |
Collapse
|
5
|
Yu L, Hua Z, Liu X, Chen L, Zhang Y, Ma Y, Dong Y, Xue H. The addition of iron-carbon enhances the removal of perfluoroalkyl acids (PFAAs) in constructed wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121534. [PMID: 37001598 DOI: 10.1016/j.envpol.2023.121534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Hazardous perfluoroalkyl acids (PFAAs), particularly perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), have become ubiquitous environmental persistent organic contaminants, posing serious threats to environmental health, which has led to the development of PFAA treatment methods. Wetland construction in combination with iron-carbon (CW-I), a low-maintenance and high-efficiency technology, may be capable of removing PFAAs through physico-biochemical processes. In this study, we aim to investigate the removal efficiency of PFAAs by CW-I as well as the critical functions of all components within the wetlands. Pairwise comparisons of iron-carbon and control groups revealed that iron-carbon significantly enhanced 15.9% for PFOA and 17.9% for PFOS absorption through phytouptake and substrate adsorption, with respective removal efficiencies of 71.8% ± 1.03% and 85.8% ± 1.56%. The generated iron ions stimulated plant growth and further enhanced phytouptake of PFAAs, with PFAAs accumulated primarily in root tissues with limited translocation. Observations of batch adsorption suggest that chemical and electrostatic interactions are involved in the iron-carbon adsorption process, with film and intraparticle diffusions being the rate-limiting events. Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy revealed that PFAA adsorption by substrates occurs at the molecular level, as well as the occurrence of hydrophobic force effects and ligand exchanges during the iron-carbon adsorption process. Additionally, iron-carbon significantly altered the genera, phyla, and community structure of microorganisms, and some microorganisms and their extracellular polymers may possess ability to bind PFAAs. The information provided in this study contributes to our understanding of the PFAA removal processes in CW-I and enriched the classical cases of PFAA removal by CWs.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zulin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaodong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Luying Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yuan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yixin Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yueyang Dong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hongqin Xue
- School of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
6
|
Wang W, Wang Y, Guo T, Gao C, Yang Y, Yang L, Cui Z, Mao J, Liu N, An X, Qi J. Blend of Cinnamaldehyde, Eugenol, and Capsicum Oleoresin Improved Rumen Health of Lambs Fed High-Concentrate Diet as Revealed by Fermentation Characteristics, Epithelial Gene Expression, and Bacterial Community. Animals (Basel) 2023; 13:ani13101663. [PMID: 37238093 DOI: 10.3390/ani13101663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
We investigated the effects of CEC on the fermentation characteristics, epithelial gene expression, and bacterial community in the rumen of lambs fed a high-concentrate diet. Twenty-four 3-month-old female crossbred lambs with an initial body weight of 30.37 ± 0.57 kg were randomly allocated to consume a diet supplemented with 80 mg/kg CEC (CEC) or not (CON). The experiment consisted of a 14 d adaptation period and a 60 d data collection period. Compared with the CON group, the CEC group had higher ADG, epithelial cell thickness, ruminal butyrate proportion, and lower ammonia nitrogen concentration. Increases in the mRNA expression of Occludin and Claudin-4, as well as decreases in the mRNA expression of apoptotic protease activating factor-1 (Apaf-1), cytochrome c (Cyt-C), Caspase-8, Caspase-9, Caspase-3, Caspase-7, and toll-like receptor 4 (TLR4), were observed in the CEC group. Moreover, CEC treatment also decreased the concentration of IL-1β, IL-12, and TNF-α. Supplementation with CEC altered the structure and composition of the rumen bacterial community, which was indicated by the increased relative abundances of Firmicutes, Synergistota, Rikenellaceae_RC9_gut_group, Olsenella, Schwartzia, Erysipelotrichaceae_UCG-002, Lachnospiraceae_NK3A20_group, Acetitomaculum, [Eubacterium]_ruminantium_group, Prevotellaceae_UCG-004, Christensenellaceae_R-7_group, Sphaerochaeta, Pyramidobacter, and [Eubacterium]_eligens_group, and the decreased relative abundances of Acidobacteriota, Chloroflexi, Gemmatimonadota, and MND1. Furthermore, Spearman correlation analysis revealed that the altered rumen bacteria were closely correlated with rumen health-related indices. Dietary CEC supplementation improved growth performance, reduced inflammation and apoptosis, protected barrier function, and modulated the bacterial community of lambs fed a high-concentrate diet.
Collapse
Affiliation(s)
- Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Tao Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Chang Gao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Yi Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Lei Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Zhiwei Cui
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Jinju Mao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Na Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot 010018, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot 010018, China
| |
Collapse
|
7
|
An BH, Xu DM, Geng R, Cheng Y, Qian RB, Tang XC, Fan ZQ, Chen HB. The pretreatment effects of various target pollutant in real coal gasification gray water by coupling pulse electrocoagulation with chemical precipitation methods. CHEMOSPHERE 2023; 311:136898. [PMID: 36257394 DOI: 10.1016/j.chemosphere.2022.136898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
To prevent the scale formation in the equipments and pipelines after pre-treated coal gasification gray water (CGGW) entering the reuse system and reduce the influence of various pollutants in the effluent on subsequent biochemical treatment, this study presented a coupled use of pulse electrocoagulation (PEC) and chemical precipitation (CP) coupling method for the pretreatment of coal gasification gray water (CGGW). In addition, the operation parameters of PEC and the reaction conditions of PEC-CP were optimized based on iron plate as electrode and total hardness, turbidity and sludge yield as assessment indicators. Due to the formation of multi-hydroxyl iron by several minutes of pulse current, and the addition of pH regulator and coagulant aid, the efficient removal of various ions, hardness and turbidity was significantly reduced via various mechanism such as redox, precipitation, adsorption and coagulation reaction. The result indicated that under the optimal operation conditions, the total hardness, turbidity, and Fen+ of PEC-CP effluents were 275.0 mg/L, 3.0 NTU and 5.6 mg/L, respectively and sludge amount was 0.88 kg/m3. The removal rates of Si, B, Mn, Ba, COD, NPOC and NH4+-N by PEC-CP reached 80.0%, 75.4%, 97.0%, 99.8%, 35.0%, 33.6% and 23.8%, respectively. The present results suggested that the CGGW pretreatment effluents could be not only reused directly, but also greatly alleviate the scaling problem of water pipeline and coal gasification production facilities.
Collapse
Affiliation(s)
- Bai-Hong An
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Da-Mao Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Yan Cheng
- Ningbo Shentong Environmental Technology Co., LTD, Ningbo, 315105, China
| | - Rui-Bo Qian
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Xian-Chun Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China
| | - Zhi-Qiang Fan
- Shanghai Survey and Design Research Institute Co., LTD, Shanghai, 200434, China
| | - Hong-Bin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; National Engineering Research Center for Urban Pollution Control, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
8
|
Li Y, Kong W, Liu H, Hong Y, Huang T. Enhanced degradation of phenolic compounds in coal gasification wastewater by activated carbon-Fe3O4 nanoparticles coupled with anaerobic co-metabolism. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Oliva A, Tan LC, Papirio S, Esposito G, Lens PNL. Fed-batch anaerobic digestion of raw and pretreated hazelnut skin over long-term operation. BIORESOURCE TECHNOLOGY 2022; 357:127372. [PMID: 35623606 DOI: 10.1016/j.biortech.2022.127372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
This study provided important insights on the anaerobic digestion (AD) of hazelnut skin (HS) by operating a fed-batch AD reactor over 240 days and focusing on several factors impacting the process in the long term. An efficient reactor configuration was proposed to increase the substrate load while reducing the solid retention time during the fed-batch AD of HS. Raw HS produced maximally 19.29 mL CH4/g VSadd/d. Polyphenols accumulated in the reactor and the use of NaOH to adjust the pH likely inhibited AD. Maceration and methanol-organosolv pretreatments were, thus, used to remove polyphenols from HS (i.e. 82 and 97%, respectively) and improve HS biodegradation. Additionally, organosolv pretreatment removed 9% of the lignin. The organosolv-pretreated HS showed an increment in methane potential of 21%, while macerated HS produced less methane than the raw substrate, probably due to the loss of non-structural sugars during maceration.
Collapse
Affiliation(s)
- A Oliva
- Department of Microbiology and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland.
| | - L C Tan
- Department of Microbiology and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| | - S Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - G Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125, Naples, Italy
| | - P N L Lens
- Department of Microbiology and Ryan Institute, National University of Ireland Galway, University Road, H91 TK33, Galway, Ireland
| |
Collapse
|