1
|
Zheng J, Jiang M, Chen Y, Zhang Y, Wei Q, Chen M, Zhang X, Zhang X, Li H. Hollow fiber layout matters the denitrification performance and mechanism of H 2-based membrane biofilm reactor: A comprehensive study of hydrodynamics, bioecology and biokinetics. WATER RESEARCH 2025; 281:123708. [PMID: 40315761 DOI: 10.1016/j.watres.2025.123708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/01/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
As a promising technology for water treatment, the decontamination performance of membrane-biofilm reactor (MBfR) is largely affected by its flow distribution, which regulates the biofilm structure and activity. Herein, we firstly optimized the hydraulic conditions to ameliorate the denitrification performance of H2-based MBfR through a rational design of hollow fiber membrane (HFM) layout. Two MBfRs, assembled by bundled and dispersed modules (termed as B-MBfR and D-MBfR, respectively), were constructed to investigate their process performance and mechanism, from a multi-perspective analysis of flow characteristics, biofilm ecology and microbial kinetics. The results indicated that as the HFM spacing was enlarged from 0 to 4 mm, the shift of flow distribution from bias flow to homogeneous flow occured, leading to the development of annular biofilm and individual biofilms in B-MBfR and D-MBfR, respectively. The superior denitrification flux was attained by D-MBfR instead of B-MBfR (1.1 vs. 0.58 g N/m2·d) in long-term experiments, and so were the denitrification kinetics rates of the former in short-term tests. The biofilms in D-MBfR exhibited the stronger anti-shear capacity over annular biofilm, due to their more uniform distribution of proteins and polysaccharides. Benefiting from the thinner thicknesses of biofilms and narrowed hydrodynamic boundary layer, D-MBfR enabled the greater abundance and metabolic activity of hydrogenotrophic denitrifying bacteria than B-MBfR, which then resulted in the almost full exploitation of H2 and NO3-. The findings of this research can provide important scientific foundation for future design and management of MBfRs.
Collapse
Affiliation(s)
- Junjian Zheng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Minmin Jiang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yuchao Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541006, China.
| | - Yuanyuan Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Qiaoyan Wei
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Mei Chen
- School of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xingran Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541006, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541006, China.
| |
Collapse
|
2
|
Tu Y, Li H, Huo J, Gou L, Wen X, Yu X, Zhang X, Zeng J, Li Y. Disrupting the bacterial language: quorum quenching and its applications. Crit Rev Microbiol 2025:1-15. [PMID: 39973173 DOI: 10.1080/1040841x.2025.2466472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Quorum sensing (QS) is a bacterial communication method closely linked with population density and regulates biofilm formation and the secretion of virulence factors through the release, recognition, and prompt response to small molecule signals. At low cell density, each bacterium produces a low concentration of QS signals that diffuse or are actively transported into the external environment. The accumulated QS signals in the external environment reach a threshold concentration when the bacterial population attains a certain density, enabling effective recognition and interaction of bacterial QS signals with their receptors. This leads to coordinated gene expression and various biological activities across the bacterial population. Targeting the QS system presents a promising strategy to hinder biofilm formation and virulence factor secretion, providing a potential approach to control bacterial growth and reproduction. This study aims to analyze the intercellular mechanisms of quorum quenching (QQ), which focuses on disrupting bacterial signal molecules to keep their concentration below the threshold and preventing the expression of specific pathogenic factors. The applications of QQ in different fields are also reviewed, underscoring its potential as a novel treatment for bacterial infections.
Collapse
Affiliation(s)
- Yeting Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanyu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiachen Huo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaomin Yu
- Department of Emergency Medicine, West China Hospital, Sichuan University/Nursing Key Laboratory of Sichuan Province, West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiaorui Zhang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Bi Y, Dong J, Zhou Y, Zhang M, Chen X, Zhang Y. Application of membrane separation technology in the purification of pharmaceutical components. Prep Biochem Biotechnol 2024; 54:1107-1115. [PMID: 38526323 DOI: 10.1080/10826068.2024.2328673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Traditional Chinese medicine (TCM) is often composed of a variety of natural medicines. Its composition is complex, and many of its components can not be analyzed and identified. The first step in the rational application of TCM is to successfully separate the effective components which is also a great inspiration for the development of new drugs. Among the many separation technologies of TCM, the traditional heating concentration separation technology has high energy consumption and low efficiency. As a new separation technology, membrane separation technology has the characteristics of simple operation, high efficiency, environment-friendly and so on. The separation effect of high molecular weight difference solution is better. The applications of several main membrane separation technologies such as microfiltration, nanofiltration, ultrafiltration and reverse osmosis are reviewed, the methods of restoring membrane flux after membrane fouling are discussed, and their large-scale industrial applications in the future are prospected and summarized.
Collapse
Affiliation(s)
- Yun Bi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyi Dong
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujia Zhou
- Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Manyue Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingying Chen
- Jiaxing Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Wang Z, Liao Y, Yan L, Liao B. Biological performance and membrane fouling of a microalgal-bacterial membrane photobioreactor for wastewater treatment without external aeration and carbonation. ENVIRONMENTAL RESEARCH 2024; 247:118272. [PMID: 38246292 DOI: 10.1016/j.envres.2024.118272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Biological nutrient removal processes involving the use of activated sludge (AS) to treat municipal wastewater normally result in high aeration energy consumption and significant greenhouse gas (GHG) emissions. Therefore, developing cost-efficient and environmentally friendly processes for wastewater treatment is vital. In this work, a novel non-aerated microalgal-bacterial membrane photobioreactor (MB-MPBR) was proposed, and its feasibility for organic contaminant and nutrient removals was evaluated, for the first time. The effects of inoculation ratio (microalgae to bacteria (M/B)) on the biological performance and membrane fouling were systematically investigated. The results showed that 95.9% of the chemical oxygen demand (COD), 74.5% of total nitrogen (TN), 98.5% of NH4+-N and 42.0% of total phosphorus (TP) were removed at an inoculation M/B ratio of 3:2 at steady state, representing a significant improvement compared to the M/B inoculation ratio of 1:3. Additionally, the higher inoculation M/B ratio (3:2) significantly promoted the biomass production owing to the favorable mutual exchange of oxygen and carbon dioxide between microalgae and bacteria. Cake layer formation was the primary fouling mechanism owing to the absence of aeration scouring on the membrane surface. The membrane fouling rate was slightly higher at the higher inoculation ratio (M/B = 3:2) owing to the increased biomass and extracellular polymeric substances (EPS) productions, despite the larger particle size. These results demonstrated that the non-aerated MB-MPBR could achieve superior biological performance, of which the inoculation M/B ratio was of critical importance for the initiation and maintenance of microalgal-bacterial symbiotic system, yet possibly caused severer membrane fouling in the absence of external aeration and carbonation. This study provides a new perspective for further optimizing and applying non-aerated MB-MPBR to enhance municipal wastewater treatment.
Collapse
Affiliation(s)
- Zhaozhao Wang
- College of Civil and Architectural Engineering, North China University of Science and Technology, Tangshan, 063210, PR China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, PR China; Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| | - Yichen Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Lina Yan
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, 063210, PR China
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
5
|
Zhang H, Wang F, Guo Z. The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance. Adv Colloid Interface Sci 2024; 325:103097. [PMID: 38330881 DOI: 10.1016/j.cis.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
With the rapid development of industries, the issue of pollution on Earth has become increasingly severe. This has led to the deterioration of various surfaces, rendering them ineffective for their intended purposes. Examples of such surfaces include oil rigs, seawater intakes, and more. A variety of functional surface techniques have been created to address these issues, including superwetting surfaces, antifouling coatings, nano-polymer composite materials, etc. They primarily exploit the membrane's surface properties and hydration layer to improve the antifouling property. In recent years, biomimetic superwetting surfaces with non-toxic and environmental characteristics have garnered massive attention, greatly aiding in solving the problem of pollution. In this work, a detailed presentation of antifouling superwetting materials was made, including superhydrophobic surface, superhydrophilic surface, and superhydrophilic/underwater superoleophobic surface, along with the antifouling mechanisms. Then, the applications of the superwetting antifouling materials in antifouling domain were addressed in depth.
Collapse
Affiliation(s)
- Huayang Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China
| | - Fengyi Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Wei M, Zhang Y, Wang Y, Liu X, Li X, Zheng X. Employing Atomic Force Microscopy (AFM) for Microscale Investigation of Interfaces and Interactions in Membrane Fouling Processes: New Perspectives and Prospects. MEMBRANES 2024; 14:35. [PMID: 38392662 PMCID: PMC10890076 DOI: 10.3390/membranes14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Membrane fouling presents a significant challenge in the treatment of wastewater. Several detection methods have been used to interpret membrane fouling processes. Compared with other analysis and detection methods, atomic force microscopy (AFM) is widely used because of its advantages in liquid-phase in situ 3D imaging, ability to measure interactive forces, and mild testing conditions. Although AFM has been widely used in the study of membrane fouling, the current literature has not fully explored its potential. This review aims to uncover and provide a new perspective on the application of AFM technology in future studies on membrane fouling. Initially, a rigorous review was conducted on the morphology, roughness, and interaction forces of AFM in situ characterization of membranes and foulants. Then, the application of AFM in the process of changing membrane fouling factors was reviewed based on its in situ measurement capability, and it was found that changes in ionic conditions, pH, voltage, and even time can cause changes in membrane fouling morphology and forces. Existing membrane fouling models are then discussed, and the role of AFM in predicting and testing these models is presented. Finally, the potential of the improved AFM techniques to be applied in the field of membrane fouling has been underestimated. In this paper, we have fully elucidated the potentials of the improved AFM techniques to be applied in the process of membrane fouling, and we have presented the current challenges and the directions for the future development in an attempt to provide new insights into this field.
Collapse
Affiliation(s)
- Mohan Wei
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yaozhong Zhang
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Yifan Wang
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaoping Liu
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
- Yulin Coal Chemical Waste Resource Utilization and Low Carbon Environmental Protection Engineering Technology Research Center, Yulin High-tech Zone Yuheng No. 1 Industrial Sewage Treatment Co., Ltd., Yulin 719000, China
| | - Xiaoliang Li
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xing Zheng
- State Key Laboratory of Eco-hydraulics in North West Arid Region, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
7
|
Luo K, Chen L, Zhao Y, Peng G, Chen Z, Chen Q. Transcriptomics uncover the response of an aerobic denitrifying bacteria to zinc oxide nanoparticles exposure. ENVIRONMENTAL TECHNOLOGY 2023; 44:3685-3697. [PMID: 35466863 DOI: 10.1080/09593330.2022.2069517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) show adverse impacts on aerobic denitrifying bacteria, little is known about the response of these bacteria to ZnO NPs exposure at cellular level. This study assessed the multiple responses of Pseudomonas aeruginosa PCN-2 under ZnO NPs exposure. We demonstrated that ZnO NPs exposure could inhibit the intracellular metabolism and stimulate the antioxidant defence capability of PCN-2. At lower exposure concentration (5 mg/L), exogenous ROS generated and resulted in the inhibition of pyruvate metabolism and citrate cycle, which caused deficient energy for aerobic denitrification. At higher concentrations (50 mg/L), endogenous ROS additionally generated and triggered to stronger down-regulation of oxidative phosphorylation, which caused suppressed electron transfers for aerobic denitrification. Meanwhile, ZnO NPs exposure promoted EPS production and biofilm formation, and antioxidases was especially particularly stimulated at higher concentration. Our findings are significant for understanding of microbial bacterial susceptibility, tolerance and resistance under the exposure of ZnO NPs.
Collapse
Affiliation(s)
- Kongyan Luo
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
- College of Environment and Resources, Dalian Minzu University, Dalian, PR People's Republic of China
| | - Long Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| | - Yuanyi Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| | - Guyu Peng
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| | - Zhaobo Chen
- College of Environment and Resources, Dalian Minzu University, Dalian, PR People's Republic of China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, PR People's Republic of China
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, Beijing, People's Republic of China
| |
Collapse
|
8
|
Belibagli P, Isik Z, Bouras HD, Arslan H, Dizge N. A combined process of chemical precipitation and aerobic membrane bioreactor for treatment of citric acid wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118259. [PMID: 37311349 DOI: 10.1016/j.jenvman.2023.118259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
The wastewater generated from citric acid production has a high organic loading content. The treatment and reuse of citric acid wastewater with high organic loading become extremely important. In this study, the performance of calcium hydroxide (Ca(OH)2) precipitation as a low-cost and environmentally friendly pre-treatment method and aerobic membrane bioreactor (MBR) combined treatment system was investigated for the treatment of citric acid (CA) wastewater. At the first step, optimization parameters such as agitation speed (100, 150, 200 rpm), temperature (30, 50, 70 °C), and reaction time (2, 4, 6 h) for Ca(OH)2 precipitation as a pre-treatment method were investigated using response surface methodology (RSM) to achieve maximum chemical oxygen demand (COD) removal. Experimental sets were designed using Box-Behnken Design. As a result of pre-treatment with Ca(OH)2 precipitation, a COD removal efficiency of 97.3% was obtained. Then, pre-treated CA wastewater was fed continuously to the MBR process for 10 days, which was the second stage of the combined process. As a result of the MBR process, 92.0% COD removal efficiency was obtained for 24 h HRT and 10 days SRT. In total, 99.8% COD removal efficiency was obtained when combined process was used and COD concentration decreased from 52,000-114 mg/L. For the treatment and reuse of wastewater from citric acid production, Ca(OH)2 precipitation and MBR combined treatment systems demonstrated an effective strategy.
Collapse
Affiliation(s)
- Pinar Belibagli
- Tarsus University, Department of Energy Systems Engineering, 33400, Tarsus, Turkey
| | - Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Hadj Daoud Bouras
- Département d'Automatique et Électromécanique, Faculté des Sciences et de la Technologie, Université de Ghardaia, Algeria; Laboratoire d'Etude et de Développement des Techniques de Traitement et d'Épuration des Eaux et de Gestion Environnementale (LEDTEGE), Ecole Normale Supérieure de Kouba, Vieux-Kouba, Alger, Algeria
| | - Hudaverdi Arslan
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey.
| |
Collapse
|
9
|
Ren Z, Guo H, Jin H, Wang Y, Zhang G, Zhou J, Qu G, Sun Q, Wang T. P, N, and C-related functional genes in SBR system promoted antibiotics resistance gene transmission under polystyrene microplastics stress. WATER RESEARCH 2023; 235:119884. [PMID: 36958218 DOI: 10.1016/j.watres.2023.119884] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Wastewater treatment plants (WWTPs) are important sinks of microplastics (MPs) and antibiotics resistance genes (ARGs). Information regarding connections between functional modules of WWTPs and spread of ARGs under MPs stress is still lacking. In this study, correlations between P-, N-, and C-related functional genes and ARGs in a sequencing batch reactor (SBR) system were evaluated under polystyrene (PS) MPs stress. Total P and chemical oxygen demand (COD) in effluent showed no significant changes under 0.5-50 mg L-1 PS MPs stress within 32 cycle treatment periods of SBR, while 0.5 mg L-1 PS MPs affected the N cycling process. PS MPs (0.5-50 mg L-1) promoted the richness and diversity of microbial community in SBR, and the denitrification process was exuberant. PS MPs with a low dosage (0.5-5 mg L-1) enhanced secretion of extracellular polymeric substances and promoted expression levels of functional genes related to C fixation, C degradation, P cycling, and N cycling. Simultaneously, aac(3)-II, blaTEM-1, and tetW increased by 27.13%, 38.36%, and 9.57% under low dosages of PS MPs stress; more importantly, the total absolute abundance of intI1 nearly doubled. 78.4% of these P-, N-, and C-related functional genes were positively correlated with intI1, thus favoring transmission of ARGs. This study firstly disclosed the underlying correlations between functional modules of WWTPs and spread of ARGs under MPs stress.
Collapse
Affiliation(s)
- Zhiyin Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hekai Jin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Qiuhong Sun
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Siagian UWR, Aryanti PTP, Widiasa IN, Khoiruddin K, Wardani AK, Ting YP, Wenten IG. Performance and economic evaluation of a pilot scale embedded ends-free membrane bioreactor (EEF-MBR). Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12551-y. [PMID: 37178308 DOI: 10.1007/s00253-023-12551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
In this work, an embedded ends-free membrane bioreactor (EEF-MBR) has been developed to overcome the fouling problem. The EEF-MBR unit has a novel configuration where a bed of granular activated carbon is placed in the bioreactor tank and fluidized by the aeration system. The performance of pilot-scale EEF-MBR was assessed based on flux and selectivity over 140 h. The permeate flux fluctuated between 2 and 10 L.m-2.h-1 under operating pressure of 0.07-0.2 bar when EEF-MBR was used to treat wastewater containing high organic matter. The COD removal efficiency was more than 99% after 1 h of operating time. Results from the pilot-scale performance were then used to design a large-scale EEF-MBR with 1200 m3.day-1 capacity. Economic analysis showed that this new MBR configuration was cost-effective when the permeate flux was set at 10 L.m-2.h-1. The estimated additional cost for the large-scale wastewater treatment was about 0.25 US$.m-3 with a payback period of 3 years. KEY POINTS: • Performance of new MBR configuration, EEF-MBR, was assessed in long term operation. • EEF-MBR shows high COD removal and relatively stable flux. • Cost estimation of large scale shows the cost effective EEF-MBR application.
Collapse
Affiliation(s)
- Utjok Welo Risma Siagian
- Department of Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | | | - I Nyoman Widiasa
- Chemical Engineering Department, Universitas Diponegoro, Jl. Prof Sudarto-Tembalang, Semarang, 50239, Indonesia
| | - Khoiruddin Khoiruddin
- Chemical Engineering Department, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Anita Kusuma Wardani
- Chemical Engineering Department, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Yen Peng Ting
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - I Gede Wenten
- Chemical Engineering Department, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
- Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
| |
Collapse
|
11
|
Matejczyk M, Ofman P, Wiater J, Świsłocka R, Kondzior P, Lewandowski W. Determination of the Effect of Wastewater on the Biological Activity of Mixtures of Fluoxetine and Its Metabolite Norfluoxetine with Nalidixic and Caffeic Acids with Use of E. coli Microbial Bioindicator Strains. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093600. [PMID: 37176483 PMCID: PMC10180322 DOI: 10.3390/ma16093600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
In the present work, the conducted research concerned the determination of the toxicity and oxidative stress generation of the antidepressant fluoxetine (FLU), its metabolite nor-fluoxetine (Nor-FLU), the antibiotic nalidixic acid (NA), caffeic acid (CA) and their mixtures in three different environments: microbial medium (MM), raw wastewaters (RW) and treated wastewaters (TW). We evaluated the following parameters: E. coli cell viability, toxicity and protein damage, sodA promoter induction and ROS generation. It was found that FLU, Nor-FLU, NA, CA and their mixtures are toxic and they have the potency to generate oxidative stress in E. coli strains. We also detected that the wastewater, in comparison to the microbial medium, had an influence on the toxic activity and oxidative stress synthesis of the tested chemicals and their mixtures. Regardless of the environment under study, the strongest toxic activity and oxidative stress generation were detected after bacterial incubation with NA at a concentration of 1 mg/dm3 and the mixture of FLU (1 mg/dm3) with Nor-FLU (0.1 mg/dm3) and with NA (0.1 mg/dm3). The ROS synthesis and sodA promoter induction suggest that, in the case of the examined compounds and their mixtures, oxidative stress is the mechanism of toxicity. The analysis of the types of interactions among the substances constituting the mixtures in the wastewater revealed synergism, potentiation and antagonism.
Collapse
Affiliation(s)
- Marzena Matejczyk
- Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Piotr Ofman
- Department of Technology in Environmental Engineering, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Józefa Wiater
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Renata Świsłocka
- Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Paweł Kondzior
- Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| | - Włodzimierz Lewandowski
- Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland
| |
Collapse
|
12
|
Sengar A, Vijayanandan A. Fate and removal of iodinated X-ray contrast media in membrane bioreactor: Microbial dynamics and effects of different operational parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161827. [PMID: 36708825 DOI: 10.1016/j.scitotenv.2023.161827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Iodinated X-ray contrast media (ICM) are mainly used in medical sector, and their presence in environmental waters is a cause of concern as they are capable of forming highly toxic iodinated disinfection byproducts. In the present study, the removal mechanisms of the three ICM- iohexol, iopromide, and iopamidol were elucidated in a lab-scale aerobic membrane bioreactor (MBR). At steady-state operation (solids retention time (SRT)- 70 days, organic loading rate (OLR)- 0.80 KgCOD/m3-day, nitrogen loading rate (NLR)- 0.08 KgNH4-N/m3-day, hydraulic retention time (HRT)- 12 h), the average removal of iohexol and iopromide was found to be 34.9 and 45.2 %, respectively, whereas iopamidol proved to be highly recalcitrant in aerobic conditions of the MBR (removal <10 % in all phases of the MBR operation). Further, through batch kinetic studies and mass balance analysis, it was observed that ICM were primarily biotransformed in the MBR system and biosorption (Kd < 10 L/Kg) was negligible. The biodegradation rate coefficient values (Kbiol) of the ICM were found to be <0.65 L/g-d which indicate that biotransformation rate of ICM was slow. Increased OLR (1.60 KgCOD/m3-day) and reduced SRT (20 days) were found to negatively affect the removal of the ICM. Further, the removal of ICM was found to depend on its initial concentration, and the increment in the ammonium loading (0.16 KgNH4-N/m3-day) did not favor its removal. The dosing of ICM altered the microbial dynamics of the mixed liquor and reduced the microbial diversity and richness. Bdellovibrio, Zoogloea, and bacteria belonging to TM7-3 class, Cryomorphaceae and Hyphomonadaceae families may contribute in ICM biotransformation.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi (IIT Delhi), New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi (IIT Delhi), New Delhi 110016, India.
| |
Collapse
|
13
|
khalidi-idrissi A, Madinzi A, Anouzla A, Pala A, Mouhir L, Kadmi Y, Souabi S. Recent advances in the biological treatment of wastewater rich in emerging pollutants produced by pharmaceutical industrial discharges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-22. [PMID: 37360558 PMCID: PMC10019435 DOI: 10.1007/s13762-023-04867-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
Pharmaceuticals and personal care products present potential risks to human health and the environment. In particular, wastewater treatment plants often detect emerging pollutants that disrupt biological treatment. The activated sludge process is a traditional biological method with a lower capital cost and limited operating requirements than more advanced treatment methods. In addition, the membrane bioreactor combines a membrane module and a bioreactor, widely used as an advanced method for treating pharmaceutical wastewater with good pollution performance. Indeed, the fouling of the membrane remains a major problem in this process. In addition, anaerobic membrane bioreactors can treat complex pharmaceutical waste while recovering energy and producing nutrient-rich wastewater for irrigation. Wastewater characterizations have shown that wastewater's high organic matter content facilitates the selection of low-cost, low-nutrient, low-surface-area, and effective anaerobic methods for drug degradation and reduces pollution. However, to improve the biological treatment, researchers have turned to hybrid processes in which all physical, chemical, and biological treatment methods are integrated to remove various emerging contaminants effectively. Hybrid systems can generate bioenergy, which helps reduce the operating costs of the pharmaceutical waste treatment system. To find the most effective treatment technique for our research, this work lists the different biological treatment techniques cited in the literature, such as activated sludge, membrane bioreactor, anaerobic treatment, and hybrid treatment, combining physicochemical and biological techniques.
Collapse
Affiliation(s)
- A. khalidi-idrissi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Madinzi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Anouzla
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - A. Pala
- Environmental Research and Development Center (CEVMER), Dokuz Eylul University, Izmir, Turkey
| | - L. Mouhir
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| | - Y. Kadmi
- CNRS, UMR 8516 - LASIR, University Lille, 59000 Lille, France
| | - S. Souabi
- Laboratory of Process Engineering and Environment, Faculty of Science and Technology, Mohammedia, University Hassan II of Casablanca, BP. 146, Mohammedia, Morocco
| |
Collapse
|
14
|
Biofouling in Membrane Bioreactors: Mechanism, Interactions and Possible Mitigation Using Biosurfactants. Appl Biochem Biotechnol 2023; 195:2114-2133. [PMID: 36385366 DOI: 10.1007/s12010-022-04261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Biofouling roots damage to membrane bioreactors (MBRs), such as physical, functional and organisational changes and even therefore clogging of the membrane pores and successive microbial degradation. Further, it blocks the pores, results into a biomass cake and in due course reduces the membrane flux and leads to an increase in the operational costs. MBR fouling contributed to the rise in transmembrane pressure (TMP) and decrease in permeate flux (in case of constant pressure operation mode). Chemical surfactants adopted for the cleaning of membrane surfaces have certain disadvantages such as toxicity manifestations, damage to the membranes and high CMC concentrations. Biosurfactant surfactants have attained increasing interest due to their low toxicity, biodegradability, stability to extreme environmental conditions such as temperatures, pH and tolerance to salinity. The biosurfactants trapped the foulants via micelle formation, which distresses hydrophobic interactions amongst bacteria and the surface. Rhamnolipids as an anionic biosurfactant pose a significant interfacial potential and have affinity to bind organic matter. The present review discusses the problem of biofouling in MBRs, type and interactions of foulants involved and also highlights the mechanisms of biosurfactant cleaning, effect of different parameters, effect of concentration, TMP, flux recovery, permeability, mitigation practices and challenges.
Collapse
|
15
|
Ran N, Sharon-Gojman R, Larsson S, Gillor O, Mauter MS, Herzberg M. Unraveling pH Effects on Ultrafiltration Membrane Fouling by Extracellular Polymeric Substances: Adsorption and Conformation Analyzed with Localized Surface Plasmon Resonance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14763-14773. [PMID: 36197031 DOI: 10.1021/acs.est.2c03085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Extracellular polymeric substances (EPSs) can conform and orient on the surface according to the applied aquatic conditions. While pH elevation usually removes EPSs from membranes, small changes in pH can change the adsorbed EPS conformation and orientation, resulting in a decrease in membrane permeability. Accordingly, EPS layers were tested with localized surface plasmon resonance (LSPR) sensing and quartz crystal microbalance with dissipation monitoring (QCM-D) using a hybrid sensor. A novel membrane-mimetic hybrid QCM-D-LSPR sensor was designed to indicate both "dry" mass and mechanical load ("wet" mass) of the adsorbed EPS. The effect of pH on the EPS layer's viscoelastic properties and hydrated thickness analyzed by QCM-D corroborates with the shift in EPS areal concentration, ΓS, and the associated EPS conformation, analyzed by LSPR. As pH elevates, the processes of (i) elevation in EPS layer's thickness (QCM-D) and (ii) decrease in the EPS areal density, ΓS (LSPR), provide a clear indication for changes in EPS conformation, which decrease the effective ultrafiltration (UF) membrane pore diameter. This decrease in the pore diameter together with the increase in surface hydrophobicity elevates UF membrane hydraulic resistance.
Collapse
Affiliation(s)
- Noya Ran
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel
| | - Revital Sharon-Gojman
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel
| | - Sara Larsson
- Insplorion AB, Arvid Wallgrens backe 20, 413 46 Göteborg, Sweden
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel
| | - Meagan S Mauter
- Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben Gurion, Israel
- Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
16
|
Zhou L, Lai Y, Zeng R, Zhao B, Jian Y, Ou P, Zhang W, Ng HY, Zhuang WQ. Core carbon fixation pathways associated with cake layer development in an anoxic-oxic biofilm-membrane bioreactor treating textile wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155483. [PMID: 35483462 DOI: 10.1016/j.scitotenv.2022.155483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Microbial carbon fixation pathways have not yet been adequately understood for their role in membrane case layer formation processes. Carbon fixation bacteria can play critical roles in either causing or enhancing cake layer formation in some autotrophic-prone anoxic conditions, such as sulfur-cycling conditions. Understanding the microbes capable of carbon fixation can potentially guide the design of membrane biofouling mitigation strategies in scientific ways. Thus, we used meta-omics methods to query carbon fixation pathways in the cake layers of a full-scale anoxic-oxic biofilm-MBR system treating textile wastewater in this study. Based on the wastewater constituents and other properties, such as anoxic conditions, sulfide-reducing and sulfur-oxidizing bacteria could co-exist in the membrane unit. In addition, low-light radiation conditions could also happen to the membrane unit. However, we could not quantify the light intensity or total energy input accurately because the whole experimental setup was a full-scale system. Potentially complete carbon fixation pathways in the cake layer included the Calvin-Benson-Bassham cycle, Wood-Ljungdahl pathway, and the 3-hydroxypropionate bicycle. We discovered that using aeration could effectively inhibit carbon fixation, which resulted in mitigating membrane cake layer development. However, the aeration resulted in the 3-hydroxypropionate bicycle pathway, presumably used by aerobic sulfur-oxidizing prokaryotes, to become a more abundant carbon fixation pathway in the cake layer under aerobic conditions.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yongzhou Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rongjie Zeng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yixin Jian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pingxiang Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - How Yong Ng
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
17
|
Azuma T, Nakano T, Koizumi R, Matsunaga N, Ohmagari N, Hayashi T. Evaluation of the Correspondence between the Concentration of Antimicrobials Entering Sewage Treatment Plant Influent and the Predicted Concentration of Antimicrobials Using Annual Sales, Shipping, and Prescriptions Data. Antibiotics (Basel) 2022; 11:472. [PMID: 35453223 PMCID: PMC9027251 DOI: 10.3390/antibiotics11040472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
The accuracy and correspondence between the measured concentrations from the survey and predicted concentrations on the basis of the three types of statistical antimicrobial use in Japan was evaluated. A monitoring survey of ten representative antimicrobials: ampicillin (APL), cefdinir (CDN), cefpodoxime proxetil (CPXP), ciprofloxacin (CFX), clarithromycin (CTM), doxycycline (DCL), levofloxacin (LFX), minocycline (MCL), tetracycline (TCL), and vancomycin (VMC), in the influent of sewage treatment plant (STP) located in urban areas of Japan, was conducted. Then, the measured values were verified in comparison with the predicted values estimated from the shipping volumes, sales volumes, and prescription volumes based on the National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB). The results indicate that the correspondence ratios between the predicted concentrations calculated on the basis of shipping and NDB volumes and the measured concentrations (predicted concentration/measured concentration) generally agreed for the detected concentration of antimicrobials in the STP influent. The correspondence ratio on the basis of shipping volume was, for CFX, 0.1; CTM, 2.9; LFX, 0.5; MCL, 1.9; and VMC, 1.7, and on the basis of NDB volume the measured concentration was CFX, 0.1; CTM, 3.7; DCL, 0.4; LFX, 0.7; MCL, 1.9; TCL, 0.6; and VMC, 1.6. To our knowledge, this is the first report to evaluate the accuracy of predicted concentrations based on sales, shipping, NDB statistics and measured concentrations for antimicrobials in the STP influent.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Environment and Health Sciences, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan;
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan;
| | - Ryuji Koizumi
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tetsuya Hayashi
- Department of Environment and Health Sciences, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan;
- Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, Osaka 559-0033, Japan
| |
Collapse
|