1
|
Wang Y, Cui Y, Li J, Xu N, Shi T, Sun Y, Zhang C. Glyphosate hormesis stimulates tomato (Solanum lycopersicum L.) plant growth and enhances tolerance against environmental abiotic stress by triggering nonphotochemical quenching. PEST MANAGEMENT SCIENCE 2024; 80:3628-3639. [PMID: 38456569 DOI: 10.1002/ps.8067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Glyphosate is the most widely applied herbicide in the world. Hormesis caused by low glyphosate doses has been widely documented in many plant species. However, the specific adaptative mechanism of plants responding to glyphosate hormesis stimulation remains unclear. This study focused on the biphasic relationship between glyphosate dose and tomato plant growth, and how glyphosate hormesis stimulates plant growth and enhances tolerance to environmental stress. RESULTS We constructed a hormesis model to describe the biphasic relationship with a maximal stimulation (MAX) of 162% above control by glyphosate at 0.063 g ha-1. Low-dose glyphosate increased photosynthetic pigment contents and improve photosynthetic efficiency, leading to plant growth stimulation. We also found that glyphosate hormesis enhanced plant tolerance to diuron (DCMU; a representative photosynthesis inhibitor) by triggering the nonphotochemical chlorophyll fluorescence quenching (NPQ) reaction to dissipate excess energy stress from photosystem II (PSII). Transcriptomic analysis and quantitative real-time polymerase chain reaction results revealed that the photosynthesis-antenna proteins pathway was the most sensitive to glyphosate hormesis, and PsbS (encoding photosystem II subunit S), ZEP (encoding zeaxanthin epoxidase) and VDE (encoding violaxanthin de-epoxidase) involved in NPQ played crucial roles in the plant response to glyphosate hormesis. CONCLUSION These results provide novel insights into the mechanisms of plant hormesis and is meaningful to the application of glyphosate hormesis in agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuru Wang
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Yidi Cui
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Jing Li
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Nuo Xu
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| | - Taozhong Shi
- Key Laboratory of Agri-Food Safety of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Yang Sun
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chao Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
2
|
Jardim Amorim D, Corrêa Vieira AM, Fidelis CR, Camilo Dos Santos JC, de Almeida Silva M, Garcia Borges Demétrio C. Modeling hormesis using multivariate nonlinear regression in plant biology: A comprehensive approach to understanding dose-response relationships. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167041. [PMID: 37730055 DOI: 10.1016/j.scitotenv.2023.167041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
For over a century, ecotoxicological studies have reported the occurrence of hormesis as a significant phenomenon in many areas of science. In plant biology, hormesis research focuses on measuring morphological, physiological, biochemical, and productivity changes in plants exposed to low doses of herbicides. These studies involve multiple features that are often correlated. However, the multivariate aspect and interdependencies among components of a plant system are not considered in the adopted modeling framework. Therefore, a multivariate nonlinear modeling approach for hormesis is proposed, where information regarding correlations among response variables is taken into account through a variance-covariance matrix obtained from univariate residuals. The proposed methodology is evaluated through a Monte Carlo simulation study and an application to experimental data from safflower (Carthamus tinctorius L.) cultivation. In the simulation study, the multivariate model outperformed the univariate models, exhibiting higher precision, lower bias, and greater accuracy in parameter estimation. These results were also confirmed in the analysis of the experimental data. Using the delta method, mean doses of interest can be derived along with their associated standard errors. This is the first study to address hormesis in a multivariate context, allowing for a better understanding of the biphasic dose-response relationships by considering the interrelationships among various measured characteristics in the plant system, leading to more precise parameter estimates.
Collapse
Affiliation(s)
- Deoclecio Jardim Amorim
- Universidade de Sao Paulo, ESALQ, Departamento de Ciências Exatas, Piracicaba 13418-900, Brazil
| | - Afrânio Márcio Corrêa Vieira
- Universidade de Sao Paulo, ESALQ, Departamento de Ciências Exatas, Piracicaba 13418-900, Brazil; Syngenta Crop Protection AG, Global Biological Data Analytics, 4058 Basel, Switzerland
| | | | - Jania Claudia Camilo Dos Santos
- School of Agricultural Sciences, Laboratory of Ecophysiology Applied to Agriculture, Department of Crop Production, São Paulo State University (UNESP), 18610-034 Botucatu, Brazil
| | - Marcelo de Almeida Silva
- School of Agricultural Sciences, Laboratory of Ecophysiology Applied to Agriculture, Department of Crop Production, São Paulo State University (UNESP), 18610-034 Botucatu, Brazil.
| | | |
Collapse
|
3
|
Traxler C, Gaines TA, Küpper A, Luemmen P, Dayan FE. The nexus between reactive oxygen species and the mechanism of action of herbicides. J Biol Chem 2023; 299:105267. [PMID: 37734554 PMCID: PMC10591016 DOI: 10.1016/j.jbc.2023.105267] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Herbicides are small molecules that act by inhibiting specific molecular target sites within primary plant metabolic pathways resulting in catastrophic and lethal consequences. The stress induced by herbicides generates reactive oxygen species (ROS), but little is known about the nexus between each herbicide mode of action (MoA) and their respective ability to induce ROS formation. Indeed, some herbicides cause dramatic surges in ROS levels as part of their primary MoA, whereas other herbicides may generate some ROS as a secondary effect of the stress they imposed on plants. In this review, we discuss the types of ROS and their respective reactivity and describe their involvement for each known MoA based on the new Herbicide Resistance Action Committee classification.
Collapse
Affiliation(s)
- Catherine Traxler
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Anita Küpper
- Plant Biotechnology Division, Bayer CropScience, Chesterfield, Missouri, USA
| | - Peter Luemmen
- Research & Development Division, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
4
|
Godínez-Mendoza PL, Rico-Chávez AK, Ferrusquía-Jimenez NI, Carbajal-Valenzuela IA, Villagómez-Aranda AL, Torres-Pacheco I, Guevara-González RG. Plant hormesis: Revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164883. [PMID: 37348730 DOI: 10.1016/j.scitotenv.2023.164883] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Current research in basic and applied knowledge of plant science has aimed to unravel the role of the interaction between environmental factors and the genome in the physiology of plants to confer the ability to overcome challenges in a climate change scenario. Evidence shows that factors causing environmental stress (stressors), whether of biological, chemical, or physical origin, induce eustressing or distressing effects in plants depending on the dose. The latter suggests the induction of the "hormesis" phenomenon. Sustainable crop production requires a better understanding of hormesis, its basic concepts, and the input variables to make its management feasible. This implies that acknowledging hormesis in plant research could allow specifying beneficial effects to effectively manage environmental stressors according to cultivation goals. Several factors have been useful in this regard, which at low doses show beneficial eustressing effects (biostimulant/elicitor), while at higher doses, they show distressing toxic effects. These insights highlight biostimulants/elicitors as tools to be included in integrated crop management strategies for reaching sustainability in plant science and agricultural studies. In addition, compelling evidence on the inheritance of elicited traits in plants unfolds the possibility of implementing stressors as a tool in plant breeding.
Collapse
Affiliation(s)
- Pablo L Godínez-Mendoza
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Amanda K Rico-Chávez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Noelia I Ferrusquía-Jimenez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ireri A Carbajal-Valenzuela
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ana L Villagómez-Aranda
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Irineo Torres-Pacheco
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| | - Ramon G Guevara-González
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| |
Collapse
|
5
|
Costa RN, Bevilaqua NDC, Krenchinski FH, Giovanelli BF, Pereira VGC, Velini ED, Carbonari CA. Hormetic Effect of Glyphosate on the Morphology, Physiology and Metabolism of Coffee Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2249. [PMID: 37375876 DOI: 10.3390/plants12122249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Glyphosate is a nonselective herbicide of systemic action that inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, thus compromising amino acid production and consequently the growth and development of susceptible plants. The objective of this study was to evaluate the hormetic effect of glyphosate on the morphology, physiology, and biochemistry of coffee plants. Coffee seedlings (Coffea arabica cv Catuaí Vermelho IAC-144) were transplanted into pots filled with a mixture of soil and substrate and subjected to ten doses of glyphosate: 0, 11.25, 22.5, 45, 90, 180, 360, 720, 1440, and 2880 g acid equivalent (ae) ha-1. Evaluations were performed using the morphological, physiological, and biochemical variables. Data analysis for the confirmation of hormesis occurred with the application of mathematical models. The hormetic effect of glyphosate on coffee plant morphology was determined by the variables plant height, number of leaves, leaf area, and leaf, stem, and total dry mass. Doses from 14.5 to 30 g ae ha-1 caused the highest stimulation. In the physiological analyses, the highest stimulation was observed upon CO2 assimilation, transpiration, stomatal conductance, carboxylation efficiency, intrinsic water use efficiency, electron transport rate, and photochemical efficiency of photosystem II at doses ranging from 4.4 to 55 g ae ha-1. The biochemical analyses revealed significant increases in the concentrations of quinic acid, salicylic acid, caffeic acid, and coumaric acid, with maximum stimulation at doses between 3 and 140 g ae ha-1. Thus, the application of low doses of glyphosate has positive effects on the morphology, physiology, and biochemistry of coffee plants.
Collapse
Affiliation(s)
- Renato Nunes Costa
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Natalia da Cunha Bevilaqua
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Fábio Henrique Krenchinski
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Bruno Flaibam Giovanelli
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Vinicius Gabriel Caneppele Pereira
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Edivaldo Domingues Velini
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| | - Caio Antonio Carbonari
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (Universidade "Júlio de Mesquita Filho" UNESP), Botucatu 18610-034, SP, Brazil
| |
Collapse
|
6
|
Agathokleous E, Moore MN, Calabrese EJ. Environmental hormesis: A tribute to Anthony Stebbing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154996. [PMID: 35417830 DOI: 10.1016/j.scitotenv.2022.154996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Michael N Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, UK; Plymouth Marine Laboratory, Plymouth, Devon, UK; School of Biological & Marine Sciences, University of Plymouth, Plymouth, UK
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Agathokleous E, Barceló D, Rinklebe J, Sonne C, Calabrese EJ, Koike T. Hormesis induced by silver iodide, hydrocarbons, microplastics, pesticides, and pharmaceuticals: Implications for agroforestry ecosystems health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153116. [PMID: 35063521 DOI: 10.1016/j.scitotenv.2022.153116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Increasing amounts of silver iodide (AgI) in the environment are expected because of the recent massive expansion of weather modification programs. Concurrently, pharmaceuticals, microplastics, hydrocarbons, and pesticides in terrestrial ecosystems continue contaminating forests and agroforests. Our review supports that AgI induces hormesis, a biphasic dose response characterized by often beneficial low-dose responses and toxic high-dose effects, which adds to the evidence for pharmaceuticals, microplastics, hydrocarbons, and pesticides induced hormesis in numerous species. Doses smaller than the no-observed-adverse-effect-level (NOAEL) positively affect defense physiology, growth, biomass, yields, survival, lifespan, and reproduction. They also lead to negative or undesirable outcomes, including stimulation of pathogenic microbes, pest insects, and weeds with enhanced resistance to drugs and potential negative multi- or trans-generational effects. Such sub-NOAEL effects perplex terrestrial ecosystems managements and may compromise combating outbreaks of disease vectors that can threaten not only forest and agroforestry health but also sensitive human subpopulations living in remote forested areas.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003 Girona, Spain
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Takayoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| |
Collapse
|
8
|
Belz RG, Duke SO. Modelling biphasic hormetic dose responses to predict sub-NOAEL effects using plant biology as an example. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
|