1
|
Vasiliev D, Hazlett R, Hutchinson KL, Bornmalm L. Light at the end of the tunnel: Innovative opportunities for saving tropical biodiversity. AMBIO 2024; 53:702-717. [PMID: 38353913 PMCID: PMC10992326 DOI: 10.1007/s13280-023-01970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 04/04/2024]
Abstract
The expansion of roads into wilderness areas and biodiversity hotspots in the Global South seems inevitable and is predicted to bring about significant biodiversity loss. Even so, existing widespread strategies aiming to mitigate the direct and indirect impacts of roads on the environment have been of limited effectiveness. These tactics, including construction of fencing, wildlife crossings on paved roads, and establishment of protected areas along the roads, are unlikely to be sufficient for protecting diverse species assemblages from roadkill, habitat fragmentation, and anthropogenic activity in tropics. This indicates the need for integration of more ambitious approaches into the conservation toolkit, such as the constructing tunnels, covered ways, and elevated roads. Although these tools could significantly support conservation efforts to save tropical biodiversity, to date, they are rarely considered. Here, we discuss factors which determine the need for application of these approaches in the Global South. We highlight the often-overlooked long-term benefits associated with the application of the proposed tools. We also discuss the potential challenges and risks, and the ways to minimise them. Hopefully this article will encourage practitioners to integrate these strategies into conservation toolkits and allow policy-makers and investors to make informed decisions on sustainable road infrastructure development in the Global South.
Collapse
Affiliation(s)
- Denis Vasiliev
- Turiba University, 68 Graudu Street, Riga, 1030, Latvia.
| | - Richard Hazlett
- Pomona College, 333 N College Way, Claremont, CA, 91711, USA
| | | | - Lennart Bornmalm
- University of Gothenburg, Universitetsplatsen 1, 405 30, Göteborg, Sweden
| |
Collapse
|
2
|
Behzad HM, Arif M, Duan S, Kavousi A, Cao M, Liu J, Jiang Y. Seasonal variations in water uptake and transpiration for plants in a karst critical zone in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160424. [PMID: 36436637 DOI: 10.1016/j.scitotenv.2022.160424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Despite substantial drought conditions in the karst critical zone (KCZ), the KCZ landscapes are often covered with forest woody plants. However, it is not well understood how these plants balance water supply and demand to survive in such a water-limited environment. This study investigated the water uptake and transpiration relationships of four coexisting woody species in a subtropical karst forest ecosystem using measurements of microclimate, soil moisture, stable isotopes (δ18O, δ2H, and δ13C), intrinsic water-use efficiency (WUEi), sap flow, and rooting depth. The focus was on identifying differences within- and between-species across soil- and rock-dominated habitats (SDH and RDH) during the rainy growing season (September 2017) and dry season (February 2018). Species across both habitats tended to have higher transpiration with lower WUEi during the rainy season and lower transpiration with higher WUEi during the dry season. Compared to those in the SDH, species in the RDH showed lower transpiration with higher WUEi in both seasons. The dominant water sources were soil water and rainwater for supporting rainy-season transpiration in the SDH and RDH, respectively, and groundwater was the main water source for supporting dry-season transpiration in both habitats. A clear ecohydrological niche differentiation was also revealed among species. Across both habitats, shallower-rooted species with higher soil-water uptake, compared to deeper-rooted species with higher groundwater uptake, showed higher transpiration and lower WUEi during the rainy season and vice versa during the dry season. This study provides integrated insights into how forest woody plants in the KCZ regulate transpiration and WUEi in response to drought stress through interactions with seasonal water sources in the environment.
Collapse
Affiliation(s)
- Hamid M Behzad
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China
| | - Shihui Duan
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Alireza Kavousi
- Institute of Groundwater Management, Technische Universität Dresden, 01069 Dresden, Germany
| | - Min Cao
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China; School of Earth Sciences, Yunnan University, 650500, China
| | - Jiuchan Liu
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Yongjun Jiang
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Arif M, Jiajia L, Dongdong D, Xinrui H, Qianwen G, Fan Y, Songlin Z, Changxiao L. Effect of topographical features on hydrologically connected riparian landscapes across different land-use patterns in colossal dams and reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158131. [PMID: 35988615 DOI: 10.1016/j.scitotenv.2022.158131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Topographic features impact the riparian landscape, which shapes reservoir ecosystems. We know little about ecological network parameter (ENP) responses to topographical features (riparian width, stream-channel width, slope, and elevation) from three land-use areas (rural, urban, and rural-urban transitional) in larger dams and reservoirs globally. This study used a field-based approach with 305 transects on an inundated area of 58,000 km2 inside the Three Gorges Dam Reservoir (TGDR) in China. We discovered that topographical features influenced ENPs differently, involving parameters of plant cover, regeneration, exotics, erosion, habitat, and stressors. As per the Pearson correlation (p < 0.05), riparian width had the most significant effect on transitional ENPs and the least impact on urban ENPs. Riparian width showed the most important influence on the parameters of exotics (with r ≤ -0.44) and erosion (r ≤ 0.56). In contrast, stream-channel widths had the greatest effect on rural ENPs and the least on urban and transitional ENPs. The erosion parameters were the most affected (r ≤ -0.26) by stream width. The slope showed relationships with the fewest ENPs in all three areas and influenced the stress (with a range of -0.51 <r < 0.85) and erosion (r ≤ -0.39) parameters. The impact of elevation was higher in urban areas and was positively correlated with the parameters of plant cover (r ≤ 0.70), erosion (r ≤ 0.58), and habitat (r ≤ 0.69). These results justify the policy emphasis on riparian areas that are managed using the same techniques, which generally ignores their topographical features.
Collapse
Affiliation(s)
- Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| | - Li Jiajia
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ding Dongdong
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China
| | - He Xinrui
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Geng Qianwen
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yin Fan
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhang Songlin
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China
| | - Li Changxiao
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Zheng J, Arif M, He X, Ding D, Zhang S, Ni X, Li C. Plant community assembly is jointly shaped by environmental and dispersal filtering along elevation gradients in a semiarid area, China. FRONTIERS IN PLANT SCIENCE 2022; 13:1041742. [PMID: 36507391 PMCID: PMC9732563 DOI: 10.3389/fpls.2022.1041742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Environmental filtering (EF) and dispersal filtering (DF) are widely known to shape plant community assembly. Particularly in arid and semi-arid mountainous regions, however, it remains unclear whether EF or DF dominate in the community assembly of different life forms or how they interact along elevational gradients. This research aims to reveal how different ecological processes influence herbaceous and woody community assembly and how they respond to various environmental drivers and elevational gradients. Here we integrated taxonomic diversity (TD), phylogenetic diversity (PD), and ecological drivers across an elevational gradient of 1,420 m in the Helan Mountain Nature Reserve, in typical arid and semi-arid areas of China. This study showed that the TD and PD of herbaceous communities significantly increase linearly with changing elevation gradients, while woody 'TD' showed a unimodal pattern, and there was little relationship between woody 'PD' and elevation. Herbaceous species exhibited significant phylogenetic clustering at low elevations, where they were influenced by climate, aspect, and tree cover. However, woody species exhibited random patterns across elevations. Herbaceous and woody species' taxonomic and phylogenetic beta diversity is governed primarily by spatial turnover rather than nestedness. Spatial turnover is caused primarily by EF and DF's combined influence, but their relative importance differs between herbaceous and woody communities. Therefore, we conclude that the responses of herbaceous and woody plants along elevation gradients in the Helan Mountains are decoupled due to their different adaptation strategies to climate factors in the drylands. These findings are important for understanding the assembly mechanisms driving plant communities in dryland under the context of dramatic increases in drought driven by climate warming.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| | - Xinrui He
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Dongdong Ding
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Songlin Zhang
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Xilu Ni
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, China
| | - Changxiao Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Arif M, Behzad HM, Tahir M, Li C. The impact of ecotourism on ecosystem functioning along main rivers and tributaries: Implications for management and policy changes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115849. [PMID: 35961139 DOI: 10.1016/j.jenvman.2022.115849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Tourism along river basins benefits both tourists and the economy, but its management necessitates trade-offs between nature-based recreation and ecological functioning. Despite ecosystem services being helpful in managing environmental challenges, there are limited data on the impact of tourism activities on ecosystem functioning across different river types globally. This study investigates how people's recreational activities and values affect ecosystem functioning in high-order rivers. The original field data were collected from 308 transects along the main river and tributaries of the Three Gorges Dam Reservoir in China during 2019. Kruskal-Wallis tests (p < 0.01) revealed that the ecosystem functioning indices were significantly higher than the recreational activity and value indices around the rivers and that ecosystem functioning was highest around tributaries. The critical variables of ecotourism activities and ecosystem functioning identified by principal component analysis accounted for 66.49% of the total variance. The Pearson correlation coefficient strengths among tourism and ecosystem functioning parameters were correlated mildly to moderately, but they exhibited positive and negative connections with a range of r = -0.27 to 0.37 (p < 0.05). Furthermore, the distribution patterns of these parameters that were determined by hierarchical cluster analysis were diverse for both the main river and its tributaries. The findings suggest that the development and enforcement of zoning may be necessary for the long-term use of natural resources by all sectors of society. Therefore, it is imperative to raise public awareness and urge governments to adopt more progressive ecotourism policies.
Collapse
Affiliation(s)
- Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| | - Hamid M Behzad
- Chongqing Key Laboratory of Karst Environment & School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| | | | - Changxiao Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Hira A, Arif M, Zarif N, Gul Z, Liu X, Cao Y. Impacts of Stressors on Riparian Health Indicators in the Upper and Lower Indus River Basins in Pakistan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13239. [PMID: 36293824 PMCID: PMC9603529 DOI: 10.3390/ijerph192013239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Riparian zones along rivers and streams provide ecosystem services that may change over time as disturbances increase and deteriorate these buffer zones globally. The effect of stressors on ecosystem services along the rivers in underdeveloped countries is unclear, which impacts the environment directly in the form of riparian health indicators (RHIs). This study fills this gap and measures the impact of stressors on RHIs (parameters of habitat, plant cover, regeneration, exotics, and erosion) in the Indus River basin (IRB) in Pakistan. Data on 11 stressors and 27 RHIs were collected using a field-based approach in 269 transects in the upper and lower Indus basins (UIB and LIB) in 2020 and analyzed using multivariate statistical methods. The Kruskal-Wallis tests (p < 0.05) indicated that RHIs varied significantly under the influence of stressors in the UIB and LIB. However, their highest mean values were found in the UIB. Principal component analysis revealed the key RHIs and stressors, which explained 62.50% and 77.10% of the variance, respectively. The Pearson correlation showed that stressors had greater impacts on RHIs in LIB (with r ranging from -0.42 to 0.56). Our results also showed that stressors affected RHI indices with r ranging from -0.39 to 0.50 (on habitat), -0.36 to 0.46 (on plant cover), -0.34 to 0.35 (on regeneration), -0.34 to 0.56 (on erosion), and -0.42 to 0.23 (on exotics). Furthermore, it was confirmed by the agglomerative hierarchical cluster that indices and sub-indices of RHIs and stressors differ across the UIB and LIB. These findings may serve as guidance for managers of large rivers and ecosystem service providers to minimize the environmental impact of stressors in terms of RHIs.
Collapse
Affiliation(s)
- Amin Hira
- Department of Forestry Economics & Management, Northeast Forestry University, Harbin 150040, China
| | - Muhammad Arif
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China
| | | | - Zarmina Gul
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xiangyue Liu
- Department of Forestry Economics & Management, Northeast Forestry University, Harbin 150040, China
| | - Yukun Cao
- Department of Forestry Economics & Management, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
7
|
Arif M, Behzad HM, Tahir M, Changxiao L. Nature-based tourism influences ecosystem functioning along waterways: Implications for conservation and management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156935. [PMID: 35753461 DOI: 10.1016/j.scitotenv.2022.156935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 05/22/2023]
Abstract
Nature-based tourism has an influence on ecosystem functioning around watercourses, but this influence lacks scientific evidence. Additionally, strategic and operational management of streams necessitates trade-offs between the recreational activities and values of tourists and riparian zone hospitality services. This paper aims to assist environmentalists and planners by exploring the effects of tourism-based recreational activities on ecosystem functioning along the drawdown zone. The study uses multivariate statistical techniques to delineate the relevant global tourism issues for planners. Kruskal-Wallis tests (p < 0.01) were conducted using quantitative data from 284 transects within the Three Gorges Dam Reservoir in China. The results revealed higher ecosystem function indices than tourism indices. Indicators of tourism contributed both positively and negatively to ecological indicators, with the Pearson correlation coefficients ranging from minor to moderate (r = ̶ 0.24 to 0.38, p < 0.05). Principal component analysis revealed that the critical variables of ecosystem functioning and tourism activities explained 72.26 % of the overall variance. Nevertheless, hierarchical cluster analysis revealed that these indicators responded differently in the upstream, midstream, and downstream sections. Our findings suggest that policymakers should consider the different characteristics of riparian zones in future planning, as doing so will improve both national and global strategic and operational management.
Collapse
Affiliation(s)
- Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| | - Hamid M Behzad
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, China.
| | | | - Li Changxiao
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region, Ministry of Education, College of Life Sciences, Southwest University, Chongqing 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Hu X, Arif M, Ding D, Li J, He X, Li C. Invasive Plants and Species Richness Impact Litter Decomposition in Riparian Zones. FRONTIERS IN PLANT SCIENCE 2022; 13:955656. [PMID: 35873999 PMCID: PMC9301390 DOI: 10.3389/fpls.2022.955656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 05/03/2023]
Abstract
Natural ecosystems generally include litter decomposition as part of the natural cycle since the material properties and the environment greatly influence the decomposition rate. The invasion of exotic plants alters the species diversity and growth characteristics of plant communities, but its impact on litter decomposition is unknown in the riparian zone. This study examines how invasive plants affect the early stages of litter decomposition and how species richness impacts them. This experiment involved a random litter mixture of exotic (Alternanthera philoxeroides and Bidens pilosa) and native species in the riparian zone of the Three Gorges Dam Reservoir in China. There were 43 species mixture types, with various species richness ranging from 1 to 6. Litterbags were placed in the hydro-fluctuation zone and terrestrial zone, where they decomposed over the course of 55 days. Invasive plants decompose rapidly compared to native plants (35.71% of the remaining mass of the invasive plant). The invasive plant A. philoxeroides has the potential to accelerate native plant decomposition (0.29 of non-added synergetic effect), but Bidens pilosa cannot. Nonetheless, species richness had little effect on the decomposition rate. These effects are dependent upon differences in chemical functional characteristics among the species. The initial traits of the plants, specifically C, N, and C/N, were significantly and linearly correlated with the loss of mixed litter mass and mixing effect strength (P < 0.01). In addition, submergence decomposition conditions reduce the disturbance of invasive plants and predict decomposition rates based on litter characteristics. Invasive plants can therefore impact the material cycle of an ecosystem. There is a need to examine decomposition time, which may also involve considering other factors.
Collapse
Affiliation(s)
- Xin Hu
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| | - Dongdong Ding
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Jiajia Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Xinrui He
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Changxiao Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
- *Correspondence: Changxiao Li
| |
Collapse
|
9
|
Ding D, Arif M, Liu M, Li J, Hu X, Geng Q, Yin F, Li C. Plant-soil interactions and C:N:P stoichiometric homeostasis of plant organs in riparian plantation. FRONTIERS IN PLANT SCIENCE 2022; 13:979023. [PMID: 35979078 PMCID: PMC9376457 DOI: 10.3389/fpls.2022.979023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 05/06/2023]
Abstract
Carbon (C), nitrogen (N), and phosphorus (P) stoichiometric ratios give valuable insight into ecosystem function. The purpose of the present study is to probe into the C, N, and P stoichiometric characteristics in various organs and their relationships with soil factors of the dominant deciduous conifer plant species (Taxodium ascendens and Taxodium distichum) during afforestation in the riparian zone of Three Gorges Reservoir. The results showed only a small change in the concentration of C in different plant organs and soils. T. ascendens contained mean N and P concentrations of 7.63 and 1.54 g/kg in fine roots, 5.10 and 0.56 g/kg in stems, and 15.48 and 2.30 g/kg in leaves, respectively. Whereas T. distichum had a mean N and P concentration of 7.08 and 1.37 g/kg in fine roots, 4.84 and 0.59 g/kg in stems, and 16.89 and 2.23 g/kg in leaves. The N:P ratios in all organs were below 14, indicating that N may have inhibited tree growth. The fine roots P and N:P of T. distichum were weak plasticity and weak homeostasis, and those of T. ascendens were plasticity and weak plasticity. Their stems and leaves adhere to strict homeostasis. N concentrations were significantly positively related to P concentrations in every tissue (except the stems of T. ascendens), and C concentrations were significantly positively associated with P concentrations in the stems and leaves of T. ascendens and T. distichum (p < 0.05). Likewise, soil P and fine root P were positively associated (p < 0.01). This study contributes to the understanding of deciduous conifer plant stoichiometry. It demonstrates N, P, and N:P stoichiometric homeostasis in T. ascendens and T. distichum, which can withstand flooding and are suitable for vegetation restoration in the hydro-fluctuation zone.
Collapse
Affiliation(s)
- Dongdong Ding
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Muhammad Arif
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
| | - Minghui Liu
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Jiajia Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Xin Hu
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Qianwen Geng
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Fan Yin
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
| | - Changxiao Li
- Key Laboratory of Eco-Environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, College of Life Sciences, Southwest University, Chongqing, China
- Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, China
- *Correspondence: Changxiao Li,
| |
Collapse
|