1
|
Spataro F, Rauseo J, Øverjordet IB, Casoli E, Pescatore T, Franco F, Patrolecco L. Man-made emerging contaminants in the High-Arctic fjord Kongsfjorden (Svalbard Archipelago, Norway): Occurrence, sources and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178936. [PMID: 40020589 DOI: 10.1016/j.scitotenv.2025.178936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
This study provides the first quantitative data on the presence of 17 pharmaceuticals and personal care products (PPCPs) from various therapeutical classes in surface seawater from Kongsfjorden (KF, Svalbard Archipelago, Norway, 79°00'N, 11°40'E), collected over five summers (2018-2022). The PPCPs (ciprofloxacin-CIP, enrofloxacin-ENR, amoxicillin-AMX, erythromycin-ERY, sulfamethoxazole-SMX, N4-acetylsulfamethoxazole-N4-SMX, carbamazepine-CBZ, diclofenac-DCF, ibuprofen-IBU, acetylsalicylic acid-ASP, paracetamol-PAR, caffeine-CFF, triclosan-TCL, N,N-diethyl-meta-toluamide-DEET, estrone-E1, 17β-estradiol-E2 and 17α-ethinyl estradiol-EE2) were also analysed in sewage from the wastewater treatment plant, serving Ny-Ålesund, located on KF's southern shore. Samples were processed using solid phase extraction and liquid chromatography with high-resolution mass-spectrometry. An environmental risk assessment (ERA) was conducted to evaluate ecological and antimicrobial resistance (AMR) risks and the cumulative risk from the chemical mixture. PPCPs detected in sewage were also found in seawater, with the highest concentrations in sewage for CFF (151.9 ± 8.7 ng/L) and ASP (122.5 ± 9.4 ng/L). In seawater, the main contributors were ASP (39.2 ± 12.9 ng/L) and EE2 (32.5 ± 11.9 ng/L), suggesting influences from local emissions, fjord circulation, and broader oceanic and atmospheric transport. The ERA identified CIP, DCF, IBU, CFF, TCL, E1, E2 and EE2 as potentially harmful to the Arctic marine ecosystem. When evaluated as a mixture, all compounds contributed additively to the overall risk. The AMR risk from the antibiotic ciprofloxacin was found to be low. These findings emphasize the need for enhanced monitoring of PPCPs and comprehensive ERAs of chemical mixtures to guide management strategies and protect sensitive Arctic ecosystems.
Collapse
Affiliation(s)
- Francesca Spataro
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, Palermo, Italy.
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, Palermo, Italy.
| | - Ida Beathe Øverjordet
- SINTEF Ocean, Department of Climate and Environment, Brattørkaia 17 C, Trondheim, Norway.
| | - Edoardo Casoli
- Sapienza University of Rome, Department of Environmental Biology, Piazzale Aldo Moro 5, Rome, Italy.
| | - Tanita Pescatore
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy.
| | - Federica Franco
- Sapienza University of Rome, Department of Environmental Biology, Piazzale Aldo Moro 5, Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010, Montelibretti, Rome, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, Palermo, Italy.
| |
Collapse
|
2
|
Ding X, Yu Q, Ren H, Geng J. Degradation of conjugated estrogen in visible light-driven intimately coupled photocatalysis and biodegradation system. BIORESOURCE TECHNOLOGY 2024; 406:131045. [PMID: 38942213 DOI: 10.1016/j.biortech.2024.131045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Visible light-driven intimately coupled photocatalysis and biodegradation (VDICPB) is an efficient technology for removing recalcitrant contaminants, but the degradation pathway on 17β-estradiol 3-Sulfate (E2-3S) is still not clear. In this study, VDICPB based on N-doped TiO2 as a photocatalyst was established to investigate the removal and transformation of E2-3S in synthetic wastewater. VDICPB showed a satisfactory removal efficiency of 97.8 ± 0.4 %, which was much higher than that of independent photocatalysis (84.0 ± 2.2 %) or biodegradation system (71.4 ± 1.8 %). Steroid C/D-rings of E2-3S was broken in VDICPB since the transformation process reached terminal central pathway. Primary metabolites did not accumulate in VDICPB, resulting in a low expression of functional genes. E2-3S was mainly removed by cooperative interaction of photocatalysis and co-metabolism of biofilm. Photocatalysis led to deconjugation and microbes acted to mineralization. This study provides technical reference and theoretical support for the removal of new pollutants.
Collapse
Affiliation(s)
- Xiangwei Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
3
|
Wu JL, Liu ZH, Ma QG, Wan YP, Dang Z, Liu Y, Liu Y. Combined collection systems of sewage and rainfall runoff seriously affect the spatial distributions of natural estrogens and their conjugates in river water: Insights from the Pearl River of China. WATER RESEARCH 2024; 256:121588. [PMID: 38636120 DOI: 10.1016/j.watres.2024.121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
So far, little has been known about how the combined collection systems of sewage and rainfall runoff (CCSs) affect emerging contaminants in river water. To fill up the knowledge gap, this study was conducted to investigate the spatial distributions of three natural estrogens (NEs, i.e., estrone (E1), 17β-estradiol (E2) and estriol (E3)) and their conjugates (C-NEs) in the Pearl River in the wet and dry seasons. Results showed that the respective average concentrations of NEs and C-NEs at different locations alongside the Pearl River in the wet season were 7.3 and 1.8 times those in the dry season. Based on estrogen equivalence (EEQ), the average estimated EEQ level in the Pearl River waters in the wet season was nearly 10 times that in the dry season. These seemed to imply that the CCSs in the wet season not only cause untreated sewage into the receiving water body, but greatly decrease the removal efficiency of NEs and C-NEs in wastewater treatment plant. Furthermore, the estimated annual loads of E1, E2, and E3 to the Pearl River in the wet season accounted for about 88.6 %, 100 %, and 99.3 % of the total annual loads. Consequently, this work for the first time demonstrated that the CCSs in cities with high precipitation are unfavorable for controlling of emerging contaminants.
Collapse
Affiliation(s)
- Jia-Le Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Qing-Guang Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China
| | - Yu Liu
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Zhang J, Liu ZH, Wu JL, Ding YT, Ma QG, Hayat W, Liu Y, Wang PJ, Dang Z, Rittmann B. Deconjugation potentials of natural estrogen conjugates in sewage and wastewater treatment plant: New insights from model prediction and on-site investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172071. [PMID: 38554960 DOI: 10.1016/j.scitotenv.2024.172071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Natural estrogen conjugates play important roles in municipal wastewater treatment plant (WWTP), but their deconjugation potentials are poorly understood. This work is the first to investigate the relationships between the enzyme activities of arylsulfatase/β-glucuronidase and deconjugation potentials of natural estrogen conjugates. This work led to three important findings. First, the enzyme activity of β-glucuronidase in sewage is far higher than that of arylsulfatase, while their corresponding activities in activated sludge were similar. Second, a model based on β-glucuronidase could successfully predict the deconjugation potentials of natural estrogen glucuronide conjugates in sewage. Third, the enzyme activity of arylsulfatase in sewage was too low to lead to evident deconjugation of sulfate conjugates, which means that the deconjugation rate of estrogen sulfates can be regarded as zero. By comparing their theoretical removal based on enzyme activity and on-site investigation, it is reasonable to conclude that reverse deconjugation of estrogen conjugates (i.e., conjugation of natural estrogens to form conjugated estrogens) likely exist in WWTP, which explains well why natural estrogen conjugates cannot be effectively removed in WWTP. Meanwhile, this work provides new insights how to improve the removal performance of WWTP on natural estrogen conjugates. SYNOPSIS: This work is the first to show how arylsulfatase/β-glucuronidase could affect deconjugation of natural estrogen conjugates and possible way to enhance their removal in wastewater treatment plant.
Collapse
Affiliation(s)
- Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Labora tory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China.
| | - Jia-le Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yu-Ting Ding
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Qing-Guang Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Waseem Hayat
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Peng-Jie Wang
- Shijing Water Purification Branch, Guangzhou Water Purification Co. LTD, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Bruce Rittmann
- Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, Tempe 85287-5701, AZ, United States
| |
Collapse
|
5
|
Huang DK, Liu ZH, Wan YP, Dang Z. Analysis and contamination levels of ten phthalic acid esters (PAEs) in Chinese commercial bubble tea: a comparison with commercial milk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103153-103163. [PMID: 37682440 DOI: 10.1007/s11356-023-29728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Phthalic acid ester (PAE) contamination in popular drink bubble tea has been hardly studied in the world. In this work, a liquid-liquid extraction following solid phase extraction (LLE-SPE)-UPLC-MS/MS method was first established for trace determination of ten PAEs in bubble tea. The developed method was validated with respect to linearity (R2 > 0.992), low limit of detections (LODs, 0.49-3.16 µg/L), and satisfactory recoveries (61.8-127.6%) with a low relative standard derivations (RSDs, 1.1-16.4%), which was also validated for commercial milk. Six out of ten PAEs, i.e., diethylhexyl phthalate (DEHP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), diethyl phthalate (DEP), dihexyl phthalate (DHP), and diphenyl phthalate (DPP) were detected in Chinese bubble tea with concentrations ranging from not detection (ND) to 53.43 µg/L, while DEHP, DBP, DIBP, DEP, and dimethyl phthalate (DMP) were detected in commercial milk with concentrations ranging from ND to 110.58 µg/L. The respective average concentrations of DEHP in Chinese bubble tea and commercial milk were 19.40 and 23.46 µg/L, which were over two times that in drinking water quality standards of several countries including Israel, Korea, Oman, and Singapore (i.e., 8 µg/L). Calculated with human estimated daily intake (EDI), the average EDIs of five out of seven PAEs in bubble tea were higher than those in commercial milk. For example, the calculated EDI of DIBP in bubble tea was 5 times that in commercial milk, while their respective corresponding EDIs of DBP and DEHP were over 2.4 and 1.6 times. Based on estrogen equivalence (EEQ) with the unit of ng E2/L, the average EEQs of the ten PAEs in Chinese bubble tea and commercial milk were 14.26 and 17.06 ng E2/L, which were 52.8 and 62.3 times the observed effect concentration that could cause egg mortality of zebrafish. It is evident that the potential estrogenic effect of PAEs in bubble tea and commercial milk cannot be negligible. Given the fact that PAE contamination in bubble tea has been hardly investigated, such study is urgently to be performed in a global view.
Collapse
Affiliation(s)
- De- Kang Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
6
|
Tang Z, Liu ZH, Wang H, Wan YP, Dang Z, Guo PR, Song YM, Chen S. Twelve natural estrogens and ten bisphenol analogues in eight drinking water treatment plants: Analytical method, their occurrence and risk evaluation. WATER RESEARCH 2023; 243:120310. [PMID: 37473512 DOI: 10.1016/j.watres.2023.120310] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Bisphenol analogues (BPs) and natural estrogens (NEs) as two important groups of endocrine-disrupting compounds (EDCs) in drinking water treatment plants (DWTPs) have been hardly investigated except bisphenol A (BPA) and three major NEs including estrone (E1), 17β-estradiol (E2) and estriol (E3). In this study, a GC-MS analytical method was firstly established and validated for trace simultaneous determination of ten BPs and twelve NEs in drinking water, which included BPA, bisphenol B (BPB), bisphenol C (BPC), bisphenol E (BPE), bsiphenol F (BPF), bsiphenol P (BPP), bisphenol S (BPS), bisphenol Z (BPZ), bisphenol AF (BPAF), bisphenol AP (BPAP), E1, E2, E3, 17α-estradiol (17α-E2), 2-hydroestrone (2OHE1), 16hydroxyestrone (16α-OHE1), 4-hydroestrone (4OHE1), 2-hydroxyesstradiol (2OHE2), 4-hydroxyestradiol (4OHE2), 17-epiestriol (17epiE3), 16-epiestriol (16epiE3) and 16keto-estraiol (16ketoE2). This investigation showed that eighteen out of twenty-two targeted compounds were detected in drinking source waters of eight DWTPs with concentrations ranging from not detected to 142.8 ng/L. Although the conventional treatment process of DWTP could efficiently remove both BPs and NEs with respective removal efficiencies of 74.1%-90.9% and 74.5%-100%, BPA, BPS, BPE, BPZ, E1, 2OHE1, and 2OHE2 were found in the finished drinking waters. Chlorination could remove part of BPs and NEs, but the efficiency varied greatly with DWTP and the reason was unknown. In the finished drinking waters of eight DWTPs, the highest chemically calculated estrogen equivalence (EEQ) derived from BPs and NEs was up to 6.11 ngE2/L, which was over 22 times that could do harm to zebrafish, indicating a potential risk to human health. Given the fact that many chlorination products of BPs and NEs likely have higher estrogenic activities, the estrogenic effect of BPs and NEs in finished drinking water should be accurately examined urgently with the inclusion of BPs, NEs as well as their main chlorinated by-products. This study shed new light on the occurrence, removal, and potential estrogenic effects of BPs and NEs in DWTPs.
Collapse
Affiliation(s)
- Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Peng-Ran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Science, Guangzhou, 510070, China
| | - Yu-Mei Song
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Science, Guangzhou, 510070, China
| | - Sa Chen
- Zhongshan Public Water Co., LTD, Zhongshan 528403, China
| |
Collapse
|
7
|
Wan YP, Ma QG, Hayat W, Liu ZH, Dang Z. Ten bisphenol analogues in Chinese fresh dairy milk: high contribution ratios of conjugated form, importance of enzyme hydrolysis and risk evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88049-88059. [PMID: 37438504 DOI: 10.1007/s11356-023-28737-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
This study investigated concentration levels of ten bisphenols (BPs) in 13 Chinese commercial fresh low temperature dairy milk samples (fresh milk) of main local and national brands with or without enzyme hydrolysis. The results showed that at least two BPs were detected in each fresh milk sample without enzyme hydrolysis and the respective mean concentrations of bisphenol AF (BPAF), bisphenol B (BPB), bisphenol C (BPC), bisphenol F (BPF), bisphenol A (BPA), bisphenol S (BPS), bisphenol AP (BPAP), bisphenol PP (BPP), bisphenol Z (BPZ), and bisphenol E (BPE) were 0.73, 0.61, 1.86, 0.87, 0.42, 0.11, 1.06, 1.42, 1.5, and 0.04 ng/mL, while their respective detection frequencies ranged from 23.1-92.3%. These results indicated the frequent detection of BPs in fresh milk samples. With enzyme hydrolysis, the respective mean concentrations of BPAF, BPA, BPB, BPC, BPF, BPS, and BPAP were increased 7.1-107.1%, indicating the long-ignored importance of enzyme hydrolysis. The respective average estimated daily intakes (EDIs) of BPA by adult and children in China via fresh milk were 32.5 and 37.5 ng/kg bw/d, indicating that BPA in fresh milk was a crucial source to human. Six out of nine other BPs had higher average EDIs than that of BPA, among which the EDI of BPAP was almost three times that of BPA, suggesting the widespread contamination of other BPs in Chinese fresh milk.
Collapse
Affiliation(s)
- Yi-Ping Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Qing-Guang Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Waseem Hayat
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- Key Laboratory of Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Wang H, Tang Z, Liu ZH, Zeng F, Zhang J, Dang Z. Ten bisphenol analogs were abundantly found in swine and bovine urines collected from two Chinese farms: concentration profiles and risk evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13407-13417. [PMID: 36131175 DOI: 10.1007/s11356-022-23089-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol analogs (BPs) in livestock urine are important biomarkers to reflect the potential contaminants in food products derived from these animals. Nevertheless, little research has been done on their occurrence in farm animal urine. This work investigated ten BPs in swine and bovine urines collected from two Chinese farms. Results showed that all of these ten BPs were frequently detected in swine and bovine urines. The total mean concentration of the ten BPs (ΣBPs) in sow urines was 59.7 ng/mL, which was significantly higher than that of the boar urine with a mean concentration of 37.0 ng/mL (p < 0.05). On the other hand, the corresponding mean concentration of ΣBPs in dairy cattle urine was 59.6 ng/mL, which was significantly higher than that of the beef cattle urine with 37.0 ng/mL (p < 0.05). The respective mean concentration contribution ratios of BPA to ΣBPs in boar, sow, dairy, and beef cattle urines were only 14.9%, 21.4%, 9.0%, and 14.6%, which clearly indicated that BPA was no longer the dominant BP. The average daily urinary excretion rates of ΣBPs by boar, sow, dairy, and beef cattle were 37.0, 59.8, 167.0, and 36.8 times that of human, which suggested that swine and bovine likely encountered high dosage exposure of BPs in the two Chinese livestock farms. Our results showed that feeds and nutritional supplements as unintentionally added contaminants were the main sources of BPs to swine and bovine. As swine and bovine are important food sources for human being, part of BPs exposed to livestock eventually would enter human body via meat or milk. Therefore, quality controls of these feeds or nutritional supplements are quite important in order to guarantee welfare of livestock as well as protect health of our human beings.
Collapse
Affiliation(s)
- Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Feng Zeng
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
9
|
Li YQ, Liu ZH, Chen S, Wu YJ, Liang JT, Dang Z, Liu Y. Trace determination of fifteen free amino acids in drinking source water via solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:594-605. [PMID: 35902528 DOI: 10.1007/s11356-022-22133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Amino acids (AAs) are important nitrogen-containing organics in water, and a large number of reports have proven that they were the precursors of many nitrogen-containing disinfection by-products, some of which have cytotoxicity and carcinogenicity. However, little has been done on their occurrence in drinking source water. Therefore, a trace determination method via solid-phase extraction coupled with ultra-high pressure liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for 15 free AAs (FAAs) was developed, which was successfully applied for drinking source water samples. For sample preparation, strong cation-exchange stationary solid-phase extraction (SPE) cartridge showed better extraction performance to that of reverse phase stationary oasis HLB SPE cartridge. The optimal water pH was determined to be 2.8 before extraction. Strong matrix effects for most FAAs were observed in this work; thus, sample extraction with SPE was recommended to eliminate the matrix effects. The developed method showed excellent linearity (R2 > 0.991), low limits of detection (LODs, 0.01-0.27 nmol/L), and good recoveries of 69.8-117.9% in drinking source water with low relative standard deviations (RSDs, 0.3-13.2%). The developed method was finally applied to eight drinking source water samples, and the top five FAAs were found to be serine, glycine, leucine, alanine, and isoleucine.
Collapse
Affiliation(s)
- Ying-Qiang Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Sa Chen
- Zhongshan Public Water Co., Ltd, Zhongshan, 528403, Guangdong, China
| | - Ying-Juan Wu
- Zhongshan Public Water Co., Ltd, Zhongshan, 528403, Guangdong, China
| | - Jing-Tang Liang
- Zhongshan Public Water Co., Ltd, Zhongshan, 528403, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yun Liu
- Ministry of Ecology and Environment of the People's Republic of China, South China Institute of Environmental Sciences, Guangzhou, 510655, China
| |
Collapse
|
10
|
Occurrence of Selected Emerging Contaminants in Southern Europe WWTPs: Comparison of Simulations and Real Data. Processes (Basel) 2022. [DOI: 10.3390/pr10122491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Emerging contaminants (ECs) include a diverse group of compounds not commonly monitored in wastewaters, which have become a global concern due to their potential harmful effects on aquatic ecosystems and human health. In the present work, six ECs (ibuprofen, diclofenac, erythromycin, triclosan, imidacloprid and 17α-ethinylestradiol) were monitored for nine months in influents and effluents taken from four wastewater treatment plants (WWTPs). Except for the case of ibuprofen, which was in all cases in lower concentrations than those usually found in previous works, results found in this work were within the ranges normally reported. Global removal efficiencies were calculated, in each case being very variable, even when the same EC and facility were considered. In addition, the SimpleTreat model was tested by comparing simulated and real ibuprofen, diclofenac and erythromycin data. The best agreement was obtained for ibuprofen which was the EC with the highest removal efficiencies.
Collapse
|
11
|
Zhao KM, Liu ZH, Zhang J, Zhong SS, Dang Z. Property of arylsulfatase and β-glucuronidase extracted from digestive tracts of Cipangopaludina chinensis and their cleavage performance on conjugated natural estrogens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64244-64251. [PMID: 35918583 DOI: 10.1007/s11356-022-22260-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Arylsulfatase and β-glucuronidase are the two substantial enzymes having a significant role in the cleavage of conjugated natural estrogens (C-NEs). The present study reports that arylsulfatase and β-glucuronidase have been abundantly found in the digestive tracts of Cipangopaludina chinensis; in which, their corresponding activities were 60 and 5 U/g wet waste, respectively. The arylsulfatase from Cipangopaludina chinensis could show high activity at low temperatures. Hence, its activity still remained at 53.2% of maximal activity even at an extremely low temperature of 4 ℃; while the corresponding activities of arylsulfatase from Helix pomatia or activated sludge were less than 20% and 10%, respectively. The arylsulfatase and β-glucuronidase from Cipangopaludina chinensis could efficiently cleave C-NEs suggesting that they could be alternative enzymes derived from Helix pomatia that are used for cleavage of conjugated compounds in environmental or biological sample analysis. Meanwhile, they might also be used to enhance the cleavage of C-NEs in municipal wastewater.
Collapse
Affiliation(s)
- Ke-Meng Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Shu-Shu Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
12
|
Gomes FBR, Fernandes PAA, Bottrel SEC, Brandt EMF, Pereira RDO. Fate, occurrence, and removal of estrogens in livestock wastewaters. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:814-833. [PMID: 36038979 DOI: 10.2166/wst.2022.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
During the last decades, livestock and animal feeding operations have been expanded. In parallel, these activities are among the major sources of estrogens in the environment. Thus, considering the environmental and health risks associated with estrogenic compounds, this work reviews the fate, occurrence, and removal of free and conjugated E1, E2, and E3 in livestock wastewaters. A systematic literature review was carried out, and after applying the eligibility criteria, 66 peer-reviewed papers were selected. Results suggest high estrogen concentrations and, consequently, high estrogenic activity, especially in samples from swine farming. E1 and E2 are frequently found in wastewaters from bovine, swine, and other livestock effluents. Aerobic treatment processes were more efficient for estrogen removal, whereas anaerobic systems seem poorly effective. Removal efficiencies of estrogens and estrogenic activity of up to 90% were reported for constructed wetlands, advanced pond systems, trickling filters, membrane bioreactors, aerated and nitrifying reactors, combined air flotation, and vegetable oil capture processes. High concentrations found in wastewaters from livestock allied to the removal efficiencies reported for anaerobic processes (usually used to treat livestock wastewaters) evidence the importance of monitoring these compounds in environmental matrices.
Collapse
Affiliation(s)
- Fernanda Bento Rosa Gomes
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail:
| | - Pedro Antônio Alves Fernandes
- Department of Sanitary and vpEnvironmental Engineering, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Sue Ellen Costa Bottrel
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail: ; Department of Sanitary and vpEnvironmental Engineering, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Emanuel Manfred Freire Brandt
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail:
| | - Renata de Oliveira Pereira
- Civil Engineering Graduate Program, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil E-mail: ; Department of Sanitary and vpEnvironmental Engineering, Federal University of Juiz de Fora, Jose Lourenço Kelmer s/n, Campus UFJF, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
13
|
Tang Z, Liu ZH, Wang H, Dang Z. 17α-Estradiol, an ignored endogenous natural estrogen in human: Updated estrogen metabolism pathways and its environmental risk analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154693. [PMID: 35318059 DOI: 10.1016/j.scitotenv.2022.154693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
E1 and E2 are considered as the parent natural estrogens (NEs) in human metabolism pathways of NEs, while the enantiomer of E2, αE2 was not included and ignored. In this study, αE2 along with the other eleven NEs with estrogenic activities were found in six healthy human urines with the total concentration levels of 62.9-99.3 μg/L. The concentration contributed ratios (CCRs) of αE2 to the total twelve NEs ranged from 4.7% to 11.0% with an average CCR of 7.0%. On the basis of the average CCR, αE2 was 1.5 times that of E2, which suggested that αE2 was one important NE in humans. As the main source of NEs in municipal wastewater was derived from human urine, αE2 should also be an important NE in municipal wastewater that can be proven by previous limited studies, in which the municipal effluent concentrations of αE2 ranged from not detection to 144.2 ng/L with an average concentration of 11.9 ng/L, indicating αE2 in municipal effluent was an important source to the natural environment. Although αE2 is a NE with weak estrogenic potency, the estrogenic effect of αE2 via municipal effluent to its receiving water body cannot be ignored because it can be bio-transformed into E2 under aerobic environment. This work is the first to indicate that αE2 is an ignored NE in human and its environmental risk via municipal effluent discharging cannot be ignored, which should be paid with attention.
Collapse
Affiliation(s)
- Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China.
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
14
|
Tang Z, Liu ZH, Chen W, Wang C, Wu YJ, Wang H, Dang Z, Liu Y. Twelve natural estrogens in urines of six threatened or endangered mammalian species in Zoo Park: implications and their potential risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49404-49410. [PMID: 35504991 DOI: 10.1007/s11356-022-20554-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
This work was the first to report twelve natural estrogens (NEs) in the urines of six threatened or endangered mammalians in a Zoo Park of Guangzhou (i.e., panda, gorilla, elephant, African lion, jaguar, and leopard). Ten out of twelve NEs were detected at least in one urine sample of the six mammalians studied, including the four major NEs (i.e., estrone (E1), 17β-estradiol (E2), 17α-estradiol (αE2), estriol (E3)), and six other NEs (i.e., 4-hydroxyestrone (4OHE1), 2-hydroxyestradiol (2OHE2), 4-hydroxyestradiol (4OHE2), 16α-hydroxyestrone (16α-OHE1), 16ketoestradiol (16ketoE2), and 17epiestriol (17epiE3)). The six studied mammalians, ranked in the order of high to low urinary concentration of total NEs, were jaguar, African lion, gorilla, elephant, panda, and leopard, with respective urinary concentrations of 110.4, 86.4, 71.4, 66.0, 55.9, and 52.8 ng/mL. According to the average urinary concentration of NE in the six mammalians ranked from high to low, the top five NEs detected were 16α-OHE1, 4OHE1, E1, E3, and 17epiE3, respectively. These clearly indicated the occurrence of NEs other than the four major types in urines of animals in a Zoo Park. Moreover, the daily excretion rates of the five detected NEs by one elephant ranged from 1162-2254 μg/d with a total daily excretion rate of 8260 μg/d, suggesting that the total urinary excretion of NEs by one adult elephant was equivalent to that by 170 premenopausal women or 506 adult men. Consequently, it appears from this study that NEs in the urines of zoo animals should be considered an emerging source of NEs.
Collapse
Affiliation(s)
- Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Wu Chen
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Chen Wang
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Ya-Jiang Wu
- Guangzhou Zoo & Guangzhou Wildlife Research Center, Guangzhou, China
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
15
|
Zhao KM, Zhong SS, Zhang J, Zhang CS, Dang Z, Liu ZH. Activity measurement of arylsulfatase and β-glucuronidase in activated sludge: HPLC-based versus classical spectrophotometric method. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10704. [PMID: 35373470 DOI: 10.1002/wer.10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Arylsulfatase and β-glucuronidase are two important enzymes in wastewater and surface water, which play important roles on cleavage of sulfate/glucuronide estrogens. In this work, a high-performance liquid chromatography (HPLC)-based new method was firstly established for arylsulfatase/β-glucuronidase with determination of p-nitrophenyl sulfate (pNPS)/p-nitrophenyl-β-D-glucuronide (pNPG). The limits of detections (LODs) of the developed method for pNPS and pNPG were 0.164 and 0.098 μM, respectively. Intraday and interday reproducibility expressed as relative standard deviation (RSD) values of retention times and peak areas was 0.39%-3.68% and 0.23%-4.74%, respectively. The respective recovery efficiencies of this HPLC-based method spiking at three different concentrations for p-nitrophenol (pNP), pNPS, and pNPG in activated sludge were 76.5%-88.1%, 79.2%-93.1%, and 84.2%-96.1%, with RSD below 3.9%. The HPLC-based method was finally applied to estimate the enzyme activity of arylsulfatase/β-glucuronidase in one activated sludge system and along which the classical spectrophotometric method was also evaluated. Compared with the classic spectrophotometric analytical method, the HPLC-based new method could simultaneously measure arylsulfatase/β-glucuronidase one time, which was convenient and time-saving. Moreover, the developed method could effectively avoid possible underestimation that the spectrophotometric method might encounter. PRACTITIONER POINTS: A new HPLC-based method for activity estimation of arylsulfatase and β-glucuronidase was developed. The HPLC-based method can simultaneously estimate enzyme activity of both arylsulfatase and β-glucuronidase. The HPLC-based method can avoid possible underestimation that spectrophotometric method may encounter.
Collapse
Affiliation(s)
- Ke-Meng Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shu-Shu Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Jun Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, China
- Key Lab Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, China
| | - Cun-Sheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
- Key Lab Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, China
| |
Collapse
|
16
|
Loffredo E. Recent Advances on Innovative Materials from Biowaste Recycling for the Removal of Environmental Estrogens from Water and Soil. MATERIALS 2022; 15:ma15051894. [PMID: 35269122 PMCID: PMC8911978 DOI: 10.3390/ma15051894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
New technologies have been developed around the world to tackle current emergencies such as biowaste recycling, renewable energy production and reduction of environmental pollution. The thermochemical and biological conversions of waste biomass for bioenergy production release solid coproducts and byproducts, namely biochar (BC), hydrochar (HC) and digestate (DG), which can have important environmental and agricultural applications. Due to their physicochemical properties, these carbon-rich materials can behave as biosorbents of contaminants and be used for both wastewater treatment and soil remediation, representing a valid alternative to more expensive products and sophisticated strategies. The alkylphenols bisphenol A, octylphenol and nonylphenol possess estrogenic activity comparable to that of the human steroid hormones estrone, 17β-estradiol (and synthetic analog 17α-ethinyl estradiol) and estriol. Their ubiquitous presence in ecosystems poses a serious threat to wildlife and humans. Conventional wastewater treatment plants often fail to remove environmental estrogens (EEs). This review aims to focus attention on the urgent need to limit the presence of EEs in the environment through a modern and sustainable approach based on the use of recycled biowaste. Materials such as BC, HC and DG, the last being examined here for the first time as a biosorbent, appear appropriate for the removal of EEs both for their negligible cost and continuously improving performance and because their production contributes to solving other emergencies, such as virtuous management of organic waste, carbon sequestration, bioenergy production and implementation of the circular economy. Characterization of biosorbents, qualitative and quantitative aspects of the adsorption/desorption process and data modeling are examined.
Collapse
Affiliation(s)
- Elisabetta Loffredo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|