1
|
Song M, Tian Y, Li Y, Xu X, Zheng L, Zhou H, Kuzyakov Y, Wang G, Zhang Y, Cornelissen JHC. Loss of taxonomic and functional diversity and decrease in primary productivity with nitrogen enrichment after a long-term release from grazing in an alpine grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177570. [PMID: 39571802 DOI: 10.1016/j.scitotenv.2024.177570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/05/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
Moderate grazing can sustain high species diversity and productivity. However, nitrogen enrichment often reduces species richness while promoting primary productivity, which contradicts the traditional understanding of the positive effect of plant diversity on productivity. Whether the responses of diversity and productivity to N enrichment on a long-term scale conform to those on short-term scale. Furthermore, chemical N forms may alter species richness or functional diversity because of species preferences for different N forms. We used data from a 19-year field experiment with manipulated livestock exclusion and the addition of N in three chemical forms (ammonium, nitrate, and their mixture) in an alpine grassland to test their effects on diversity and aboveground productivity. Productivity in no N without grazing plots (Ctr) initially increased by 66 % during the first five years after livestock exclusion (0.53 kg m-2), following which productivity fluctuated at a similar level as that in winter livestock grazing (0.32 kg m-2) for the next eight years and ultimately decreased to the level of 0.24 kg m-2, below that in Gr with continued species loss. The addition of N forms in grazing exclusion increased productivity, accompanied by the loss of rare species in the first five years. Afterward, productivity decreased, and it took longer than the control to reach the same level as that seen in winter grazing. Then, productivity continued to decline with more species loss. The functional diversity of leaf traits and plant growth forms decreased. Ammonium favored grasses with guerrilla and phalanx rhizomes, nitrate favored sedges and forbs with guerrilla rhizomes, and ammonium-nitrate sustained a relatively higher diversity of plant growth forms. Our general conclusion is that grasslands with moderate grazing are beneficial for sustaining diverse species and high productivity. N enrichment reduces plant diversity, and the increase in productivity driven by N is only transitional, as productivity declines in the long run, with continuous N addition.
Collapse
Affiliation(s)
- Minghua Song
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, A11, Datun Road, Chaoyang District, Beijing 100101, China.
| | - Yuqiang Tian
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Yikang Li
- Key laboratory of restoration ecology of cold area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Dajie, Xining 810008, China
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, A11, Datun Road, Chaoyang District, Beijing 100101, China.
| | - Lili Zheng
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Huakun Zhou
- Key laboratory of restoration ecology of cold area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Dajie, Xining 810008, China
| | - Yakov Kuzyakov
- Department of Agricultural Soil Science, Department of Soil Science of Temperate Ecosystem, University of Gottingen, 37077 Gottingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| | - Guiqiang Wang
- Key laboratory of restoration ecology of cold area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 59 Xiguan Dajie, Xining 810008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yangjian Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, A11, Datun Road, Chaoyang District, Beijing 100101, China
| | - Johannes H C Cornelissen
- Systems Ecology, Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
2
|
Campana S, Tognetti PM, Alberti J, Graff P, Molina CD, Silvoso MC, Yahdjian L. The spatiotemporal stability of plant diversity is disconnected from biomass stability in response to human activities in a South American temperate grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177031. [PMID: 39447893 DOI: 10.1016/j.scitotenv.2024.177031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Human activities alter biomass, nutrient availability, and species dominance in grasslands, impacting their richness, composition, and biomass production. Stability (invariability in time or space) can inform the predictability of plant communities in response to human activities. However, this measure has been simplistically analyzed for temporal (interannual) changes in live biomass, disregarding their spatial stability and the temporal stability of other plant community attributes. Moreover, the simultaneous analysis of temporal and spatial stabilities of plant communities has been scarcely assessed. Here, we test how biomass removal and nutrient addition simultaneously modify the temporal and spatial stabilities of plant richness (α diversity), composition dissimilarity (β diversity), aboveground live biomass, and the role of plant species dominance in the stability responses. We conducted a factorial experiment of biomass removal (grazing, mowing, or intact -no removal-) and nutrient addition (unfertilized or fertilized with nitrogen, phosphorus, and potassium) in a temperate grassland of Argentina, South America. We replicated the experiment in 6 blocks over 10 years to estimate the temporal and spatial stabilities of the plant community. The spatiotemporal stability of plant richness and composition dissimilarity decreased in the intact grassland, while the temporal stability of live biomass increased, compared to the grazed and mowed grasslands. Nutrient addition reduced the spatiotemporal stability of live biomass and the spatial stability of plant richness. The stabilities of species richness as well as that of composition dissimilarity were negatively associated with plant dominance, while the live biomass stability was not. Our results suggest that simplifying the effect of biomass removal and nutrient addition on grassland stability is not feasible, as plant diversity stability responses are not surrogates for biomass stability. The contrasting spatiotemporal stability responses of plant diversity and biomass represent a step forward in predicting human activities' impact over time and across space in temperate grasslands.
Collapse
Affiliation(s)
- Sofía Campana
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Argentina; Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Argentina.
| | - Pedro M Tognetti
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Argentina; Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, Universidad Nacional de Mar del Plata - CONICET, Juan B. Justo, 2550 Mar del Plata, Argentina
| | - Pamela Graff
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Argentina; Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Argentina; Agencia de Extensión Rural Coronel Suárez, EEA Cesáreo Naredo, Instituto Nacional de Tecnología Agropecuaria (INTA)
| | - Cecilia D Molina
- Departamento de Ingeniería Agrícola y Uso de la Tierra, Cátedra de Fertilidad y Fertilizantes, Facultad de Agronomía, Universidad de Buenos Aires, Argentina; Universidad Provincial de Ezeiza, Provincia de Buenos Aires, Argentina
| | - María Celeste Silvoso
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Argentina; Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| | - Laura Yahdjian
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Argentina; Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| |
Collapse
|
3
|
Svenning JC, Lemoine RT, Bergman J, Buitenwerf R, Le Roux E, Lundgren E, Mungi N, Pedersen RØ. The late-Quaternary megafauna extinctions: Patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. CAMBRIDGE PRISMS. EXTINCTION 2024; 2:e5. [PMID: 40078803 PMCID: PMC11895740 DOI: 10.1017/ext.2024.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2025]
Abstract
Across the last ~50,000 years (the late Quaternary) terrestrial vertebrate faunas have experienced severe losses of large species (megafauna), with most extinctions occurring in the Late Pleistocene and Early to Middle Holocene. Debate on the causes has been ongoing for over 200 years, intensifying from the 1960s onward. Here, we outline criteria that any causal hypothesis needs to account for. Importantly, this extinction event is unique relative to other Cenozoic (the last 66 million years) extinctions in its strong size bias. For example, only 11 out of 57 species of megaherbivores (body mass ≥1,000 kg) survived to the present. In addition to mammalian megafauna, certain other groups also experienced substantial extinctions, mainly large non-mammalian vertebrates and smaller but megafauna-associated taxa. Further, extinction severity and dates varied among continents, but severely affected all biomes, from the Arctic to the tropics. We synthesise the evidence for and against climatic or modern human (Homo sapiens) causation, the only existing tenable hypotheses. Our review shows that there is little support for any major influence of climate, neither in global extinction patterns nor in fine-scale spatiotemporal and mechanistic evidence. Conversely, there is strong and increasing support for human pressures as the key driver of these extinctions, with emerging evidence for an initial onset linked to pre-sapiens hominins prior to the Late Pleistocene. Subsequently, we synthesize the evidence for ecosystem consequences of megafauna extinctions and discuss the implications for conservation and restoration. A broad range of evidence indicates that the megafauna extinctions have elicited profound changes to ecosystem structure and functioning. The late-Quaternary megafauna extinctions thereby represent an early, large-scale human-driven environmental transformation, constituting a progenitor of the Anthropocene, where humans are now a major player in planetary functioning. Finally, we conclude that megafauna restoration via trophic rewilding can be expected to have positive effects on biodiversity across varied Anthropocene settings.
Collapse
Affiliation(s)
- Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rhys T. Lemoine
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Juraj Bergman
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Robert Buitenwerf
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Elizabeth Le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Erick Lundgren
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Ninad Mungi
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rasmus Ø. Pedersen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Zhu J, Zhang Y, Wu J, Zhang X, Yu G, Shen Z, Yang X, He Y, Jiang L, Hautier Y. Herbivore exclusion stabilizes alpine grassland biomass production across spatial scales. GLOBAL CHANGE BIOLOGY 2024; 30:e17155. [PMID: 38273528 DOI: 10.1111/gcb.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
There is growing evidence that land-use management practices such as livestock grazing can strongly impact the local diversity, functioning, and stability of grassland communities. However, whether these impacts depend on environmental condition and propagate to larger spatial scales remains unclear. Using an 8-year grassland exclosure experiment conducted at nine sites in the Tibetan Plateau covering a large precipitation gradient, we found that herbivore exclusion increased the temporal stability of alpine grassland biomass production at both the local and larger (site) spatial scales. Higher local community stability was attributed to greater stability of dominant species, whereas higher stability at the larger scale was linked to higher spatial asynchrony of productivity among local communities. Additionally, sites with higher mean annual precipitation had lower dominant species stability and lower grassland stability at both the spatial scales considered. Our study provides novel evidence that livestock grazing can impair grassland stability across spatial scales and climatic gradients.
Collapse
Affiliation(s)
- Juntao Zhu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yangjian Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jianshuang Wu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Biology, Theoretical Ecology, Freie Universität Berlin, Berlin, Germany
- Department of Geography, Geography and Geology Faculty, Alexandru Ioan Cuza University of Iași, Iași, Romania
| | - Xianzhou Zhang
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Guirui Yu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Zhenxi Shen
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yunlong He
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Loss of grazing by large mammalian herbivores can destabilize the soil carbon pool. Proc Natl Acad Sci U S A 2022; 119:e2211317119. [PMID: 36252005 PMCID: PMC9618051 DOI: 10.1073/pnas.2211317119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Grazing by mammalian herbivores can be a climate mitigation strategy as it influences the size and stability of a large soil carbon (soil-C) pool (more than 500 Pg C in the world's grasslands, steppes, and savannas). With continuing declines in the numbers of large mammalian herbivores, the resultant loss in grazer functions can be consequential for this soil-C pool and ultimately for the global carbon cycle. While herbivore effects on the size of the soil-C pool and the conditions under which they lead to gain or loss in soil-C are becoming increasingly clear, their effect on the equally important aspect of stability of soil-C remains unknown. We used a replicated long-term field experiment in the Trans-Himalayan grazing ecosystem to evaluate the consequences of herbivore exclusion on interannual fluctuations in soil-C (2006 to 2021). Interannual fluctuations in soil-C and soil-N were 30 to 40% higher after herbivore exclusion than under grazing. Structural equation modeling suggested that grazing appears to mediate the stabilizing versus destabilizing influences of nitrogen (N) on soil-C. This may explain why N addition stimulates soil-C loss in the absence of herbivores around the world. Herbivore loss, and the consequent decline in grazer functions, can therefore undermine the stability of soil-C. Soil-C is not inert but a very dynamic pool. It can provide nature-based climate solutions by conserving and restoring a functional role of large mammalian herbivores that extends to the stoichiometric coupling between soil-C and soil-N.
Collapse
|
6
|
Ebel CR, Case MF, Werner CM, Porensky LM, Veblen KE, Wells HBM, Kimuyu DM, Langendorf RE, Young TP, Hallett LM. Herbivory and Drought Reduce the Temporal Stability of Herbaceous Cover by Increasing Synchrony in a Semi-arid Savanna. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.867051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological stability in plant communities is shaped by bottom-up processes like environmental resource fluctuations and top-down controls such as herbivory, each of which have demonstrated direct effects but may also act indirectly by altering plant community dynamics. These indirect effects, called biotic stability mechanisms, have been studied across environmental gradients, but few studies have assessed the importance of top-down controls on biotic stability mechanisms in conjunction with bottom-up processes. Here we use a long-term herbivore exclusion experiment in central Kenya to explore the joint effects of drought and herbivory (bottom-up and top-down limitation, respectively) on three biotic stability mechanisms: (1) species asynchrony, in which a decline in one species is compensated for by a rise in another, (2) stable dominant species driving overall stability, and (3) the portfolio effect, in which a community property is distributed among multiple species. We calculated the temporal stability of herbaceous cover and biotic stability mechanisms over a 22-year time series and with a moving window to examine changes through time. Both drought and herbivory additively reduced asynchronous dynamics, leading to lower stability during droughts and under high herbivore pressure. This effect is likely attributed to a reduction in palatable dominant species under higher herbivory, which creates space for subordinate species to fluctuate synchronously in response to rainfall variability. Dominant species population stability promoted community stability, an effect that did not vary with precipitation but depended on herbivory. The portfolio effect was not important for stability in this system. Our results demonstrate that this system is naturally dynamic, and a future of increasing drought may reduce its stability. However, these effects will in turn be amplified or buffered depending on changes in herbivore communities and their direct and indirect impacts on plant community dynamics.
Collapse
|
7
|
Using Satellite NDVI Time-Series to Monitor Grazing Effects on Vegetation Productivity and Phenology in Heterogeneous Mediterranean Forests. REMOTE SENSING 2022. [DOI: 10.3390/rs14102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The reintroduction of livestock grazing to regulate biomass load is being tested for large-scale restoration in Mediterranean landscapes affected by rural abandonment. Concurrently, there is a need to develop cost-effective methods to monitor such interventions. Here, we investigate if satellite data can be used to monitor the response of vegetation phenology and productivity to grazing disturbance in a heterogenous forest mosaic with herbaceous, shrub, and tree cover. We identify which vegetation seasonal metrics respond most to grazing disturbances and are relevant to monitoring efforts. The study follows a BACI (Before-After-Control-Impact) design applied to a grazing intervention in a Pyrenean oak forest (Quercus pyrenaica) in central Portugal. Using NDVI time-series from Sentinel-2 imagery for the period between June 2016 and June 2021, we observed that each type of vegetation exhibited a distinct phenology curve. Herbaceous vegetation was the most responsive to moderate grazing disturbances with respect to changes in phenology and productivity metrics, namely an anticipation of seasonal events. Results for shrubs and trees suggest a decline in peak productivity in grazed areas but no changes in phenology patterns. The techniques demonstrated in this study are relevant to a broad range of use cases in the large-scale monitoring of fine-grained heterogeneous landscapes.
Collapse
|