1
|
Li J, Zhu L, Li X, Han X, Yi J, Wu Y, Wang M. Characterization and risk-quantification of antibiotic resistome in grain-based and non-grain cropping soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126147. [PMID: 40157487 DOI: 10.1016/j.envpol.2025.126147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Microbial contamination in soils, encompassing human bacterial pathogens (HBPs), antibiotic resistance genes (ARGs), and virulence factor genes (VFGs), poses a significant threat to human health via the food chain. Currently, there is a lack of comprehensive assessments of microbial contamination and associated health risks of ARGs in agricultural soils. In this study, metagenomic sequencing was used to evaluate microbial contamination in grain-based cropping soils (rice cultivation) and non-grain cropping soils (vegetable cultivation and aquaculture). The results showed that the diversity and abundance of HBPs and VFGs were significantly higher in non-grain soils. Further resistome analysis revealed higher abundances of high-risk (from 0.014 to 0.018-0.023) and "last-resort" ARGs (from 0.007 to 0.034-0.046) in non-grain soils. Besides ARGs abundance, health risk quantification revealed that non-grain soils exhibited 1.49-2.14-fold greater ARG-related risks than grain-based soils. Additionally, stronger network associations were found between HBPs, ARGs, and mobile genetic elements (MGEs) in non-grain soils. This study indicated that the non-grain cropping pattern of soils elevated the risk of microbial contamination and ARGs health risk, which provided an important basis for accurately quantifying the risk of microbial contamination in different agricultural soils.
Collapse
Affiliation(s)
- Jingpeng Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lin Zhu
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaodi Li
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xuezhu Han
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiaming Yi
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Ying Wu
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Meizhen Wang
- Zhejiang Key Laboratory of Solid Waste Pollution Control and Resource Utilization, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
2
|
Yu T, Cheng L, Zhang Q, Yang J, Zang H, Zeng Z, Yang Y. Characterization of antibiotic resistance genes and virulence factors in organic managed tea plantation soils in southwestern China by metagenomics. Front Microbiol 2025; 16:1580450. [PMID: 40376454 PMCID: PMC12078288 DOI: 10.3389/fmicb.2025.1580450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/14/2025] [Indexed: 05/18/2025] Open
Abstract
Sustainable organic management practices have gained significant attentions for its potential health and environmental benefits. However, the spread of antibiotic resistance genes (ARGs) and virulence factors (VFs) in soils, plants, and agricultural products has severely limited the development of organic managements on agriculture. At present, the distribution and assembly of ARGs and VFs in organic managed tea plantation systems remains largely unknown. Here, we used metagenomic analysis to explore soil microbial taxa, ARGs and VFs in 20 years of conventional managed (CM) and organic managed (OM) tea plantation soils. Results showed that total abundance of ARGs in OM was 16.9% (p < 0.001) higher than that in CM, and the increased ARGs were rpoB2, evgS, MuxB, TaeA, and efrA. As for VFs, OM significantly increased the abundance of adherence, stress protein and actin-based motility compared to CM. Moreover, OM increased the relative abundance of soil microbial taxa harboring ARGs and VFs, which were Streptomyces, Pseudomonas, and Terrabacter, compared to CM. Network analysis suggested that OM increased the positive interactions of microbial taxa-ARGs, microbial taxa-VFs and ARGs-VFs compared to CM. Impact of stochastic process on the assembly of soil microbial taxa, ARGs and VFs in OM was stronger than that in CM. Overall, these findings provide a basis for integrating ARGs, VFs and pathogen hosts to assess the ecological and health risks in long-term organic managed soils, and increased efforts need to be done in reducing ARGs, VFs and bacterial pathogens in fertilizers for organic managements on agriculture.
Collapse
Affiliation(s)
- Taobing Yu
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Lang Cheng
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qing Zhang
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jida Yang
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Huadong Zang
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhaohai Zeng
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yadong Yang
- State Key Laboratory of Maize Bio-breeding, China Agricultural University, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Li D, Tan F, Sun Y, Gao C, Liu Y. Occurrence and Abundance of Antibiotic Resistance Genes in Chinese Traditional Pickles. Foodborne Pathog Dis 2025. [PMID: 40230011 DOI: 10.1089/fpd.2024.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
With the widespread application and even misuse of antibiotics, antibiotic resistance genes (ARGs) are extensively present in various environments, from natural environment to fermented foods, posing emerging threat to public and environmental health. The real-time fluorescence quantitative PCR (qPCR) technique is commonly used to detect ARGs of environmental samples such as soil or water. In this study, eight types of pickles were collected from four regions of China and the existence of 13 resistance genes was assessed by qPCR. The results showed that a total of 11 resistance genes were detected in pickles, the blaTEM gene was detected in all samples, and the neo and cat genes were absent. The abundance of resistance genes varied, aada1 (1.09 × 105 to 5.94 × 106 copies/g), blaTEM (1.48 × 105 to 2.2 × 106 copies/g), ermc (1.01 × 105 to 5.35 × 105 copies/g), hyg (1.35 × 105 to 1.93 × 106 copies/g), aadd (4.46 × 105 to 1.60 × 106 copies/g), nat1 (1.04 × 105 to 5.04 × 105 copies/g), nptII (2.17 × 104 to 1.69 × 105 copies/g), sul1 (2.01 × 105 to 4.60 × 105 copies/g), tetl (1.23 × 105 to 6.18 × 105 copies/g), shble (1.68 × 104 copies/g), and stra (4.8 × 104 to 1.9 × 105copies/g). We also discussed the specificity and sensitivity assessment of qPCR applied to ARGs analysis in pickles, verifying the feasibility and validity of the method. Bacteria were isolated and purified from pickles as well and their antimicrobial resistance was studied. This study is of great significance for the risk assessment of resistance genes in pickles. Effective and preventive solutions were proposed to reduce the spread of resistance genes and protect public dietary health.
Collapse
Affiliation(s)
- Delong Li
- School of Chemical Science and Technology, Linyi University, Linyi, China
| | - Fumin Tan
- School of Life Science, Linyi University, Linyi, China
| | - YiXin Sun
- School of Life Science, Linyi University, Linyi, China
| | - Cuijuan Gao
- School of Life Science, Linyi University, Linyi, China
| | - Yunguo Liu
- School of Life Science, Linyi University, Linyi, China
| |
Collapse
|
4
|
Liu X, Fan Q, Li F, Wu C, Yi S, Lu H, Wu Y, Liu Y, Tian J. Assessing foodborne health risks from dietary exposure to antibiotic resistance genes and opportunistic pathogens in three types of vegetables: An in vitro simulation of gastrointestinal digestion. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136731. [PMID: 39644844 DOI: 10.1016/j.jhazmat.2024.136731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Foodborne health risks posed by antibiotic resistant genes (ARGs) and pathogenic bacteria have garnered increasing global attention. However, the patterns of their propagation and reduction, as well as the resulting health risks in the human gastrointestinal tract, remain unknown. We employed leafy vegetables (water spinach), solanaceous vegetables (pepper), and root vegetables (radish) to investigate the propagation and reduction patterns of ARGs and pathogenic bacteria within an in vitro simulated digestion system. This system mimicked the soil-vegetable-stomach-small intestine (SVSTI) transmission chain. We found that kan, oqxA, and multidrug resistance genes were enriched by 1.10-fold, 11.2-fold, and 2.21-fold, respectively, along the transmission chain. The succession of bacterial communities and horizontal gene transfer mediated by intl1 were identified as the primary drivers of ARG accumulation. Notably, certain pathogenic bacteria (Bacillus cereus, Klebsiella pneumoniae) accumulated in the intestinal environment. According to our proposed health risk assessment system, Bacillus species, as potential ARG hosts, and multidrug ARGs are at a higher risk of exposure to intestinal environment through the transmission chain. Our findings highlight the significant health risks associated with the intake of ARGs and pathogenic bacteria carried by vegetables, emphasizing an urgent need to implement effective biological control measures in vegetable production and consumption.
Collapse
Affiliation(s)
- Xingang Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Qingqing Fan
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China.
| | - Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Hainan Lu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
5
|
Cheng Y, Lu K, Chen Z, Li N, Wang M. Biochar Reduced the Risks of Human Bacterial Pathogens in Soil via Disturbing Quorum Sensing Mediated by Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22343-22354. [PMID: 39642235 DOI: 10.1021/acs.est.4c07668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Biochar has great potential in reducing the abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) from soil. However, its efficiency in removing other biological pollutants, such as human bacterial pathogens (HBPs) and virulence factor genes (VFGs), is rarely studied. Herein, by pyrolyzing rice straw (RS) and pine wood (PW) at 350 and 700 °C, we prepared a series of biochar (RS350, RS700, PW350, and PW700) and investigated their impacts on the abundance and pathogenicity of HBPs. Compared with PW biochar, RS biochar effectively reduced the abundance of HBPs by 6.3-40.1%, as well as their pathogenicity, evidenced by an 8.2-10.1% reduction in the abundance of VFGs. Mechanistically, more persistent free radicals (PFRs) were formed in RS biochar than that of PW biochar during pyrolysis, and PFRs triggered the degradation of N-butyryl-l-homoserine lactone (C4-HSL) from 1.05 to 0.68 ng/kg, thereby disturbing the quorum sensing (QS) of HBPs. Once the QS was disturbed, the communications among HBPs were hindered, and their virulence factors were reduced, which ultimately lowered the abundance and pathogenicity of HBPs. Collectively, our study provides insights into the role of biochar in decreasing the risks of HBPs, which is significant in the development of biochar-based technologies for soil remediation.
Collapse
Affiliation(s)
- Yangjuan Cheng
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kun Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zaiming Chen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Na Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling & International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
6
|
Wen X, Xiang L, Harindintwali JD, Wang Y, He C, Fu Y, Wei S, Hashsham SA, Jiang J, Jiang X, Wang F. Mitigating risks from atrazine drift to soybeans through foliar pre-spraying with a degrading bacterium. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136224. [PMID: 39442306 DOI: 10.1016/j.jhazmat.2024.136224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Herbicides play a crucial role in managing weeds in agriculture, ensuring the productivity and quality of crops. However, herbicide drift poses a significant threat to sensitive plants, necessitating the consideration of ecosystem-based solutions to address this issue. In this study, foliar pre-spraying of atrazine-degrading Paenarthrobacter sp. AT5 was proposed as a new approach to mitigate the risks associated with atrazine drift on soybeans. Exposure to atrazine reduced chlorophyll levels and disturbed the antioxidant system and metabolic processes in soybean leaves, ultimately causing leaves to turn yellow. However, by pre-spraying, strain AT5 successfully colonized the surface of soybean leaves and mitigated the harmful effects of atrazine. This was achieved by slowing down atrazine absorption, expediting its reduction (half-life decreased from 2.22 d to 0.86 d), altering its degradation pathway (enhancing hydroxylation while weakening alkylation), and enhancing the interaction within phyllosphere bacteria communities. This study introduces a new approach that is both eco-friendly and user-friendly for reducing the risks of herbicide drift to sensitive crops, hence promoting the development of mixed cropping.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yuhao Fu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Wei
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Syed A Hashsham
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA; Department of Civil and Environmental Engineering, Michigan State University, MI 48824, USA
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xin Jiang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Zhang CM, Yuan QQ, Li YQ, Liu A. Characteristics of heterotrophic endophytic bacteria in four kinds of edible raw vegetables: species distribution, antibiotic resistance, and related genes. Lett Appl Microbiol 2024; 77:ovae120. [PMID: 39611313 DOI: 10.1093/lambio/ovae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/29/2024] [Accepted: 11/27/2024] [Indexed: 11/30/2024]
Abstract
This study aimed to explore antibiotic resistance characteristics and species of heterotrophic endophytic bacteria (HEB) in four kinds of edible raw vegetables, including radishes, lettuces, onions, and tomatoes. A total of 144 HEB were isolated and tested for resistance to sulfamethoxazole (SMZ), tetracycline (TET), cefotaxime (CTX), and ciprofloxacin (CIP), and their species were identified by 16S rRNA gene sequencing. Antibiotic resistance genes (ARGs) and class I integron in antibiotic-resistant isolates were analyzed by polymerase chain reaction. The results showed radishes had the highest, while tomatoes had the lowest concentration of antibiotic-resistant HEB. SMZ and CTX were predominant antibiotic-resistant phenotypes in HEB. The multi-resistant phenotypes, the combinations SMZ-TET-CTX and SMZ-TET-CIP, accounted for 9.34% of all antibiotic-resistant phenotypes, mainly in radishes and lettuces. Bacillus, Pseudomonas, Staphylococcus, and Stenotrophomonas showed resistance to two antibiotics and existed in more than one kind of vegetable, and were the main carriers of sul1, sul2, blaTEM, and intI1 genes. Therefore, these four genera were considered potential hosts of ARGs in edible raw vegetables. The study provides an early warning regarding health risks associated with ingesting antibiotic-resistant bacteria through raw vegetable consumption.
Collapse
Affiliation(s)
- Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiao-Qiao Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - An Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
8
|
Ding J, Yang W, Liu X, Zhao J, Fu X, Zhang F, Liu H. Hydraulic conditions control the abundance of antibiotic resistance genes and their potential host microorganisms in a frequently regulated river-lake system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174143. [PMID: 38908594 DOI: 10.1016/j.scitotenv.2024.174143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Antibiotic resistance genes (ARGs) are a growing problem that is widespread in river-lake ecosystems, where they pose a threat to the aquatic environment's health and public safety. These systems serve as critical nodes in water management, as they facilitate the equitable allocation of water resources through long-term and frequent water diversions. However, hydrological disturbances associated with water-regulation practices can influence the dynamics of their potential host microorganisms and associated resistance genes. Consequently, identifying the key ARGs and their resistance mechanisms in heavily regulated waters is vital for safeguarding human health and that of river-lake ecosystems. In this study, we examined the impact of water-regulation factors on ARGs and their hosts within a river-lake continuum using 16S rRNA and metagenomic sequencing. We found that a significant increase in ARG abundance during regulation periods (p < 0.05), especially in the aquatic environment. Key resistance genes were macB, tetA, evgS, novA, and msbA, with increased efflux pinpointed as their principal resistance mechanism. Network analysis identified Flavobacteriales, Acinetobacter, Pseudomonas, Burkholderiaceae, and Erythrobacter as key potential host microorganisms, which showed increased abundance within the water column during regulation periods (p < 0.05). Flow velocity and water depth both drove the host microorganisms and critical ARGs. Our findings underscore the importance of monitoring and mitigating the antibiotic resistance risk during water transfers in river-lake systems, thereby supporting informed management and conservation strategies.
Collapse
Affiliation(s)
- Jiewei Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xinyu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiayue Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xianting Fu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fangfei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haifei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Wang J, Ou Y, Li R, Tao C, Liu H, Li R, Shen Z, Shen Q. The occurrence of banana Fusarium wilt aggravates antibiotic resistance genes dissemination in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116982. [PMID: 39217893 DOI: 10.1016/j.ecoenv.2024.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The spread of antibiotic resistance genes (ARGs) and subsequent soil-borne disease outbreaks are major threats to soil health and sustainable crop production. However, the relationship between occurrences of soil-borne diseases and the transmission of soil ARGs remains unclear. Here, soil ARGs, mobile genetic elements and microbial communities from co-located disease suppressive and conducive banana orchards were deciphered using metagenomics and metatranscriptomics approaches. In total, 23 ARG types, with 399 subtypes, were detected using a metagenomics approach, whereas 23 ARG types, with 452 subtypes, were discovered using a metatranscriptomics method. Furthermore, the metagenomics analysis revealed that the ARG total abundance levels were greater in rhizospheres (0.45 ARGs/16S rRNA on average) compared with bulk (0.32 ARGs/16S rRNA on average) soils. Interestingly, metatranscriptomics revealed that the total ARG abundances were greater in disease-conducive (8.85 ARGs/16S rRNA on average) soils than disease suppressive (1.45 ARGs/16S rRNA on average) soils. Mobile genetic elements showed the same trends as ARGs. Network and binning analyses indicated that Mycobacterium, Streptomyces, and Blastomonas are the main potential hosts of ARGs. Furthermore, Bacillus was significantly and negatively correlated with Fusarium (P < 0.05, r = -0.84) and hosts of ARGs (i.e., Mycobacterium, Streptomyces, and Blastomonas). By comparing metagenomic and metatranscriptomic analyses,this study demonstrated that metatranscriptomics may be more sensitive in indicating ARGs activities in soil. Our findings enable the more accurate assessment of the transmission risk of ARGs. The data provide a new perspective for recognizing soil health, in which soil-borne disease outbreaks appear to be associated with ARG spread, whereas beneficial microbe enrichment may mitigate wilt disease and ARG transmission.
Collapse
Affiliation(s)
- Jiabao Wang
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yannan Ou
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ruochen Li
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chengyuan Tao
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongjun Liu
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong Li
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zongzhuan Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Qirong Shen
- The Sanya Institute of the Nanjing Agricultural University, Key Lab of Organic-Based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
10
|
Gekenidis MT, Vollenweider V, Joyce A, Murphy S, Walser JC, Ju F, Bürgmann H, Hummerjohann J, Walsh F, Drissner D. Unde venis? Bacterial resistance from environmental reservoirs to lettuce: tracking microbiome and resistome over a growth period. FEMS Microbiol Ecol 2024; 100:fiae118. [PMID: 39216995 PMCID: PMC11418651 DOI: 10.1093/femsec/fiae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Fresh produce is suggested to contribute highly to shaping the gut resistome. We investigated the impact of pig manure and irrigation water quality on microbiome and resistome of field-grown lettuce over an entire growth period. Lettuce was grown under four regimes, combining soil amendment with manure (with/without) with sprinkler irrigation using river water with an upstream wastewater input, disinfected by UV (with/without). Lettuce leaves, soil, and water samples were collected weekly and analysed by bacterial cultivation, 16S rRNA gene amplicon sequencing, and shotgun metagenomics from total community DNA. Cultivation yielded only few clinically relevant antibiotic-resistant bacteria (ARB), but numbers of ARB on lettuce increased over time, while no treatment-dependent changes were observed. Microbiome analysis confirmed a temporal trend. Antibiotic resistance genes (ARGs) unique to lettuce and water included multidrug and β-lactam ARGs, whereas lettuce and soil uniquely shared mainly glycopeptide and tetracycline ARGs. Surface water carried clinically relevant ARB (e.g. ESBL-producing Escherichia coli or Serratia fonticola) without affecting the overall lettuce resistome significantly. Resistance markers including biocide and metal resistance were increased in lettuce grown with manure, especially young lettuce (increased soil contact). Overall, while all investigated environments had their share as sources of the lettuce resistome, manure was the main source especially on young plants. We therefore suggest minimizing soil-vegetable contact to minimize resistance markers on fresh produce.
Collapse
Affiliation(s)
| | - Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Aoife Joyce
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Sinéad Murphy
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Jean-Claude Walser
- Genetic Diversity Centre (GDC), Department of Environmental System Sciences (D-USYS), Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | | | - Fiona Walsh
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany
| |
Collapse
|
11
|
Zhao S, Li X, Yao X, Wan W, Xu L, Guo L, Bai J, Hu C, Yu H. Transformation of antibiotics to non-toxic and non-bactericidal products by laccases ensure the safety of Stropharia rugosoannulata. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135099. [PMID: 38981236 DOI: 10.1016/j.jhazmat.2024.135099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The substantial use of antibiotics contributes to the spread and evolution of antibiotic resistance, posing potential risks to food production systems, including mushroom production. In this study, the potential risk of antibiotics to Stropharia rugosoannulata, the third most productive straw-rotting mushroom in China, was assessed, and the underlying mechanisms were investigated. Tetracycline exposure at environmentally relevant concentrations (<500 μg/L) did not influence the growth of S. rugosoannulata mycelia, while high concentrations of tetracycline (>500 mg/L) slightly inhibited its growth. Biodegradation was identified as the main antibiotic removal mechanism in S. rugosoannulata, with a degradation rate reaching 98.31 % at 200 mg/L tetracycline. High antibiotic removal efficiency was observed with secreted proteins of S. rugosoannulata, showing removal efficiency in the order of tetracyclines > sulfadiazines > quinolones. Antibiotic degradation products lost the ability to inhibit the growth of Escherichia coli, and tetracycline degradation products could not confer a growth advantage to antibiotic-resistant strains. Two laccases, SrLAC1 and SrLAC9, responsible for antibiotic degradation were identified based on proteomic analysis. Eleven antibiotics from tetracyclines, sulfonamides, and quinolones families could be transformed by these two laccases with degradation rates of 95.54-99.95 %, 54.43-100 %, and 5.68-57.12 %, respectively. The biosafety of the antibiotic degradation products was evaluated using the Toxicity Estimation Software Tool (TEST), revealing a decreased toxicity or no toxic effect. None of the S. rugosoannulata fruiting bodies from seven provinces in China contained detectable antibiotic-resistance genes (ARGs). This study demonstrated that S. rugosoannulata can degrade antibiotics into non-toxic and non-bactericidal products that do not accelerate the spread of antibiotic resistance, ensuring the safety of S. rugosoannulata production.
Collapse
Affiliation(s)
- Shuxue Zhao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Xiaohang Li
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Xingdong Yao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Wei Wan
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Lili Xu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong Province, China
| | - Chunhui Hu
- Instrumental analysis center of Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao 266109, Shandong Province, China.
| |
Collapse
|
12
|
Thomas G, Kay WT, Fones HN. Life on a leaf: the epiphyte to pathogen continuum and interplay in the phyllosphere. BMC Biol 2024; 22:168. [PMID: 39113027 PMCID: PMC11304629 DOI: 10.1186/s12915-024-01967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
Epiphytic microbes are those that live for some or all of their life cycle on the surface of plant leaves. Leaf surfaces are a topologically complex, physicochemically heterogeneous habitat that is home to extensive, mixed communities of resident and transient inhabitants from all three domains of life. In this review, we discuss the origins of leaf surface microbes and how different biotic and abiotic factors shape their communities. We discuss the leaf surface as a habitat and microbial adaptations which allow some species to thrive there, with particular emphasis on microbes that occupy the continuum between epiphytic specialists and phytopathogens, groups which have considerable overlap in terms of adapting to the leaf surface and between which a single virulence determinant can move a microbial strain. Finally, we discuss the recent findings that the wheat pathogenic fungus Zymoseptoria tritici spends a considerable amount of time on the leaf surface, and ask what insights other epiphytic organisms might provide into this pathogen, as well as how Z. tritici might serve as a model system for investigating plant-microbe-microbe interactions on the leaf surface.
Collapse
Affiliation(s)
| | - William T Kay
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
13
|
Luo X, Hounmanou YMG, Ndayisenga F, Yu Z. Spontaneous fermentation mitigates the frequency of genes encoding antimicrobial resistance spreading from the phyllosphere reservoir to the diet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172712. [PMID: 38677439 DOI: 10.1016/j.scitotenv.2024.172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The phyllosphere microbiome of vegetable products constitutes an important reservoir for multidrug resistant bacteria and Antibiotic Resistance Genes (ARG). Vegetable products including fermented products such as Paocai therefore may serve as a shuttle for extrinsic microorganisms with ARGs into the gut of consumers. Here we study the effect of fermentation on Paocai ARG dissemination by metagenomic analysis. Microbial abundance and diversity of the Paocai microbiome were diminished during fermentation, which correlated with the reduction of abundance in ARGs. Specifically, as fermentation progressed, Enterobacterales overtook Pseudomonadales as the predominant ARG carriers, and Lactobacillales and Enterobacteriales became the determinants of Paocai resistome variation. Moreover, the dual effect of microbes and metal resistance genes (MRGs) was the major contributor driving Paocai resistome dynamics. We recovered several metagenome-assembled genomes (MAGs) carrying acquired ARGs in the phyllosphere microbiome. ARGs of potential clinical and epidemiological relevance such as tet M and emrB-qacA, were mainly hosted by non-dominant bacterial genera. Overall, our study provides evidence that changes in microbial community composition by fermentation aid in constraining ARG dispersal from raw ingredients to the human microbiome but does not eliminate them.
Collapse
Affiliation(s)
- Xiao Luo
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbojlen 4, 1870 Frederiksberg, Denmark
| | - Fabrice Ndayisenga
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China
| | - Zhisheng Yu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; RCEES-IMCAS-UCAS Joint-Lab of Microbial Technology for Environmental Science, Beijing 100085, China.
| |
Collapse
|
14
|
Meng Z, Mo X, Xue Q, Wang Z, Lu X, Liu J, Ma Q, Sparks JP, He M. Distribution, source apportionment, and ecological risk assessment of soil antibiotic resistance genes in urban green spaces. ENVIRONMENTAL RESEARCH 2024; 251:118601. [PMID: 38447608 DOI: 10.1016/j.envres.2024.118601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Urban green spaces play a crucial role in cities by providing near-natural environments that greatly impacts the health of residents. However, these green spaces have recently been scrutinized as potential reservoirs of antibiotic resistance genes (ARGs), posing significant ecological risks. Despite this concern, our understanding of the distribution, sources, and ecological risks associated with ARGs remains limited. In this study, we investigated the spatial distribution of soil ARGs using spatial interpolation and auto-correlation analysis. To apportion the source of soil ARGs in urban green spaces of Tianjin, Geo-detector method (GDM) was employed. Furthermore, we evaluated the ecological risk posed by ARGs employing risk quotients (RQ). The results of our study showed a significantly higher abundance of Quinolone resistance genes in the soil of urban green spaces in Tianjin. These genes were mainly found in the northwest, central, and eastern regions of the city. Our investigation identified three main factors contributing to the presence of soil ARGs: antibiotic production, precipitation, livestock breeding, and hospital. The results of ecological risk in RQ value showed a high risk associated with Quinolone resistance genes, followed by Aminoglycoside, Tetracycline, Multidrug, MLSB, Beta Lactam, Sulfonamide, and Chloramphenicol. Mantel-test and correlation analysis revealed that the ecological risk of ARGs was greatly influenced by soil properties and heavy metals. This study provides a new perspective on source apportionment and the ecological risk assessment of soil ARGs in urban green spaces.
Collapse
Affiliation(s)
- Zirui Meng
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300382, China; Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300382, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Xunqiang Mo
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300382, China
| | - Qing Xue
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300382, China
| | - Ziyi Wang
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300382, China
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qinqin Ma
- College of Life Science, Sichuan Normal University, Sichuan, 610066, China
| | - Jed P Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300382, China; Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300382, China.
| |
Collapse
|
15
|
Saechue B, Atwill ER, Jeamsripong S. Occurrence and molecular characteristics of antimicrobial resistance, virulence factors, and extended-spectrum β-lactamase (ESBL) producing Salmonella enterica and Escherichia coli isolated from the retail produce commodities in Bangkok, Thailand. Heliyon 2024; 10:e26811. [PMID: 38444485 PMCID: PMC10912461 DOI: 10.1016/j.heliyon.2024.e26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
The incidence of antimicrobial resistance (AMR) in the environment is often overlooked and leads to serious health threats under the One Health paradigm. Infection with extended-spectrum β-lactamase (ESBL) producing bacteria in humans and animals has been widely examined, with the mode of transmission routes such as food, water, and contact with a contaminated environment. The purpose of this study was to determine the occurrence and molecular characteristics of resistant Salmonella enterica (S. enterica) (n = 59) and Escherichia coli (E. coli) (n = 392) isolated from produce commodities collected from fresh markets and supermarkets in Bangkok, Thailand. In this study, the S. enterica isolates exhibited the highest prevalence of resistance to tetracycline (11.9%) and streptomycin (8.5%), while the E. coli isolates were predominantly resistant to tetracycline (22.5%), ampicillin (21.4%), and sulfamethoxazole (11.5%). Among isolates of S. enterica (6.8%) and E. coli (15.3%) were determined as multidrug resistant (MDR). The prevalence of ESBL-producing isolates was 5.1% and 1.0% in S. enterica and E. coli, respectively. A minority of S. enterica isolates, where a single isolate exclusively carried blaCTX-M-55 (n = 1), and another isolate harbored both blaCTX-M-55 and blaTEM-1 (n = 1); similarly, a minority of E. coli isolates contained blaCTX-M-55 (n = 2) and blaCTX-M-15 (n = 1). QnrS (11.9%) and blaTEM (20.2%) were the most common resistant genes found in S. enterica and E. coli, respectively. Nine isolates resistant to ciprofloxacin contained point mutations in gyrA and parC. In addition, the odds of resistance to tetracycline among isolates of S. enterica were positively associated with the co-occurrence of ampicillin resistance and the presence of tetB (P = 0.001), while the E. coli isolates were positively associated with ampicillin resistance, streptomycin resistance, and the presence of tetA (P < 0.0001) in this study. In summary, these findings demonstrate that fresh vegetables and fruits, such as cucumbers and tomatoes, can serve as an important source of foodborne AMR S. enterica and E. coli in the greater Bangkok area, especially given the popularity of these fresh commodities in Thai cuisine.
Collapse
Affiliation(s)
- Benjawan Saechue
- Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Saharuetai Jeamsripong
- Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Microbial Food Safety and Antimicrobial resistance, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Li X, Zhu L, Zhang SY, Li J, Lin D, Wang M. Characterization of microbial contamination in agricultural soil: A public health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169139. [PMID: 38070547 DOI: 10.1016/j.scitotenv.2023.169139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Soil is widely recognized as a reservoir of microbial contaminants including antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs), which are major public health concerns. Although the risks associated with soil safety in different soil habitats have been studied, the results are not comprehensive. In this study, dryland soils used for vegetable, corn, and soybean planting, and submerged soils used for rice planting and crab farming were collected and subjected to metagenomic sequencing to characterize HBPs, ARGs, and virulence factor genes (VFGs). The results showed that submerged soils had a higher abundance of HBP than dryland soils. In addition, the submerged soil microbiome acquired significantly higher levels of high-risk ARGs than the dryland soil microbiome and these ARGs were mainly assigned to bacA, sul1, and aadA genes submerged. Network analysis revealed that 11 HBPs, including Yersinia enterocolitica, Vibrio cholerae, Escherichia coli, and Leptospira interrogans, were high-risk because of their close association with ARGs, VFGs, and mobile genetic elements (MGEs). Procrustes and network analyses showed that HBPs and ARGs were more closely linked in submerged soil. This study confirms that submerged field has higher ecological environment risk and human health risk than dryland soil.
Collapse
Affiliation(s)
- Xiaodi Li
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lin Zhu
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Si-Yu Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jingpeng Li
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Da Lin
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Meizhen Wang
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
17
|
Wu R, Fang J, Xiang X, Liu H, Zhu Y, Du S. Graphene oxide influences transfer of plasmid-mediated antibiotic resistance genes into plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168652. [PMID: 37979849 DOI: 10.1016/j.scitotenv.2023.168652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
As an emerging contaminant, antibiotic resistance genes (ARGs) are raising concerns about its significant threat to public health. Meanwhile, graphene oxide (GO), which also has a potential ecological damage with increasingly entering the environment, has a great influence on the transfer of ARGs. However, little is known about the effects mechanisms of GO on the migration of antibiotic resistance genes (ARGs) from bacteria into plants. In this study, we investigated the influence of GO on the transfer of ARGs carried by RP4 plasmids from Bacillus subtilis into rice plants. Our results showed that the presence of GO at concentrations ranging from 0 to 400 mg L-1 significantly reduced the transfer of ARGs into rice roots by 13-71 %. Moreover, the migration of RP4 from the roots to aboveground parts was significantly impaired by GO. These effects may be attributed to several factors. First, higher GO concentrations led to low pH in the culture solution, resulting in a substantial decrease in the number of antibiotic-resistant bacteria. Second, GO induced oxidative stress in rice, as indicated by enhanced Evans blue dye staining, and elevated levels of malondialdehyde, nitric oxide, and phenylalanine ammonia-lyase activity. The oxidative stress negatively affected plant growth, as demonstrated by the reduced fresh weight and altered lignin content in the rice. Microscopic observations confirmed the entry of GO into root cells but not leaf mesophyll cells. Furthermore, potential recipients of RP4 plasmid strains in rice after co-cultivation experiments were identified, including Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus cereus. These findings clarify the influence of GO on ARGs in the bacteria-plant system and emphasize the need to consider its potential ecological risks.
Collapse
Affiliation(s)
- Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jin Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaobo Xiang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
18
|
Wang HT, Gan QY, Li G, Zhu D. Effects of Zinc Thiazole and Oxytetracycline on the Microbial Metabolism, Antibiotic Resistance, and Virulence Factor Genes of Soil, Earthworm Gut, and Phyllosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:160-170. [PMID: 38148496 DOI: 10.1021/acs.est.3c06513] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pesticides and antibiotics are believed to increase the incidence of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs), constituting a serious threat to global health. However, the impact of this combined pollution on the microbiome and that of the related ARGs and VFGs on soil-plant-animal systems remain unknown. In this study, a 60-day microcosm experiment was conducted to reveal the effects of zinc thiazole (ZT) and oxytetracycline (OTC) on microbial communities, antibiotic resistomes, and virulence factors in soil, earthworm gut, and phyllosphere samples using metagenomics. ZT exposure perturbed microbial communities and nutrient metabolism and increased the abundance of ARGs and VFGs in the gut. Combined exposure changed the profiles of ARGs and VFGs by decreasing microbial diversity in the phyllosphere. Host-tracking analysis identified some genera, such as Citrobacter and Aeromonas, as frequent hosts of ARGs and VFGs in the gut. Notably, some co-occurrence patterns of ARGs and MGEs were observed on the metagenome-assembled contigs. More importantly, ZT markedly increased the abundance of potentially drug-resistant pathogens Acinetobacter soli and Acinetobacter junii in the phyllosphere. Overall, this study expands our current understanding of the spread of ARGs and VFGs in soil-plant-animal systems under pollutant-induced stress and the associated health risks.
Collapse
Affiliation(s)
- Hong-Tao Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Qiu-Yu Gan
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
19
|
Zhang Y, Zhao J, Chen M, Tang X, Wang Y, Zou Y. Fecal antibiotic resistance genes were transferred through the distribution of soil-lettuce-snail food chain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87793-87809. [PMID: 37434056 DOI: 10.1007/s11356-023-28606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Massive antibiotic resistance genes (ARG) were detected in the soil modified by manure, which may affect human life safety through the food chain. However, the transmission of ARGs through the soil-plant-animal food chain is still unclear. Therefore, this study used high-throughput quantitative PCR technology to explore the effects of pig manure application on ARGs and bacterial communities in soil, lettuce phyllosphere, and snail excrement. The results showed that a total of 384 ARGs and 48 MEGs were detected in all samples after 75 days of incubation. The diversity of ARGs and MGEs in soil components increased significantly by 87.04% and 40% with the addition of pig manure. The absolute abundance of ARGs in the phyllosphere of lettuce was significantly higher than that of the control group, with a growth rate of 212.5%. Six common ARGs were detected between the three components of the fertilization group, indicating that there was internal transmission of fecal ARGs between the trophic levels of the food chain. Firmicutes and Proteobacteria were identified as the dominant host bacteria in the food chain system, which were more likely to be used as carriers of ARGs to promote the spread of resistance in the food chain. The results were used to assess the potential ecological risks of livestock and poultry manure. It provides theoretical basis and scientific support for the formulation of ARG prevention and control policies.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Jiayi Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Minglong Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xinyue Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yijia Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yun Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
20
|
Huang E, Yang X, Leighton E, Li X. Carbapenem resistance in the food supply chain. J Food Prot 2023; 86:100108. [PMID: 37244353 DOI: 10.1016/j.jfp.2023.100108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Carbapenems are critically important antibiotic agents because they are considered the "last-resort" antibiotics for treating serious infections. However, resistance to carbapenems is increasing throughout the world and has become an urgent problem. Some carbapenem-resistant bacteria are considered urgent threats by the United States Centers for Disease Control and Prevention. In this review, we searched and summarized studies published mostly in the recent five years related to carbapenem resistance in three main areas in the food supply chain: livestock, aquaculture, and fresh produce. We have found that many studies have shown a direct or indirect correlation between carbapenem resistance in the food supply chain and human infections. Our review also revealed the worrisome incidences of the cooccurrence of resistance to carbapenem and other "last-resort" antibiotics, such as colistin and/or tigecycline, in the food supply chain. Antibiotic resistance is a global public health challenge, and more effort related to carbapenem resistance in the food supply chain for different food commodities is still needed in some countries and regions, including the United States. In addition, antibiotic resistance in the food supply chain is a complicated issue. Based on the knowledge from current studies, only restricting the use of antibiotics in food animal production might not be enough. Additional research is needed to determine factors contributing to the introduction and persistence of carbapenem resistance in the food supply chain. Through this review, we hope to provide a better understanding of the current state of carbapenem resistance, and the niches of knowledge that are needed for developing strategies to mitigate antibiotic resistance, especially carbapenem resistance in the food supply chain.
Collapse
Affiliation(s)
- En Huang
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Xu Yang
- Department of Nutrition and Food Science, California State Polytechnic University Pomona, 3801 West Temple Ave, Pomona, CA 91768, USA
| | - Elizabeth Leighton
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | - Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA.
| |
Collapse
|
21
|
Fan X, Su J, Zhou S, An X, Li H. Plant cultivar determined bacterial community and potential risk of antibiotic resistance gene spread in the phyllosphere. J Environ Sci (China) 2023; 127:508-518. [PMID: 36522081 DOI: 10.1016/j.jes.2022.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 06/17/2023]
Abstract
The global increased antibiotic resistance level in pathogenic microbes has posed a significant threat to human health. Fresh vegetables have been recognized to be an important vehicle of antibiotic resistance genes (ARGs) from environments to human beings. Phyllosphere ARGs have been indicated to be changed with plant species, yet the influence of plant cultivar on the phyllospheric resistome is still unclear. Here, we detected the ARGs and bacterial communities in the phyllosphere of two cultivars of cilantros and their corresponding soils using high-throughput quantitative PCR technique and bacterial 16S rRNA gene-based high-throughput sequencing, respectively. We further identified the potential bacterial pathogens and analyzed the effects of plant cultivar on ARGs, mobile genetic elements (MGEs), microbiome and potential bacterial pathogens. The results showed that the cultivars did not affect the ARG abundance and composition, but significantly shaped the abundance of MGEs and the composition structure of bacteria in the phyllosphere. The relative abundance of potential bacterial pathogens was significantly higher in the phyllosphere than that in soils. Mantel test showed that the ARG patterns were significantly correlated to the patterns of potential bacterial pathogens. Our results suggested that the horizontal gene transfer of ARGs in the phyllosphere might be different between the two cultivars of cilantro and highlighted the higher risk of phyllospheric microorganisms compared with those in soils. These findings extend our knowledge on the vegetable microbiomes, ARGs, and potential pathogens, suggesting more agricultural and hygiene protocols are needed to control the risk of foodborne ARGs.
Collapse
Affiliation(s)
- Xiaoting Fan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyidan Zhou
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinli An
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Sun L, Tang D, Tai X, Wang J, Long M, Xian T, Jia H, Wu R, Ma Y, Jiang Y. Effect of composted pig manure, biochar, and their combination on antibiotic resistome dissipation in swine wastewater-treated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121323. [PMID: 36822312 DOI: 10.1016/j.envpol.2023.121323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs), owing to irrigation using untreated swine wastewater, in vegetable-cultivated soils around swine farms poses severe threats to human health. Furthermore, at the field scale, the remediation of such soils is still challenging. Therefore, here, we performed field-scale experiments involving the cultivation of Brassica pekinensis in a swine wastewater-treated soil amended with composted pig manure, biochar, or their combination. Specifically, the ARG and mobile genetic element (MGE) profiles of bulk soil (BS), rhizosphere soil (RS), and root endophyte (RE) samples were examined using high-throughput quantitative polymerase chain reaction. In total, 117 ARGs and 22 MGEs were detected. Moreover, we observed that soil amendment using composted pig manure, biochar, or their combination decreased the absolute abundance of ARGs in BS and RE after 90 days of treatment. However, the decrease in the abundance of ARGs in RS was not significant. We also observed that the manure and biochar co-application showed a minimal synergistic effect. To clarify this observation, we performed network and Spearman correlation analyses and used structure equation models to explore the correlations among ARGs, MGEs, bacterial composition, and soil properties. The results revealed that the soil amendments reduced the abundances of MGEs and potential ARG-carrying bacteria. Additionally, weakened horizontal gene transfer was responsible for the dissipation of ARGs. Thus, our results indicate that composted manure application, with or without biochar, is a useful strategy for soil nutrient supplementation and alleviating farmland ARG pollution, providing a justification for using an alternative to the common agricultural practice of treating the soil using only untreated swine wastewater. Additionally, our results are important in the context of soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Likun Sun
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Engineering Research Center for Animal Waste Utilization, Gansu Agricultural University, Lanzhou, 730070, China
| | - Defu Tang
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Xisheng Tai
- College of Urban Environment, Lanzhou City University, China
| | - Jiali Wang
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Min Long
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tingting Xian
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Haofan Jia
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Renfei Wu
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongqi Ma
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yunpeng Jiang
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
23
|
Zhou R, Duan GL, García-Palacios P, Yang G, Cui HL, Yan M, Yin Y, Yi XY, Li L, Delgado-Baquerizo M, Zhu YG. Environmental factors and host genotype control foliar epiphytic microbial community of wild soybeans across China. Front Microbiol 2023; 14:1065302. [PMID: 36992926 PMCID: PMC10041966 DOI: 10.3389/fmicb.2023.1065302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionThe microbiome inhabiting plant leaves is critical for plant health and productivity. Wild soybean (Glycine soja), which originated in China, is the progenitor of cultivated soybean (Glycine max). So far, the community structure and assembly mechanism of phyllosphere microbial community on G. soja were poorly understood.MethodsHere, we combined a national-scale survey with high-throughput sequencing and microsatellite data to evaluate the contribution of host genotype vs. climate in explaining the foliar microbiome of G. soja, and the core foliar microbiota of G. soja were identified.ResultsOur findings revealed that both the host genotype and environmental factors (i.e., geographic location and climatic conditions) were important factors regulating foliar community assembly of G. soja. Host genotypes explained 0.4% and 3.6% variations of the foliar bacterial and fungal community composition, respectively, while environmental factors explained 25.8% and 19.9% variations, respectively. We further identified a core microbiome thriving on the foliage of all G. soja populations, including bacterial (dominated by Methylobacterium-Methylorubrum, Pantoea, Quadrisphaera, Pseudomonas, and Sphingomonas) and fungal (dominated by Cladosporium, Alternaria, and Penicillium) taxa.ConclusionOur study revealed the significant role of host genetic distance as a driver of the foliar microbiome of the wild progenitor of soya, as well as the effects of climatic changes on foliar microbiomes. These findings would increase our knowledge of assembly mechanisms in the phyllosphere of wild soybeans and suggest the potential to manage the phyllosphere of soya plantations by plant breeding and selecting specific genotypes under climate change.
Collapse
Affiliation(s)
- Rui Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pablo García-Palacios
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Yan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing-Yun Yi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lv Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- *Correspondence: Yong-Guan Zhu,
| |
Collapse
|
24
|
Yin Y, Wang YF, Cui HL, Zhou R, Li L, Duan GL, Zhu YG. Distinctive Structure and Assembly of Phyllosphere Microbial Communities between Wild and Cultivated Rice. Microbiol Spectr 2023; 11:e0437122. [PMID: 36625666 PMCID: PMC9927517 DOI: 10.1128/spectrum.04371-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Wild rice has been demonstrated to possess enriched genetic diversity and multiple valuable traits involved in disease/pest resistance and abiotic stress tolerance, which provides a potential resource for sustainable agriculture. However, unlike the plant compartments such as rhizosphere, the structure and assembly of phyllosphere microbial communities of wild rice remain largely unexplored. Through amplicon sequencing, this study compared the phyllosphere bacterial and fungal communities of wild rice and its neighboring cultivated rice. The core phyllosphere microbial taxa of both wild and cultivated rice are dominated with Pantoea, Methylobacterium, Nigrospora, and Papiliotrema, which are potentially beneficial to rice growth and health. Compared to the cultivated rice, Methylobacterium, Sphingomonas, Phaeosphaeria, and Khuskia were significantly enriched in the wild rice phyllosphere. The potentially nitrogen-fixing Methylobacterium is the dominated wild-enriched microbe; Sphingomonas is the hub taxon of wild rice networks. In addition, the microbiota of wild rice was more governed by deterministic assembly with a more complicated and stable community network than the cultivated rice. Our study provides a list of the beneficial microbes in the wild rice phyllosphere and reveals the microbial divergence between wild rice and cultivated rice in the original habitats, which highlights the potential selective role of wild rice in recruiting specific microbiomes for enhancing crop performance and promoting sustainable food production. IMPORTANCE Plant microbiota are being considered a lever to increase the sustainability of food production under a changing climate. In particular, the microbiomes associated with ancestors of modern cultivars have the potential to support their domesticated cultivars. However, few efforts have been devoted to studying the biodiversity and functions of microbial communities in the native habitats of ancestors of modern crop species. This study provides a list of the beneficial microbes in the wild rice phyllosphere and explores the microbial interaction patterns and the functional profiles of wild rice. This information could be useful for the future utilization of the plant microbiome to enhance crop performance and sustainability, especially in the framework of sustainable agroecosystems.
Collapse
Affiliation(s)
- Yue Yin
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Fei Wang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Ling Cui
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhou
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lv Li
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
25
|
Postiglione A, Prigioniero A, Zuzolo D, Tartaglia M, Scarano P, Maisto M, Ranauda MA, Sciarrillo R, Thijs S, Vangronsveld J, Guarino C. Quercus ilex Phyllosphere Microbiome Environmental-Driven Structure and Composition Shifts in a Mediterranean Contex. PLANTS (BASEL, SWITZERLAND) 2022; 11:3528. [PMID: 36559640 PMCID: PMC9782775 DOI: 10.3390/plants11243528] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The intra- and interdomain phyllosphere microbiome features of Quercus ilex L. in a Mediterranean context is reported. We hypothesized that the main driver of the phyllosphere microbiome might be the season and that atmospheric pollutants might have a co-effect. Hence, we investigated the composition of epiphytic bacteria and fungi of leaves sampled in urban and natural areas (in Southern Italy) in summer and winter, using microscopy and metagenomic analysis. To assess possible co-effects on the composition of the phyllosphere microbiome, concentrations of particulate matter and polycyclic aromatic hydrocarbons (PAHs) were determined from sampled leaves. We found that environmental factors had a significative influence on the phyllosphere biodiversity, altering the taxa relative abundances. Ascomycota and Firmicutes were higher in summer and in urban areas, whereas a significant increase in Proteobacteria was observed in the winter season, with higher abundance in natural areas. Network analysis suggested that OTUs belonging to Acidobacteria, Cytophagia, unkn. Firmicutes(p), Actinobacteria are keystone of the Q. ilex phyllosphere microbiome. In addition, 83 genes coding for 5 enzymes involved in PAH degradation pathways were identified. Given that the phyllosphere microbiome can be considered an extension of the ecosystem services offered by trees, our results can be exploited in the framework of Next-Generation Biomonitoring.
Collapse
Affiliation(s)
- Alessia Postiglione
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Maria Maisto
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, 3590 Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, 3590 Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
26
|
Song J, Lin X, Ee LY, Li SFY, Huang M. A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing. ADVANCED FIBER MATERIALS 2022; 5:429-460. [PMID: 36530770 PMCID: PMC9734373 DOI: 10.1007/s42765-022-00237-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/13/2022] [Indexed: 05/26/2023]
Abstract
Rapid industrialization is accompanied by the deterioration of the natural environment. The deepening crisis associated with the ecological environment has garnered widespread attention toward strengthening environmental monitoring and protection. Environmental sensors are one of the key technologies for environmental monitoring, ultimately enabling environmental protection. In recent decades, micro/nanomaterials have been widely studied and applied in environmental sensing owing to their unique dimensional properties. Electrospinning has been developed and adopted as a facile, quick, and effective technology to produce continuous micro- and nanofiber materials. The technology has advanced rapidly and become one of the hotspots in the field of nanomaterials research. Environmental sensors made from electrospun nanofibers possess many advantages, such as having a porous structure and high specific surface area, which effectively improve their performance in environmental sensing. Furthermore, by introducing functional nanomaterials (carbon nanotubes, metal oxides, conjugated polymers, etc.) into electrospun fibers, synergistic effects between different materials can be utilized to improve the catalytic activity and sensitivity of the sensors. In this review, we aimed to outline the progress of research over the past decade on electrospinning nanofibers with different morphologies and functional characteristics in environmental sensors.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620 People’s Republic of China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Xuanhao Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 Singapore
- National University of Singapore Environmental Research Institute, T Lab Bldg, 5A Engineering Drive 1, Singapore, 117411 Singapore
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai, 201620 People’s Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092 People’s Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620 People’s Republic of China
| |
Collapse
|
27
|
Evidence of virulence and antibiotic resistance genes from the microbiome mapping in minimally processed vegetables producing facilities. Food Res Int 2022; 162:112202. [DOI: 10.1016/j.foodres.2022.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
28
|
Shao B, Liu Z, Tang L, Liu Y, Liang Q, Wu T, Pan Y, Zhang X, Tan X, Yu J. The effects of biochar on antibiotic resistance genes (ARGs) removal during different environmental governance processes: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129067. [PMID: 35650729 DOI: 10.1016/j.jhazmat.2022.129067] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 05/01/2022] [Indexed: 05/24/2023]
Abstract
Antibiotic resistance genes (ARGs) pollution has been considered as one of the most significant emerging environmental and health challenges in the 21st century, many efforts have been paid to control the proliferation and dissemination of ARGs in the environment. Among them, the biochar performs a positive effect in reducing the abundance of ARGs during different environmental governance processes and has shown great application prospects in controlling the ARGs. Although there are increasing studies on employing biochar to control ARGs, there is still a lack of review paper on this hotspot. In this review, firstly, the applications of biochar to control ARGs in different environmental governance processes were summarized. Secondly, the processes and mechanisms of ARGs removal promoted by biochar were proposed and discussed. Then, the effects of biochar properties on ARGs removal were highlighted. Finally, the future prospects and challenges of using biochar to control ARGs were proposed. It is hoped that this review could provide some new guidance for the further research of this field.
Collapse
Affiliation(s)
- Binbin Shao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Qinghua Liang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ting Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yuan Pan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiansheng Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|